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Abstract
In 1998 the fetal insulin hypothesis proposed that lower birthweight and adult-onset type 2 diabetes are two phenotypes of the
same genotype. Since then, advances in research investigating the role of genetics affecting insulin secretion and action have
furthered knowledge of fetal insulin-mediated growth and the biology of type 2 diabetes. In this review, we discuss the historical
research context from which the fetal insulin hypothesis originated and consider the position of the hypothesis in light of recent
evidence. In summary, there is now ample evidence to support the idea that variants of certain genes which result in impaired
pancreatic beta cell function and reduced insulin secretion contribute to both lower birthweight and higher type 2 diabetes risk in
later life when inherited by the fetus. There is also evidence to support genetic links between type 2 diabetes secondary to reduced
insulin action and lower birthweight but this applies only to loci implicated in body fat distribution and not those influencing
insulin resistance via obesity or lipid metabolism by the liver. Finally, we also consider how advances in genetics are being used
to explore alternative hypotheses, namely the role of the maternal intrauterine environment, in the relationship between lower
birthweight and adult cardiometabolic disease.
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Introduction

Lower birthweight is associated with a higher risk of adult
cardiometabolic disease, including type 2 diabetes [1]. This
relationship was first observed in a study from 1991 linking
birthweight records to results of glucose tolerance tests
performed in adult men [2], and multiple epidemiological
studies have since confirmed this association [3]. The ‘thrifty
phenotype’ hypothesis was put forward as an explanation in

1992, suggesting that maternal malnutrition led to poor fetal
growth, with adaptation to a nutritionally depleted intrauterine
environment resulting in abnormal pancreatic beta cell func-
tion and reduced capacity to secrete insulin extending into
adult life [4]. The thrifty phenotype hypothesis has since
expanded to include preconceptual, periconceptual and other
intrauterine exposures and postnatal outcomes, and is now
known as the Developmental Origins of Health and Disease
(DOHaD) hypothesis [5].

An alternative explanation (the fetal insulin hypothesis)
was put forward in 1998, proposing that lower birthweight
and adult-onset type 2 diabetes are two phenotypes of the
same genotype (Fig. 1) [6, 7]. Jørgen Pedersen identified fetal
insulin as a key intrauterine growth factor in 1952 [8] and this,
together with the observation that monogenic diseases affect-
ing insulin secretion and action were accompanied by lower
birthweight, formed the premise of the fetal insulin hypothe-
sis. It proposed that insulin secretion and resistance, genetical-
ly determined and present from conception, also affect intra-
uterine growth and explain the relationship between lower
birthweight and adult-onset type 2 diabetes observed in epide-
miological studies [1–3].
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In the two decades since the fetal insulin hypothesis was
founded, advances in research encompassing the genetics of
type 2 diabetes and birthweight have made it possible to test
the hypothesis and answer important questions about the rela-
tionship between fetal growth and development of type 2
diabetes in later life. In this review, we evaluate the evidence
for and against the fetal insulin hypothesis, considering recent
evidence from genetic and epidemiological studies. We also
consider how genetics could be utilised to explore the
complex relationships between the intrauterine environment,
fetal genotype and adult-onset type 2 diabetes. The scope of
the review does not encompass evaluation of the position of
the DOHaD hypothesis in relation to type 2 diabetes risk, as
this has been considered in detail in another recent review [9].

The fetal insulin hypothesis from the
perspective of monogenic research

The role of fetal genotype in determining insulin-
mediated growth in utero: studies in families affected
by GCK-MODY

A study of birthweights from pregnancies affected by MODY
due to a heterozygous mutation in the glucokinase gene (GCK)
[6] provided important insights into how the fetal genotype deter-
mines insulin-mediated growth in utero. These mutations result
in reduced sensing of glucose by the pancreatic beta cell, so
individuals with GCK-MODY regulate glucose at a higher set-
point (fasting plasma glucose 5.5–8mmol/l [10]) and have stable,
mild hyperglycaemia throughout life [11]. An analysis of
birthweights in 23 families with GCK-MODY found that where
the mother had GCK-MODY and her fetus did not, birthweight
was approximately 600 g higher than average due to higher fetal

insulin secretion in response to maternal hyperglycaemia.
However, when the fetus had inherited the GCK mutation from
their mother, birthweight was no different from average because
in such pregnancies glucose is sensed by bothmother and fetus at
the same level and a normal amount of insulin is secreted. In
contrast, where the mother did not have GCK-MODY and the
fetus had inherited a mutation in GCK from the father,
birthweight was reduced by approximately 500 g (Table 1). In
this case, maternal glucose crossing the placenta is sensed at a
higher threshold by the fetus, resulting in less insulin secretion.
This work contributed important knowledge to the relationship
between maternal blood glucose levels and fetal genotype in
regulating intrauterine growth, prompting the proposal of the
fetal insulin hypothesis [7].

Studying the genetics of GCK-MODY pregnancies to gain
knowledge of birthweight has been clinically important as it has
informed obstetric care. Historically, these at-risk pregnancies
were monitored with serial ultrasound scans and the fetus was
assumed not to have inherited the maternal mutation if there was
evidence of fetal overgrowth (abdominal circumference >75th
percentile for gestational age). In this case, treatment of maternal
hyperglycaemia was trialled, followed by planned delivery at 38
weeks gestation to mitigate the intra- and postpartum risks of
having a large-for-gestational-age (LGA) baby. More recently,
non-invasive prenatal diagnostic testing of cell-free fetal DNA in
maternal blood has become available [12] and has the potential to
prevent unnecessary treatment of maternal hyperglycaemia in
fetuses who have inherited a GCK mutation.

Single-gene mutations that result in reduced insulin
secretion typically reduce birthweight

The discovery that neonatal diabetes is commonly caused by
mutations in single genes affecting insulin secretion has lent
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Fig. 1 Principles of the fetal
insulin hypothesis compared with
the thrifty phenotype hypothesis.
This figure is available as part of a
downloadable slideset
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further support to the fetal insulin hypothesis (Table 1) [6,
13–23]. These cases are rare and represent a severe phenotype
but the principle that genetics determines both fetal growth
and postnatal insulin secretion is supported by the observation
that infants with neonatal diabetes have very low birthweights
(median SD score (SDS) for sex and gestational age −1.7
[24]). Furthermore, the severity of fetal growth restriction
depends on the amount of fetal insulin secretion, as infants
with complete absence of fetal insulin secretion due to loss-of-
function mutations in the insulin gene or pancreatic agenesis
are half of normal birthweight by term gestation (median SDS
for sex and gestational age <−3.0, unpublished data from A.
Hughes et al). This is in contrast to other animal species,
where absent fetal insulin secretion reduces birthweight to a
much lesser extent than in humans [25]. Therefore, human
birthweight is a bioassay of inherent insulin secretory capac-
ity, and monogenic disorders of insulin secretion provide
unique insights into the genetic link between lower
birthweight and diabetes resulting from reduced insulin
secretion.

Birthweights in HNF4A-MODY and HNF1A-MODY are
not consistent with the fetal insulin hypothesis

Not all instances of monogenic diabetes secondary to reduced
insulin secretion are associated with lower birthweight.
Heterozygous mutations in the genes encoding the transcrip-
tion factors hepatic nuclear factor-4α and -1α (HNF4A and
HNF1A, respectively) result in reduced insulin secretion [26,
27] and mutation carriers develop diabetes in childhood or
early adulthood [28]. The fetal insulin hypothesis would
predict that affected individuals have a low birthweight, yet
individuals with HNF1A-MODY have normal birthweights

and inheritance of HNF4A-MODY is associated with fetal
and neonatal hyperinsulinism and macrosomia (Table 1)
[29]. It has been proposed that fetal hyperinsulinism causes
accelerated postnatal pancreatic beta cell apoptosis, which
subsequently predisposes to early-onset diabetes [30].
However, it has recently been found that higher birthweight
is associated with reduced penetrance of HNF4A-MODY
(unpublished data from J. Locke and K. Patel). Therefore,
higher birthweight in HNF4A-MODY is likely to represent a
greater inherent capacity to secrete insulin, and differential
expression of HNF4A isoforms in the fetus and in later life
[31, 32] may provide an alternative explanation for these
contrasting effects of HNF4A mutations.

Monogenic diseases resulting in severe insulin
resistance have heterogeneous effects on birthweight

The relationship between birthweight and monogenic diabetes
secondary to impaired insulin action is unclear (Table 1).
Consistent with the fetal insulin hypothesis, infants with
severe congenital insulin resistance secondary to loss-of-
function mutations in the insulin receptor gene, INSR, have
very low birthweights [33–35]. Single-gene mutations
resulting in either congenital generalised or familial partial
lipodystrophy are characterised by peripheral insulin resis-
tance due to an absence of subcutaneous adipose tissue, and
affected individuals typically develop diabetes in adolescence
[36]. However, birthweights of infants with congenital gener-
alised lipodystrophy have been reported to be normal [37] and
though there are reports of low birthweight in familial partial
lipodystrophy [38, 39], this has not been widely reported as a
typical clinical feature in the literature [40–42].

Table 1 Birthweight in monogenic diseases associated with reduced insulin secretion and action

Gene Disease Effect on birthweight
at term gestation

In support of fetal
insulin hypothesis?

References

Reduced insulin secretion

GCK MODY ↓~500 g ✓ [6]

HNF1A MODY ↔Normal ✕ [29]

HNF4A MODY ↑~800 g ✕ [29]

HNF1B MODY ↓~800 g ✓ [77]

ABCC8, KCNJ11 Neonatal diabetes ↓~800 g ✓ [13–16]

Absent insulin secretion

INS Neonatal diabetes ↓~1500 g ✓ [17]

CNOT1, GATA4, GATA6, PDX1, PTF1A Pancreatic agenesis ↓~1500 g ✓ [18–23]

Insulin resistance

INSR Congenital insulin resistance ↓~1500 g ✓ [33–35]

AGPAT2, BSCL2, CAV1 Congenital generalised lipodystrophy ↔Normal ✕ [37, 78–80]

LMNA, PPARG, PLIN1 Familial partial lipodystrophy ↔Normal ✕ [38–42]
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The fetal insulin hypothesis from the
perspective of epidemiological research

Paternal type 2 diabetes is associated with lower
offspring birthweight but is not clearly related to
heritable insulin resistance

Observational studies of paternal diabetes status and offspring
birthweight have provided evidence for a shared genetic
predisposition to lower birthweight and type 2 diabetes [43,
44]. The study of paternal diabetes is important, since mater-
nal diabetes leads to higher birthweight [45] and masks the
effect of fetal genes predisposing to diabetes inherited from
the father. This was clearly shown by a study of 236,030
participants (UK Biobank study) wherein paternal diabetes
was associated with a 45 g lower birthweight compared with
birthweights of infants who had no parent with diabetes. In
contrast, birthweight in offspring of parents who both had
diabetes was not different from birthweight of infants for
whom neither parent had diabetes(Fig. 2) [43].

The fetal insulin hypothesis proposed a possible role for
heritable insulin resistance, and there has been evidence for
a relationship between low birthweight and higher levels of
paternal insulin resistance in case–control (n=119) [46] and
cross-sectional (n=2788) [47] studies. However, paternal insu-
lin resistance was not independently associated with offspring
birthweight in a birth-cohort study of 986 UK parent–
offspring trios [48], and there was a positive correlation
between paternal HOMA-IR and umbilical cord insulin levels
in 644 fathers and babies [49]. Together, this suggests that in
utero there may in fact be a compensatory rise in insulin levels
in the face of insulin resistance to maintain fetal growth.

The fetal insulin hypothesis from the
perspective of polygenic research

Type 2 diabetes risk loci are associated with lower
birthweight

The first genome-wide association studies (GWAS) trans-
formed the landscape of research into the genetics of type 2
diabetes [50–52] and allowed us to test the fetal insulin
hypothesis. Initially, variants at type 2 diabetes risk loci
affecting insulin secretion were tested for their associa-
tion with birthweight and it was found that fetal risk
alleles at the CDKAL1 and HHEX-IDE loci were asso-
ciated with a lower birthweight [53, 54]. The effect was
also important; the reduction in birthweight in a fetus
carrying four risk alleles was equivalent to that seen in
a fetus whose mother smoked three cigarettes per day in
the third trimester of pregnancy.

The first GWAS for birthweight shortly followed [55] and
one of the first variants identified was at the known type 2
diabetes risk locus in ADCY5, which plays a key role in
coupling glucose to insulin secretion from the pancreatic beta
cell [56]. Since then, successively larger GWAS of
birthweight, with the latest including data on >400,000 indi-
viduals, have identified a total of 190 loci associated with
birthweight [57–59]. Using a recently developed method
[59, 60], the statistical power from these large samples could
then be harnessed to estimate the independent maternal and
fetal effects at each locus. To date, 11 variants with fetal
effects both on birthweight and on type 2 diabetes risk have
been identified (Table 2).

There is heterogeneity in the relationship between
birthweight and type 2 diabetes risk loci

Type 2 diabetes risk alleles associated with pancreatic beta
cell function The strongest associations between type 2 diabe-
tes risk alleles and lower birthweight are at loci that primarily
affect pancreatic beta cell function (e.g. ADCY5 and
CDKAL1; Fig. 3). However, not all risk alleles at beta cell loci
are associated with lower birthweight. For example, the fetal
risk allele at TCF7L2, which has a relatively large effect on
type 2 diabetes risk, has no effect on birthweight, and the fetal
risk allele at the ANK1 locus is associated with a higher
birthweight [59] despite its role in regulating NKX6-3 [61], a
vital transcription factor involved in pancreatic beta cell devel-
opment [62]. These emerging patterns of association are
consistent with the heterogeneous birthweight effects of
monogenic causes of diabetes secondary to reduced insulin
secretion and suggest that different susceptibility loci exert
their effects on beta cell function at different stages in the life
course.

Fig. 2 Birthweight according to parental diabetes status in the UK
Biobank study [43]. **p<0.001 vs birthweight where neither parent was
reported to have diabetes. Figure adapted from Tyrell et al [43] under the
terms of the Creative Commons Attribution 3.0 Unported License. This
figure is available as part of a downloadable slideset
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Type 2 diabetes risk alleles associated with insulin resistance,
obesity or liver lipid metabolism Certain type 2 diabetes risk
alleles associated with insulin resistance secondary to a
metabolically unfavourable lipodystrophy-like fat distribution
(e.g. IRS1) are associated with lower birthweight but those
implicated in obesity or liver lipid metabolism are not.
Consistent with this, recent evidence shows that fetal carriage
of variants associated with adult adiposity and a favourable
metabolic profile (including higher insulin sensitivity) [63] is
associated with higher birthweight [64]. This could mean that
a genetic predisposition to lower insulin sensitivity results in a
lower birthweight but, in keeping with the monogenic and
epidemiological data, the different pathways affecting insulin
action are not consistently shared between birthweight and
type 2 diabetes risk (Fig. 3).

Quantifying the relationship between lower
birthweight and type 2 diabetes that can be
attributed to genetic risk

While there is now clear support for the fetal insulin hypoth-
esis, the question remains as to how much of the association
between lower birthweight and type 2 diabetes is explained by
the genetic associations. Most variants in the type 2 diabetes
risk loci do not appear to be associated with birthweight and
the finding that a fetal genetic score for birthweight predom-
inantly influences pathways independent of fetal insulin secre-
tion [65] suggests that a substantial proportion of the fetal
genetic variability underlying birthweight does not overlap
with underlying susceptibility to type 2 diabetes. However,
it remains uncertain how much of the relationship (the covari-
ance) between lower birthweight and type 2 diabetes could be
explained by the genetic factors that do overlap. To date, using
genome-wide data, shared genetic effects of common variants

have been estimated to explain 36% (15–57%) of the negative
covariance between birthweight and type 2 diabetes risk [59],
although this comes with the important caveat of uncertainty
introduced by the likely non-linear relationship between the
two phenotypes [57].

Mendelian randomisation studies exploring the role
of the intrauterine environment in determining
relationships between lower birthweight and adult
cardiometabolic disease

While there is accumulating evidence for the relationship
between lower birthweight and type 2 diabetes having a
shared genetic aetiology, long-lasting effects of the intrauter-
ine environment on early development are thought to play an
important role. Many studies of animal models have shown
this to be the case [66] and the most convincing evidence in
humans has come from studies of offspring born during
periods of famine, showing that they are at a higher risk of
disorders of glucose metabolism and type 2 diabetes in adult-
hood (reviewed in detail in [67]). In addition, monozygotic
twins discordant for type 2 diabetes have a lower birthweight
[68], a finding which supports an effect of the intrauterine
environment on both restricted fetal growth and developmen-
tal programming of metabolism.

Genetics can be used to test whether there is a causal rela-
tionship between an intrauterine exposure and adult type 2
diabetes by analysing genetic variants specifically associated
with the exposure in a technique called Mendelian
randomisation [69]. It is akin to a randomised control trial,
since genetic variants are randomly assigned at birth and as
the genes are specific to the exposure it is not generally subject
to confounding from other factors that may mediate the rela-
tionship between the exposure and outcome.

Table 2 Fetal risk loci associated
with birthweight and type 2
diabetes

Birthweight and type
2 diabetes risk locus

Effect of fetal type 2 diabetes
risk-raising allele on
birthweight (z score)

Likely biology underlying type
2 diabetes risk

IRS1 −0.02 Higher insulin resistance [81, 82]

ADCY5 −0.06 Reduced insulin secretion [81, 82]

CDKAL1 −0.05 Reduced insulin secretion [81, 82]

ANK1 +0.03 Reduced insulin secretion [81, 82]

GPSM1 −0.02 Not known

HHEX/IDE −0.04 Reduced insulin secretion [81, 82]

PLEKHA1 −0.02 Not known

INS-IGF2 −0.03 Not known

KCNQ1 −0.02 Reduced insulin secretion [81, 82]

CCND2 −0.01 Reduced insulin secretion [81, 82]

HMGA2 −0.04 Reduced insulin secretion [83]

Birthweight SNPs [59] at these loci are in linkage disequilibrium (R2>0.3) with a primary or secondary signal type
2 diabetes SNP [61]. A 1 SD change in birthweight is equivalent to ~450 g
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There have been attempts to use Mendelian randomisation
to show that lower birthweight is causally related to type 2
diabetes [70–72] but the results were difficult to interpret as
they did not appropriately differentiate between maternal and
fetal effects [73–75]. Methods have been established to
account for maternal and fetal effects and test for causal asso-
ciations between pregnancy exposures and offspring traits
[59, 60, 76]. A recent, large study of genotyped parent–
offspring pairs (n=45,849) showed no evidence for a causal

relationship between maternal intrauterine exposures that
influence birthweight and offspring quantitative cardiometa-
bolic traits (glucose, lipids, BP, BMI) [76]. A specific example
tested by Mendelian randomisation and relevant to the fetal
insulin hypothesis is the relationship between maternal systol-
ic BP (SBP) and offspring birthweight and SBP. This showed
that while high maternal SBP results in reduced fetal growth,
it is not causal for high offspring SBP but instead reflects a
shared genetic predisposition to higher SBP (Fig. 4) [59, 76].
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[61]). SNPs that appear in more
than one cluster (ADCY5,
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HSD17B12, HNF4A) are shown
by an accompanying number in
parentheses. There are two
distinct signals at ANKRD55
(shown as ANKRD55_1 and
ANKRD55_2). The error bars
show the 95% CIs for the
estimated fetal effect on
birthweight in Europeans
(independent of any maternal
effect [59]), with 1 SD change in
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part of a downloadable slideset
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This example demonstrates a key underlying premise of the
fetal insulin hypothesis: that the fetal genotype can explain
observational relationships between lower birthweight and
adult traits. However, unlike the fetal insulin hypothesis, the
relationship between lower birthweight and higher adult SBP
may be explained by a combination of maternal intrauterine
effects on birthweight and fetal genetic susceptibility to higher
adult SBP.

Conclusion

In the two decades since the fetal insulin hypothesis
was first proposed, advances in genetic research have
shed light on what contributes to fetal insulin-mediated
growth and its implications for long-term risk of type 2
diabetes. Strong evidence from monogenic studies has
been supported by epidemiological observations and
discoveries arising from large-scale GWAS of type 2
diabetes and birthweight. Taken as a whole, it is clear
that both lower birthweight and type 2 diabetes reflect,
in part, a shared genetic predisposition to reduced insu-
lin secretion. However, while impaired insulin action
was considered a key part of the original fetal insulin
hypothesis, studies of birthweight relating to monogenic
lipodystrophies, paternal insulin resistance and the biol-
ogy underlying shared birthweight and type 2 diabetes
risk loci suggest this may be a less important factor in
mediating the relationship between lower birthweight
and type 2 diabetes risk.

Research investigating the premise of the fetal insulin
hypothesis will continue to be important as type 2 diabetes

becomes more prevalent globally. As this is predominantly
associated with rising levels of obesity, it is possible that
the variance in adult type 2 diabetes risk that can be
explained by genes which also reduce insulin-mediated
fetal growth becomes less important. This is because risk
variants associated with high BMI are not strongly repre-
sented in birthweight GWAS and mothers with higher
BMIs are at risk for diabetes in pregnancy, which leads
to higher birthweights. Addressing this and other important
challenges, including diversifying research to include non-
European populations and exploring non-linear relation-
ships and gene–environment interactions, will provide
further insights into the genetics of insulin-mediated fetal
growth and its implications for health and disease across
the life course.

Supplementary Information The online version of this article (https://doi.
org/10.1007/s00125-021-05386-7) contains a slideset of the figures for
download, which is available to authorised users.
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