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Abstract

The regulatory architecture of breast cancer is extraordinarily complex and gene misregula-
tion can occur at many levels, with transcriptional malfunction being a major cause. This
dysfunctional process typically involves additional regulatory modulators including DNA
methylation. Thus, the interplay between transcription factor (TF) binding and DNA methyla-
tion are two components of a cancer regulatory interactome presumed to display correlated
signals. As proof of concept, we performed a systematic motif-based in silico analysis to
infer all potential TFs that are involved in breast cancer prognosis through an association
with DNA methylation changes. Using breast cancer DNA methylation and clinical data de-
rived from The Cancer Genome Atlas (TCGA), we carried out a systematic inference of TFs
whose misregulation underlie different clinical subtypes of breast cancer. Our analysis iden-
tified TFs known to be associated with clinical outcomes of p53 and ER (estrogen receptor)
subtypes of breast cancer, while also predicting new TFs that may also be involved. Further-
more, our results suggest that misregulation in breast cancer can be caused by the binding
of alternative factors to the binding sites of TFs whose activity has been ablated. Overall,
this study provides a comprehensive analysis that links DNA methylation to TF binding to
patient prognosis.

Author Summary

DNA methylation is a ubiquitous and simple covalent modification that occurs directly on
genetic material whereby a simple methyl group (CH3) is attached to Cytosine nucleotides
in the context of CpG sites. Modifications of these sites have been postulated to function
in gene regulation, potentially via interactions with transcription factors. In this study, we
hypothesized that DNA methylation signals contain valuable information that can help
infer transcription factors that may be associated with a given disease. Here, we utilize the
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vast repository of breast cancer data that is available in the public domain, and which con-
tains a rich resource for DNA methylation and clinical data on breast cancer patients. In
this guilt-by-association analysis, we postulated that conserved transcription factor bind-
ing motifs that are statistically enriched in regions near methylated CpG sites that are cor-
related with breast cancer patient survival would suggest that their cognate transcription
factors would play a role in the initiation, growth, metastasis, or even suppression of the
tumor. This integrative approach supports the claim that DNA methylation profiling of
patient tumors in the clinic may contain valuable information that can guide the develop-
ment of treatment regimens for individual patients; thus contributing to the progression
of precision medicine.

Introduction

DNA methylation is a critical regulatory process that involves direct chemical modification of
genetic material via the addition of a methyl moiety to the 5th carbon of Cytosine nucleotides.
These covalent modifications occur most prevalently on CpG dinucleotides (CpGs) and are re-
versible, thus allowing the DNA methylome to achieve a balance of stability and plasticity.
DNA methylation plays essential roles in X-chromosome inactivation [1], genomic imprinting
[2], transposable elements silencing [3], stem cell differentiation [1,4-6], embryonic develop-
ment [7,8], and inflammation [9,10]. Considering these critical roles, aberrant DNA methyla-
tion patterning has been observed in nearly all cancer types and in a plethora of non-cancer
diseases including autoimmune disorders [11,12], neurological diseases [11,13] metabolic dis-
orders [14], and cardiovascular disease [15]. Furthermore, DNA methylation signatures and
markers have been used to stratify cancer subtypes and predict patient prognosis [16-18].

Recently, the use of DNA methylation profiling to predict prognostic outcomes of diseased
patients has gained popularity. In breast cancer, studies have shown that ER+ and ER- breast
cancer cell lines could be distinguished by examining their DNA methylation patterns. Sun
et al. identified 84 genes that were differentially methylated between ER+ and ER- cell lines
[19]. Additionally, the TCGA consortium clustered 802 primary breast cancer samples based
on their DNA methylation signals; this yielded 5 distinct clusters that comprised samples that
exhibited varying molecular phenotypes [20]. In a recent study, Anjum et al. identified a
BRCA1 mutation-associated DNA methylation signature in 144 case-control primary blood
samples that was predictive of breast cancer incidence and patient prognosis [21]. Further-
more, Bullinger et al. applied a MALDI-TOF-MS based methylation analysis to identify a DNA
methylation signature in 182 acute myeloid leukemia primary samples that was predictive of
patient outcomes [22]. Several other studies have identified DNA methylation signatures and
markers in primary breast tumor samples that were shown to predict patient outcome [23-26].
These studies have shown that understanding DNA methylation patterning and dissecting its
functions provide valuable insight into its regulatory roles, which may ultimately introduce
new avenues for developing efficacious breast cancer treatments.

Despite recent focus on epigenetic based markers, the exact mechanism(s) by which DNA
methylation regulates gene expression has yet to be elucidated but its interaction with transcrip-
tion factors (TFs) have been shown to be a critical mechanism [27-31]. It has been suggested
that 5-methyl-CpGs (5meCpGs) physically impede the binding of TFs to their cognate se-
quences causing gene silencing [27]. Additionally, 5-meCpGs can indirectly control gene expres-
sion by modulating local chromatin structure via recruitment of histone remodeling factors such
as histone deacetylases and histone methyltransferases [32-34]. Physical obstruction of TF
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binding and compaction of chromatin structure suggest that DNA methylation exerts a silencing
effect; however, studies have shown TFs such as SP1 can bind 5-meCpGs and induce gene ex-
pression [35]. In a comprehensive and systematic genomics study, Hu et al. applied a protein mi-
croarray-based approach to identify which of 1321 TFs and 210 co-factors have the capacity to
bind motifs containing methylated CpGs [36]. They reported 41 TFs and 6 TF co-factors that
bound 5meCpG in a sequence-specific manner [36]. Indeed, it is possible that DNA methylation
patterns are just passive markers of TF binding or gene regulation whereby CpGs in unbound
chromatin are methylated and have no functional relevance [37,38]. Regardless of the exact
mechanism, we postulate that changes in CpG signals near putative transcription factor binding
sites (TFBSs) can reflect the activity of TFs and can be used to infer the underlying transcription-
al machineries that drive the progression of several subgroups of breast cancer.

We have previously integrated ENCODE [39] and TCGA [20] data to computationally exam-
ine the association between TF binding and DNA methylation levels in TFBSs (i.e. ERa) [31].
We found that there is a strong negative correlation between ERa activity and DNA methylation
levels within ERo: binding sites in breast cancer [31]. More importantly, differentially methylated
CpGs between ER+ and ER- breast cancer are enriched in the DNA regions surrounding ERa.
binding peaks (determined by ChIP-seq) in a distance dependent manner—the closer to the cen-
ter of binding peaks, the more differentially methylated the CpGs tend to be [31]. Conversely,
given a set of differentially methylated CpG sites between ER+ and ER- samples, we would ex-
pect the binding site motif of ERa. or other functionally related TFs to be enriched within the vi-
cinity of these CpG sites. These findings suggest that DNA methylation patterns and their
signals are informative for exploring transcriptional regulation mediated by TFs [14].

In this study, we aimed to utilize DNA methylation data derived from primary breast cancer
samples to identify TFs that are associated with patient survival via their relationship with meth-
ylated CpGs. To achieve this we connected the DNA methylation-TF interactome to breast can-
cer patient survival using datasets derived from ENCODE and TCGA [20]. Specifically, we
identified a list of CpG sites that were significantly correlated with patient survival time in their
methylation level. We then determined which TF binding sites are enriched in DNA regions sur-
rounding survival-associated CpGs to extrapolate TFs that are associated with patient survival.
Interestingly, we ascertained that ERa. TF binding motifs were significantly enriched in survival-
associated CpG regions in ER- samples only, and p53 TF binding motifs were enriched in surviv-
al-associated CpGs regions in p53- samples only. Overall, our analysis framework demonstrates
the intimate linkage between DNA methylation, TF binding, and breast cancer patient prognosis.

Results
Overview of our method for identifying survival-associated TFs

The ultimate goal of our analysis was to identify TFs that impact breast cancer patient progno-
sis via an association with CpG methylation. By identifying TF binding motifs enriched in re-
gions containing differentially methylated CpGs or survival-associated CpGs, we were able to
demonstrate a relationship between TF-DNA methylation mediated regulation and overall pa-
tient survival rates. Fig 1 depicts our integrated approach to dissecting epigenetic involvement
in transcriptional regulation underlying breast cancer patient survival. First, we investigated TF
binding motifs enriched in differentially methylated CpG regions to demonstrate that methyla-
tion data are informative for inferring transcriptional regulation in breast cancer (Fig 1: Top).
We successfully detected the enrichment of ERo. TF binding motifs in DNA regions surround-
ing CpG sites that were differentially methylated between ER+ and ER- breast cancer patients.
Most importantly, we applied motif enrichment analysis to survival-associated CpGs (Fig 1:
Bottom) using all breast cancer samples and subsets of samples stratified based on histological,
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Fig 1. Overview of analysis. To show that TF activity can be inferred from DNA methylation levels, patient samples were stratified on ER status to determine
differentially methylated CpGs. Enrichment analysis was then carried out to determine presence of TF binding motifs in differentially methylated CpG regions
(Steps 1-3). To infer TFs associated with clinical outcomes, B-values of 376,667 CpGs across (Step 4) 562 samples were individually used as covariates into
a univariate Cox proportional hazards model [40]. Statistically significant CpGs were labeled as protective, hazardous, or survival-associated (Pro+Haz). A
102 bp region centered at each significant CpG was then interrogated (after filtering out overlapping CpG regions) for the presence of TF binding motifs (Step
5). TF binding motifs enriched across CpGs were then inferred to be survival-associated via an epigenetic relationship.

doi:10.1371/journal.pcbi.1004269.9001

intrinsic, and CpG beta-value intensity phenotypes. We first identified a set of survival-associated
CpGs by correlating the methylation levels of each CpG across TCGA breast cancer patient sam-
ples using a univariate Cox proportional hazards model [40]. Second, we defined a 102 bp geno-
mic region centered at each CpG (henceforth referred to as a CpG region) and computationally
searched for the presence of TF binding motifs in this region. Third, we systematically calculated
TF binding motif enrichment in these CpG regions in different subtypes of breast cancer.

Enriched TF binding motifs in differentially methylated CpG sites
between ER+ and ER- breast samples

To preliminarily demonstrate that TF-mediated transcriptional regulation could be inferred
from DNA methylation signals, we investigated the relationship between CpGs with altered
methylation levels and the presence of putative TF binding motifs vicinal to these CpGs.
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Fig 2. ERa TF binding motifs enriched in differentially methylated CpG regions. A) Global comparison
of the total number of TF binding motifs enriched in hypo- or hypermethylated and their relative enrichment
levels. Horizontal bold line corresponds to P = 0.01 and vertical dashed line corresponds to an enrichment
level of 1. -logyo(p-values) greater than 10 or less than -10 were trimmed at 10 and -10, respectively. B)
Relative enrichment values of JA-ESR1, TR-ER_Q6, and TR-ER_Q6_02 motifs in hypomethylated (ER
+<ER-), hypermethylated (ER+>ER-) CpGs in ER-stratified samples. P-values show significance of
enrichment or depletion of the motif in the two categories. Horizontal bold line corresponds to an enrichment
level of 1.

doi:10.1371/journal.pcbi.1004269.9002

Specifically, we identified CpGs that were differentially methylated between estrogen receptor
positive (ER+) and estrogen receptor negative (ER-) breast cancer samples in TCGA data using
a Student’s t-test, and then examined the occurrences of putative TF binding motifs within
DNA regions surrounding these CpGs.

We systematically calculated the enrichment levels of 703 TF binding motifs available from
the TRANSFAC and JASPAR databases in differentially methylated CpG regions. Our analysis
identified 60 TF binding motifs (38 TFs) enriched in and 105 TF binding motifs (67 TFs) de-
pleted in hypomethylated (ER+ < ER-) CpG regions at a P<1E-15 significance threshold
(Fig 2A) (adjusted p-value using the Benjamini-Hochberg multiple testing correction method;
hereafter, all reported p-values have been adjusted unless otherwise indicated). In addition, we
identified 12 TF binding motifs (10 TFs) enriched in and 50 TF binding motifs (35 TFs) deplet-
ed in hypermethylated (ER+ > ER-) CpG regions at the same threshold (Fig 2A). Similar re-
sults were obtained when a Wilcoxon ranked sum test was used to identify differentially
expressed CpGs (S1 Table).

To validate the accuracy of our systematic analysis, we directed our attention to ERo. TF
binding motifs. Since stratifying breast cancer patient samples into ER+ and ER- groups is
analogous to controlling for ERa activity, we hypothesized that ERo. TF binding motifs would
be significantly enriched in hypomethylated (ER+ < ER-) CpG regions or, alternatively, deplet-
ed in hypermethylated (ER+ > ER-) CpG regions. Our data set includes three ERa. TF binding
motifs: JA-ESR1, TR-ER_Q6, and TR-ER_Q6_02 for which we calculated their enrichment in
the two CpG sets (hypo- and hypermethylated sets). First, JA-ESR1 was depleted in hyper-
methylated CpG regions 0.93-fold (P = 7.7E-4) and depleted in hypomethylated CpG regions
0.94-fold (P = 0.005) (Fig 2). Second, we observed that the TR-ER_Q6 motif was also depleted
in hypermethylated CpG regions 0.84-fold (P = 3.1E-7), but unlike JA-ESR1, was enriched
1.11-fold in hypomethylated CpG regions (P = 0.003) (Fig 2B). Lastly, the TR-ER_Q6_02
motif was depleted in hypermethylated CpG regions 0.92-fold (P = 0.006) and enriched in
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hypomethylated CpG regions 1.27-fold (P = 3.8E-16). These results indicate that TF binding
activity can be inferred based on enrichment of their motifs in DNA regions near informative
CpGs (e.g. differentially methylated CpGs). Previously, we had established that DNA methyla-
tion within ERa: binding sites was anti-correlated with ESRI expression by integrating TCGA
(gene expression and DNA methylation) and ENCODE ChIP-seq data [14]. Therefore, the de-
pletion of all 3 ERa TF binding motifs in hypermethylated CpG regions is in accordance with
our previous analysis confirming that ERo. activity is associated with loss of binding site-
specific DNA methylation [41].

In addition to ERa TF binding motifs, we also identified a number of other TF binding motifs
that are known to be associated with ERa. Strikingly, hypomethylated CpG regions contained 18
TF binding motifs (corresponding to 5 FOX family transcription factors, GATAI, HFHS8, XFD2,
and XFD3) that exhibited greater than 2-fold enrichment, whereas hypermethylated CpG re-
gions contained none (Fig 2A). Operating under the passive model [42], this suggests that loss of
methylation is generally associated with enhanced binding activity of these transcription factors
in ER+ breast cancer. In addition, we identified all GATA3 and FOXO1 TF binding motifs to be
enriched in hypomethylated CpG regions and depleted in hypermethylated regions suggesting
that these TFs are associated with ERa activity. Indeed, it has been experimentally shown that
FOXA1 influences ERa function by modulating ER-chromatin interactions and FOXAI defi-
ciency results in loss of ERo activity (S1 Table) [43-45]. In addition, GATA3 has been shown to
be necessary for estradiol stimulation of breast cancer cells and more recently, modulate ERo ac-
cess to enhancer regions [46,47]. Overall, our motif enrichment results in differentially methylat-
ed CpG regions results are consistent with the known biological roles of our identified TFs.

We were additionally able to verify several enriched TF binding motifs via a de novo motif
search in hyper- and hypomethylated CpG regions. Specifically, we applied the Discriminative
Regular Expression Motif Elicitation (DREME) algorithm to identify enriched DNA motifs in
hyper- and hypomethylated CpG regions and then matched them to known motifs (See Mate-
rials and Methods). We were able to detect the presence of the ESR1 motif in hypomethylated
CpG regions but not in the hypermethylated CpG regions, which is consistent with the enrich-
ment results for ERo.. We were also able to confirm motifs including FOXO1, SP1, KLF4,
EGR2, and E2F1 in hypomethylated CpG regions and TCF3, NHLH]1, and HEB in hyper-
methylated CpG regions.

Survival-associated TFs in breast cancer

After identifying enriched TF binding motifs in differentially methylated CpG regions, our
next objective was to determine if TFs associated with patient survival could be inferred based
on DNA methylation signals. Aberrant TF activity and DNA methylation changes have both
been known to play a role in carcinogenesis and cancer progression. However, to our knowl-
edge, there has been no other study that has systematically investigated survival-associated
TF-DNA methylation relationships at the level of specific TF-CpG interaction. Thus, to pro-
ceed with this high-resolution analysis, we pinpointed CpGs whose methylation levels were sig-
nificantly associated with breast cancer patient survival and calculated the enrichment of TF
binding motifs in the regions surrounding these CpGs. CpGs with hazard ratios <1 were cate-
gorized as protective, CpGs with hazard ratio >1 were categorized as hazardous, and pooled
protective and hazardous CpGs were simply categorized as survival-associated. We hypothe-
sized that survival-associated fluctuations in CpG methylation intensities would be informative
to the activity of specific survival-associated TFs.

When survival analysis was implemented using all samples, we were able to identify 92 TF
binding motifs (62 TFs) enriched and 143 TF binding motifs (98 TFs) depleted in protective
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Fig 3. TF binding motifs enriched in survival-associated CpG regions in primary breast cancer
samples. A) Relative enrichment levels of JA-ESR1 and TR-LRF_Qz2 in all breast cancer samples. B)
Relative enrichment levels of TR-HEB_Q6 and TR-P53_02 in all breast cancer samples. Motif logos are
provided above each panel to show information content of each motif.

doi:10.1371/journal.pcbi.1004269.9003

CpG regions at significance level P<0.01 (S2 Table). For hazardous CpG regions, we detected
11 TF binding motifs (9 TFs) enriched and 2 TF binding motifs (2 TFs) depleted at the same
threshold, respectively. Fig 3 highlights four examples of TF binding motifs enriched in surviv-
al-associated CpG regions: p53, ERo, HEB, and LRF. First, JA-ESR1 exhibited an enrichment
score of 1.23 at P = 0.004 in hazardous CpG regions (Fig 3A). This indicates that the effect ERa.
binding activity—it is known that ER status is a significant clinical factor for predicting survival
of breast cancer patients—has on patient survival can be inferred from DNA methylation sig-
nals correlated with patient prognosis. Second, LRF is an oncogenic transcription factor in-
volved in cell growth and differentiation, and is known to be overexpressed in breast cancer
[48]. Our analysis shows that the TR-LRF_Q2 TF binding motif is enriched 1.18 times in haz-
ardous CpG regions (P = 0.005); additionally, it is depleted 0.93-fold in protective CpG regions
(P =0.03) (Fig 3A). In one study, Maeda et al. reported that LRF is necessary for embryonic fi-
broblast cells (MEFs) to undergo transformation even when other potent oncogenes such as
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H-Ras, T-antigen, and MYC are expressed [49]. Third, we identified HEB (TCF12) to be en-
riched 1.36-fold in protective CpG regions (P = 1.5E-29, Fig 3B). HEB has been previously re-
ported to correlate with colorectal cancer metastasis by inhibiting E-cadherin, thus verifying
HEB as a potential oncofactor [50]. Fourth, it is well established that loss of p53 activity is de-
tected in approximately 50% of all cancers [51]. In our analysis we were able to identify all p53
TF binding motifs to be enriched in survival-associated CpGs (P<0.05). To highlight, the
TR-P53_02 motif was enriched 1.28-fold in protective CpG regions (P = 6.8E-5) (Fig 3A). This
again indicates that DNA methylation levels provide information about the activity of key
transcriptional regulators.

To provide a brief summary, we show the top ten significant TF binding motifs enriched or
depleted in protective CpG regions in Table 1. Similarly, we illustrate the top ten TF binding
motifs enriched or depleted in hazardous CpG regions in Table 2.

TF binding motifs enriched in survival-associated CpGs in ER and p53
stratified breast cancer

To demonstrate that survival-associated CpGs are informative for identifying clinically relevant
TFs, we focus on two key breast cancer-related proteins: ERo and p53. ERov and p53 are major
proteins whose expression levels are typically measured in breast cancer cases to determine the
molecular status of the tumor, and it is well-established practice to use this information for

Table 1. Top 10 TF binding motifs enriched/depleted in protective CpG regions.

TF Binding Motif (PWM)
TR-LBP1_Q6
TR-ETF_Q6
TR-E2F1_Q3_01
TR-AP4_Q6_01
TR-HEB_Q#6
JA-Myf
TR-AP4_Q6
TR-AP4_Q5
TR-MYOD_Q6
TR-ZF5_01

doi:10.1371/journal.pcbi.1004269.t001

Table 2. Top 10 TF binding motifs enriched/depleted in hazardous CpG regions.

TF Binding Motif (PWM)
JA-EMBPA1
JA-MAX
TR-USF_02
TR-CDX2_Q5
TR-EBOX_Q6_01
JA-ESR1
TR-SREBP1_01
TR-FOX04_02
TR-MYCMAX_03
TR-LRF_Q2

doi:10.1371/journal.pcbi.1004269.t002

Transcription Factor

Adjusted P-value (BH)

Enrichment/ Depletion

UBP1 2.34E-36 1.45
ETF 2.17E-32 0.75
E2F1 2.31E-32 0.68
TFAP4 3.50E-32 1.40
TCF12 1.563E-29 1.36
MYF5 2.09E-26 1.32
TFAP4 7.66E-24 1.35
TFAP4 6.57E-22 1.35
MYOD 1.74E-21 1.33
FP161 1.77E-21 0.73

Transcription Factor

Adjusted P-value (BH)

Enrichment/ Depletion

EMBP1 0.0012 1.52
MAX 0.0028 1.40
USF1 0.0028 1.60
CDX2 0.0035 0.36
EBOX 0.0039 1.25
ESR1 0.0045 1.23
SREBP1_01 0.0045 1.44
FOXO04 0.0045 0.58
MYCMAX 0.0045 1.45
FBI1 0.0045 1.18

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004269 May 21, 2015
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determining prognosis and treatment strategies. Here, we explored two major subtyping sche-
mata by systematically calculating the enrichment/depletion of all TF binding motifs (in particu-
lar ERa and p53) in survival-associated CpG regions for ER+, ER-, p53+, and p53- breast cancer
subtypes (S3-S6 Tables). First, we directed our focus to ERa TF binding in ER-stratified samples
and were able to identify JA-ESRI to be enriched 1.44-fold in protective CpG regions in the ER-
subtype but not in the ER+ samples (P = 2.6E-5, Fig 4A). In fact, in ER+ samples, JA-ESR1 is sig-
nificantly depleted 0.80-fold in protective CpG regions (P = 2.2E-11) (Fig 4A). When protective
and hazardous CpGs are combined, JA-ESR1 is enriched 1.20-fold in survival-associated CpGs
in ER- (P = 0.001) samples only and depleted 0.83-fold (P = 9.2E-9) in survival-associated CpGs
in ER+ (Fig 4A). Furthermore, TR-ER_Q6 was enriched 1.24-fold (P = 0.04) in hazardous CpG
regions and TR-ER_Q6_02 was enriched 1.18-fold (P = 0.05) in survival-associated CpG regions
(protective and hazardous CpG regions combined) in ER- samples.

Next, we stratified patient samples into p53+ and p53- groups and calculated the enrich-
ment of TF binding motifs with particular focus on p53 TF binding motifs (Fig 4B). We
identified JA-TP53 to be enriched 1.27-fold in protective CpGs regions only in p53- samples
(P =0.02) and enriched 1.24-fold in survival-associated CpG regions (P = 0.005) (Fig 4B).
Likewise, the TR-P53_01 motif was enriched 1.48-fold in protective CpG regions (P = 3.8E-5)
and 1.38-fold in survival-associated CpG regions (P = 5.13E-6) in p53- samples only (Fig 4B).
In contrast to the other p53 motifs, TR-P53_02 was enriched 1.29-fold in p53+ samples
(P =0.006) and 1.24-fold in p53- samples (P = 0.05), both in protective CpG regions (Fig 4B).
Taken together, our enrichment results from ER- and p53-stratified breast cancer patients sam-
ple show that the majority of ERa and p53 TF binding motifs are enriched in CpG regions in
ER- and p53- samples, respectively. Presumably, the binding sites of key transcriptional regula-
tors can become unbound and accessible to other factors once the activity of the key TF is ab-
lated. Alternative factors may then bind to these open sites leading to misregulation of the
associated genes, and contribute to cancer progression and clinical outcomes of patients.
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doi:10.1371/journal.pcbi.1004269.9004
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TF binding motifs enriched in functional CpG regions associated with
histological subtypes of breast cancer

Breast cancer, like most other cancer types, exhibits a high degree of heterogeneity making it
refractory to treatment. One approach to abrogate the effects of sample-to-sample variation is
to classify tumors into subtypes, each with distinct genetic, molecular, and physiological fea-
tures. Therefore, we aimed to resolve whether breast cancer subtypes determined by immuno-
histochemistry also exhibit differences in TF binding motif enrichment near survival-
associated CpGs.

First, we calculated TF binding motifs enriched/depleted in survival-associated CpGs in
each histological subtype of breast cancer (53, 54, S7-512 Tables). In summary, there are a total
of 252 (178 TFs), 135 (85 TFs), and 247 (168 TFs) TF binding motifs that are enriched in pro-
tective, hazardous, and survival-associated CpG regions, respectively in at least one subtype at
significance level P<0.01. In the opposite direction, 323 (217 TFs), 49 (41), and 305 (208 TFs)
motifs were depleted in protective, hazardous, and survival-associated CpG regions, respective-
ly in at least one subtype at the same significance level (See S13 Table for more details). The
large number of identified motifs suggests that a variety of TFs contribute to breast cancer de-
velopment and each TFs activity may or may not be important drivers depending on the
subtype.

Second, we clustered the p-values (P<0.05) of significantly enriched or depleted TF binding
motifs in survival-associated CpGs and observed that PR+ and ER+, which clustered together,
exhibited enrichment patterns much different from that of the other subtypes (Fig 5A). More
specifically, these subtypes are enriched in TF binding sites that are depleted in the other sub-
types and vice versa. This suggests that the TFs associated with survival in PR+ and ER+ sam-
ples may not be significant protein factors in the other subtypes. In addition, it is clear that
significantly enriched/depleted TF binding motifs vary from subtype to subtype implying that
each subtype exhibits distinct TF-DNA methylation interactions. This shows that unique en-
richment signatures can differentiate between breast cancer subtypes by revealing transcrip-
tional regulators most likely to exhibit altered activity.

After showing global TF binding motif enrichment patterns of histological subtypes, we
provide an example where the TR-NF1_Q6 motif is enriched 1.76-fold in protective CpG re-
gions (P = 1.1E-9) in the triple-negative subtype (Fig 5B). Mutations in NF-1 have been impli-
cated in the proliferation of triple-negative primary breast cancer tumors since it functions as
an inhibitor of RAS and mTOR [52-54]. This suggests that DNA methylation within NF-1
binding sites is associated with longer survival times in patients with triple-negative breast
cancer.

Enrichment of TF binding motifs in functional CpG regions in intrinsic
subtypes of breast cancer

To determine if different transcriptional regulators could also be identified in breast cancer
subtypes based on molecular features, we classified our samples into 5 distinct intrinsic sub-
types: luminal A, luminal B, HER2-enriched, and basal [55]. In some cases, intrinsic subtyping
is more representative of the underlying molecular architecture in breast cancer and can be
used to predict risk of cancer relapse after treatment with chemotherapy [56].

In our analysis, we first identified CpGs that were correlated with survival for each intrinsic
subtype and determined which of 704 TF binding motifs were enriched in hazardous or protec-
tive CpG regions (S14-S16 Tables). In summary, a total of 9 (6 TFs), 209 (80 TFs), 113 (62
TFs) motifs were significantly enriched in protective, hazardous, and survival-associated CpGs,
respectively (in at least one subtype P<0.01). Furthermore, 21 (16), 31 (27), and 40 (34) motifs
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doi:10.1371/journal.pcbi.1004269.9005

were significantly depleted in protective, hazardous, and survival-associated CpGs, respectively
(in at least one subtype P<0.01) (See S13 Table for more details).

Second, we clustered the enrichment p-values of significant TF binding motifs (P<0.05) in
each intrinsic subtype and noticed that the luminal A subtype contained the largest number of
significantly enriched/depleted TF binding motifs that yielded P<0.01 (Fig 5C). Conversely,
HER2-enriched samples contained no significant TF binding site enriched or depleted in sur-
vival-associated CpG regions. This disparity is most likely due to differences in statistical
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power resulting from unequal subtype sample sizes and/or longer average patient survival
times associated with different subtypes (Fig 5C). Despite this, it is clear that some enriched/de-
pleted TF binding motifs are shared amongst luminal A, luminal B, and basal samples and
some are not. Overall, this demonstrates global variation in TF binding site enrichment across
intrinsic breast cancer subtypes.

To explore individual TF binding motifs that are enriched in an intrinsic subtype, we illus-
trate JA-ELK1 as an example. JA-ELK1 is enriched 1.78-fold in hazardous CpG regions in the
basal subtype (P = 0.002) (Fig 5D). ELK1 has been shown to be involved in up-regulation of
Mcl-1, a p53 inhibitor, and may contribute to survival of breast cancer cell lines [57]. Addition-
ally, genome-wide studies in breast cancer cell lines have revealed that ELK1 is involved in the
activation of c-Fos, a proto-oncogene that is implicated in tumorigenesis [58]. These studies
verify that many TF binding motifs we find to be enriched in breast cancer subtypes are biolog-
ically meaningful in the context of breast cancer.

TF binding motifs are enriched in different CpG clusters

When analyzing TE-DNA methylation relationships in breast cancer subtypes, we build upon
conventional methods of cancer stratification. However, in order to analyze TF motif enrich-
ment within a classification scheme focused on DNA methylation, we adopted a bottom-up ap-
proach by first classifying all CpGs into subtypes based on their intensity levels. Since many
cancers show genome-wide changes in DNA methylation, this approach may be able to identify
TFs that are directly related to distinct intensity levels of DNA methylation. Therefore, we cre-
ated a class of subtypes based on the clustering of CpG B-values and calculated TF binding
motif enrichment in these subtypes. Fig 6A shows CpGs organized into 5 clusters based on -
values, with high intensity clusters on top and low intensity clusters on the bottom. From C1 to
C5, the clusters are enriched in 68 (50 TFs), 45 (31 TFs), 6 (6 TFs), 6 (5 TFs), and 87 (59 TFs)
TF binding motifs, respectively (P<0.05) (Fig 6A). Furthermore, we identified 119 (80 TFs), 38
(24 TFs), 3 (3 TFs), 1 (1 TFs), and 10 (8 TFs) TF binding motifs that were significantly depleted
from C1 to C5, respectively (P<0.05) (S18 Table). Like histological and intrinsic subtypes of
breast cancer, certain TF binding motifs exhibit different levels of enrichment across CpG sub-
types. To globally illustrate the variation in TF motif enrichment between CpG subtypes, we
sorted significant motifs in cluster 1 (C1) (P<0.01) from most enriched to most depleted

(Fig 6B). We then ordered the TFs in the other 4 clusters relative to those belonging to cluster 1
(Fig 6B). From this, it is clear that related clusters share common patterns of enrichment (i.e.
patterns in cluster 1 are more similar to that of cluster 2 than cluster 5) (Fig 6B). Interestingly,
cluster C1, which contains highly methylated CpGs, is both enriched and depleted in TF bind-
ing motifs (Fig 6A and 6B). In contrast, cluster C5, which contains lowly methylated CpGs, is
characterized mainly by TF binding motif enrichment events and few TF binding motif deple-
tion events. This suggests that TF binding is generally associated with reduced methylation lev-
els. Additionally, clusters C3 and C4 contain very few high-significance enriched/depleted TF
binding motifs, suggesting that mid-intensity methylation are stochastic events and are not as
informative for identifying important breast cancer-associated regulators.

To provide an example, we illustrate TR-NFY_01, which shows highest enrichment in C5
and lowest enrichment in C1 (Fig 6C). It can also be observed that its enrichment level in-
creases from C1 to C5 (Fig 6C). This suggests that these CpG clusters have functional relevance
in the context of NF-Y binding. NFY is known to be essential for proper cell cycle regulation
and mutation of this protein can lead to inhibition of Cyclin A, RNR R2, DNA polymerase,
CDC2, Cyclin B, and CDC25C [59]. Moreover, Agostino et al. showed that NF-Y facilitates
gain-of-function p53 mutant binding to NF-Y promoters, resulting in cell cycle misregulation
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doi:10.1371/journal.pcbi.1004269.9g006

in breast cancer cell lines [60]. We also highlight TR_E47_01, which exhibited highest enrich-
ment levels in C1 and lower enrichment levels in clusters least similar to C1, suggesting that
E47 binding sites tend to be highly methylated in breast cancer (Fig 6D). E47 (also known
was TCF3) is a repressor of E-cadherin and its activity has been implicated in epithelial-
mesenchymal transition events in breast cancer [61].

Network view of regulators associated with ER-stratified breast cancer

In order to demonstrate differences in the regulatory interactomes of breast cancer subtypes,
we constructed two TF-TF interaction networks for ER+ and ER- samples (see Materials and
Methods). Each network illustrates the first order partners of TFs whose motifs are significant-
ly enriched (depletion is excluded) (P<0.01) in ER+ and ER- samples (Fig 7). Interestingly, in
ER- breast cancer, ESR1 (ERa), RELA, SP1, and AR exhibit the highest degree in the network
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doi:10.1371/journal.pcbi.1004269.9007

artners that interact with TFs whose motifs were identified as enriched in survival-associated CpG regions.

(Fig 7). Consistent with our prior results, it can be observed that ESR1 is significantly enriched
in protective and hazardous CpGs in the ER- network only (Fig 7). In addition to ESR1, SP1
also exhibits high-degree in both ER+ and ER- networks; however, it is enriched in hazardous
CpG regions in ER+ whereas, in ER-, it is enriched in protective CpG regions (Fig 7). This
demonstrates that TF-DNA methylation relationships vary depending on disease context.

Discussion

The effects of DNA methylation are widespread and vary according to genomic context and in-
teractions with TFs. In this study, we proposed a novel method of inferring TF-DNA methyla-
tion relationships in breast cancer by utilizing both differential methylation and survival
analysis to pinpoint informative CpGs. From these CpGs we were able to delineate TF involve-
ment with methylation patterns and extend that to patient prognosis. Many mechanisms by
which DNA methylation interacts with TFs have been proposed. It has been suggested that
methylated CpGs can act as a direct physical hindrance to TF binding and thus interfere with
its regulatory functions. Additionally, DNA methylation can recruit chromatin remodelers (or
proteins that then recruit chromatin remodelers) to compact chromatin, assist in transcription
elongation, or merely act as a passive marker of protein binding. This variety of potential
mechanisms is key to understanding why the TF binding motifs of some experimentally veri-
fied oncofactors (oncogenic TFs) in our analysis were enriched in protective regions and vice
versa for tumor suppressor motifs. For example, if methylated CpGs in the binding site of an
oncofactor obstructs binding, then hypermethylation will ablate the oncofactor’s regulatory ef-
fect and promote survival. Alternatively, it is also possible for tumor suppressor TF binding
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motifs to be enriched in protective CpG regions if the role of the tumor suppressor is to recruit
DNA methyltransferases to silence oncogenes. Additionally, the genomic location of CpGs
may have an effect on its regulatory activity; methylated CpGs in promoters may inhibit gene
expression but methylated CpGs in gene bodies may aid in transcriptional elongation [27].
Therefore, genomic context and prior knowledge of the TFs relationship with methylated
CpGs must be established before reasonable conclusions can be made. As more experimental
data is generated regarding these relationships, a TF-DNA methylation interactome network
will be of greater use. Here, we have provided evidence that the application of motif enrich-
ment, survival analysis, and differential methylation analysis can be integrated and used to de-
fine TF-DNA methylation interactomes in various subtypes of breast cancer. All in all, this
study links TF-binding to DNA methylation to overall patient prognosis. By embracing the
complexity of misregulation in various breast cancer subtypes, it may be possible to identify
key players responsible for cancer subtypes and use that information to guide the development
of treatment regimens in the clinic.

Furthermore, our preliminary analysis shows that correlating gene expression with survival
yields very few significant genes after multiple hypotheses testing correction (S19 Table). This
can be due to post-transcriptional modifications that affect the stability of mRNA transcripts,
the fact that mRNA abundance is not always a good proxy for protein activity, and the short
lifespans of cancer patients in our datasets. In light of this, the alternative use of DNA methyla-
tion signals can reveal significant CpGs even after testing corrections. This may be due to the
fact that it is a binary chemical modification that is stable and can, in some cases, better reflect
regulatory activity.

The most striking result of our analysis is that the majority of ERo and p53 TF binding mo-
tifs are significantly enriched in survival-associated CpG regions in ER- and p53- samples, re-
spectively. From these results, we propose that ERo. TF binding motifs that are not bound by
their respective TF (as in the case of ERo in ER-samples) may become bound by alternative fac-
tors that may cause misregulation of downstream genes and impact patient survival. Indeed,
this may also be the case for p53 in p53- samples. The reasoning for this model begins with the
observation that the TF binding motifs of a master regulator are enriched in CpG regions
whose methylation is correlated with survival only in samples missing that regulator. If a TF is
missing, why would a significantly large proportion of its binding sites be enriched in these in-
formative CpG regions? Therefore, we suspect that these motifs are open to binding by alterna-
tive factors whose binding events may simultaneously cause gene misregulation and detectable
alterations in DNA methylation. Additionally, an alternative explanation may be that DNA
methylation in p53 or ERa binding sites passively reflects the lack of p53 or ERo. activity, re-
spectively. This is valid in the case of p53- samples, where the loss of a key tumor suppressor
would result in longer survival times compared to p53+ patients. However, in the case of ERa,
its exact cancer regulatory roles are not as clear and thus difficult to interpret.

To explore breast cancer TF-DNA methylation relationships in depth, we adopted three dif-
ferent classification schemes by which we divide samples based on histological, molecular, and
methylation features. Since each subtyping method utilizes information at different levels (i.e
protein, gene expression, methylation) it is sensible to adopt all three strategies. By calculating
TF binding motif enrichment in different subtypes, we can effectively determine the similarities
and differences in their TF-DNA methylation signatures. We also observe differential enrich-
ment patterns between protective and hazardous CpG sets among histological and intrinsic
breast cancer subtypes, suggesting that TF-DNA methylation relationships vary across subtypes.

We also complemented our analyses by calculating whether TFs whose motifs were en-
riched in differentially methylated or survival-associated CpG regions were also differentially
expressed in mRNA levels between ER+ and ER-, and between normal and tumor patient
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samples, respectively. We found that many of TFs with enriched motifs were also significantly
differentially expressed, suggesting a greater biological role for these TFs (S1-S12 and S14-S17
Tables). Additionally we validated many of our identified TF binding motifs in an independent
DNA methylation dataset published by Dedeurwaerder et al. [62]. This dataset was generated
from the Illumina HumanMethylation27K (HM27K) array which profiled ~27,000 CpG sites
from 248 primary breast tumors. Particularly we found that the TR-ER_Q6 and
TR-ER_Q6_02 motifs were both significantly enriched ~1.3-fold (unadjusted P = 0.02 and

P =0.008, respectively) in hypomethylated (ER+<ER-) CpG regions between ER+ (n = 132)
and ER- (n = 101) samples (S1 Table). Moreover, we found that GATA3 and FOXO1 TF bind-
ing motifs were enriched in hypomethylated regions (P<0.05), which is consistent with results
from the main TCGA dataset. We then extended our validation analysis to include the enrich-
ment calculation of TF binding motifs in survival-associated CpG regions identified across all
breast tumor samples. In particular, we sought to confirm our enrichment results for the top 20
protective and top 20 hazardous TF binding motifs in the Dedeurwaerder dataset, and were
able to validate 19 out of the 20 protective and 16 out of the 20 hazardous TF binding motifs
(P<0.05, S2 Table). To note, we did not perform the CpG filtering procedure in the Dedeur-
waerder dataset since the number of CpGs interrogated by the Illumina HM27K array was sub-
stantially less than the Illumina HM450K array used by TCGA, resulting in a sizeable decrease
in statistical power. Together, these results indicate that our analysis remains robust across in-
dependent datasets even when different genomic platforms are used.

We concede that there are limitations to the informativeness and interpretation of our re-
sults. First, we used a 102 bp region to define a CpG region, which restricts our analysis to a
local binned area. Even though most binding events only encompass ~100 bp, it may be possi-
ble that this sequence space may encompass the binding sites of TFs that are not associated
with the CpG residue leading to false positives. On the other hand, the 102 bp region may be
too small and not encompass the binding sites of TFs that do in fact interact with the CpG re-
sulting in false negatives in our enrichment analysis. Overall, we experimented with varying se-
quence region sizes and determined that our results remain stable. Second, because we
restricted our analysis to a local region, we do not take into account any potential long-range
effects CpG sites may have on TF binding as a result of chromatin orientation. Third, limita-
tions in platform technology must also be taken into account since only 450,000 out of a total
of ~30 million CpGs are probed by the Illumina HumanMethylation 450K array. Fourth, we
acknowledge that there may be differences in statistical power when conducting enrichment
analysis in CpG sets (e.g. protective, hazardous) since the number of CpGs in each set may
vary. Lastly, many of the analysis steps in our methodology including motif detection and set-
ting significance criteria for survival-associated CpGs suffer from high false positive rates.
However, we were able to overcome these obstacles by calculating relative enrichment of TF
binding motifs. Therefore, even though we were able to identify significantly enriched TF bind-
ing motifs, our enrichment scores were ultimately biased towards the null (RE = 1). Overall, we
maintain that our method has produced results that provide new insight into TF-DNA methyl-
ation relationships in breast cancer despite these limitations.

In this study, we have developed a novel method for identifying transcriptional regulators
involved in breast cancer in the context of patient survival by using DNA methylation data de-
rived from primary breast tumor tissue. By doing so, we have provided insight into the com-
plexity of TF-DNA methylation interactomes that underlie breast cancer across a wide variety
of subtypes. Our analysis has revealed several informative results and, in addition, raises a man-
ifold of new questions regarding cancer misregulation. Namely, we have identified transcrip-
tional regulators that affect patient prognosis and proposed a new model whereby breast
carcinogenesis may be driven via binding of alternative factors to unbound TFBSs.
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Additionally, we considered the heterogeneity exhibited by breast cancer tumors by character-
izing TF-DNA methylation relationships in histological, molecular, and DNA methylation sub-
types. In this analysis, we focused on well-defined TF binding motifs, but it is also possible to
combine this analysis with de novo motif identification to identify novel motifs that are en-
riched in differentially methylated or survival-associated CpG regions. Such integration could
also allow for an exhaustive and systematic identification of non-TF regulators that may also
interact with methylated CpGs (e.g. non-coding RNAs). Ultimately, our study has provided
deep insight into the differential regulatory wiring of breast cancers that occur due to the diver-
gent and combinatorial effects of diverse mutations.

Materials and Methods
DNA methylation data for primary breast cancer samples

Breast invasive carcinoma (BRCA) Level 3 DNA methylation datasets for the JHU-USC
HumanMethylation450K platform, CpG annotation files, and clinical information were down-
loaded from the TCGA data portal [20]. CpG methylation signal intensities were represented
as B-values in the datasets. In addition, Level 3 TCGA UNC AgilentG4502A_07 mRNA expres-
sion data was downloaded from the site data portal [20]. Subtype classification for all patient
samples was derived from TCGA clinical information [20]. Breast cancer DNA methylation
data and clinical information from Dedeurwaerder et al. was downloaded from the Gene Ex-
pression Omnibus (GEO) under the accession number GSE20713. PWMs for human TFs were
obtained from the TRANSFAC [63] and JASPAR [64] databases. In some cases there were
multiple PWMs for a single TF. The TE-TF physical interaction data were compiled from two
resources: an experimental dataset from Ravsi et al [65] containing 5238 TF-TF physical pro-
tein interactions across 1400 human TFs, and the human protein reference database [66].

Identification of differentially methylated CpGs

Patient samples that were accompanied with histological information regarding ER status were
split into ER+ (405 samples) and ER- (122 samples) groups. Differentially methylated CpGs
were then identified using two-tailed student t-test. To achieve stringency while maintaining
power for enrichment analysis, a Benjamini-Hochberg adjusted P<0.05 was chosen as the cut-
off for differentially methylated CpGs. CpGs with p-values below the cutoff with a t-statistic
>0 and <0 were categorized into hypermethylated (ER+>ER-) and hypomethylated (ER
+<ER-) sets, respectively. A Wilcoxon ranked sum test was also implemented to identify dif-
ferentially methylated CpG sites.

Identification of differentially expressed genes

RNA-seq data for 1154 breast cancers was downloaded from the TCGA data portal. Differen-
tially expressed genes were identified using a Wilcoxon ranked sum test. A fold change >1 in-
dicated gene up-regulation and a fold change <1 indicated down-regulation. Differentially
expressed genes corresponding to TFs were included in all supplementary tables to comple-
ment TF enrichment information.

Identification of CpGs associated with patient survival in all samples

The B-values for 376,667 CpGs across 562 samples and clinical data were used as input into a
univariate Cox proportional hazards model [40]. Each CpG was considered individually and
used as the covariate in the model. Significance of model coefficients was calculated using the
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Wald test. CpGs that yielded unadjusted P<0.02 and a hazard ratio of <1 or >1 were labeled
as protective and hazardous, respectively.

Identification of CpGs associated with patient survival in breast cancer
subtypes

Samples were categorized into histological and intrinsic subtypes based on the clinical informa-
tion downloaded from TCGA. The B-values for 376,667 CpGs across subtype-only samples
were used as input into the Cox proportional hazards model where each CpG was considered
individually. This allowed for the identification of survival-associated CpGs significant in the
particular subtype.

Identification of TF binding motifs

The 102 bp sequence region centered at each significant CpG was used as input into the FIMO
software package [67] from the MEME suite to identify the existence of a motif in the region.
Default parameters were used and a threshold cutoff of P<1E-4 was used to determine the
presence of a motif. This yielded a matrix containing Boolean values indicating if a particular
TFBS motif was present in a CpG region.

De novo identification of TF binding motifs in hypermethylated and
hypomethylated CpG regions

The top 10,000 most significant differentially methylated CpG regions (hyper- or hypo-) were
chosen as input into the Discriminative Regular Expression Motif Elicitation (DREME) algo-
rithm (MEME suite) using default parameters, with the exception of the maximum motif size,
which was set to 20 [68]. Identified motifs were then queried against the JASPAR vertebrate da-
tabase using Tomtom (MEME suite) to identify their cognate TFs [69].

Filtering of overlapping CpG regions

Because overlapping CpG regions can lead to over-counting of TF binding motifs, we filtered out
all overlapping CpG regions in each chromosome for forward and reverse DNA strands. The fil-
tering procedure proceeds as such: (i) CpGs located on different chromosomes were considered
non-overlapping. (if) CpGs that were located on different DNA strands were considered non-
overlapping. (iii) Sort all CpGs based on their genomic coordinates and identify clusters of CpGs
with overlapping 102bp regions. (iv) For each cluster, identify the CpG with the lowest p-value
(differentially methylated or survival-associated depending on analysis) and set this as the refer-
ence CpG. (v) Identify all within-cluster CpGs whose regions do not overlap with that of the initial
reference CpG and filter out the rest. (vi) Of the non-overlapping CpGs, select the one with lowest
P-value and set as the new reference CpG (vii) Iterate until all CpGs have either been selected or
filtered out. (All “reference” CpGs are then included in the subsequent motif enrichment analysis.)

Enrichment analysis

To compute enrichment of TFs in functional CpGs (survival-associated, differentially methyl-
ated, or clustered CpGs), we applied a two-sided Fisher’s exact test for each TF binding motif
to determine if it was overrepresented or underrepresented in a CpG set. The Fisher’s exact test
involves calculating the hypergeometric probabilities of all possible matrices of a 2X2 contin-
gency table while keeping the margin counts fixed. The probabilities of all possible fixed-
margin contingency tables more extreme than the current table were summed to determine the
probability of over-representation/under-representation of a motif to occur by random chance.
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The R function “fisher.test” was used to implement this computationally. Enrichment was cal-
culated in protective, hazardous, and survival-associated (protective & hazardous) CpG sets for
histological, intrinsic, and CpG (CpG clusters) breast cancer subtypes. Additionally, motif en-
richment was implemented in differentially methylated CpGs between ER+ and ER- breast
cancers. The Benjamini-Hochberg multiple hypothesis testing correction procedure [70] was
used to adjust the P-values outputted by multiple Fisher’s exact tests. All P-values presented in
the Results section had been adjusted for multiple testing.

When comparing the distributions of TF binding motif enrichment values between hyper-
and hypomethylated CpGs (Fig 2A), we first controlled for the potential effects that sample
size may have on the power of enrichment analysis. This issue may arise due to the unequal
number of CpGs belonging to hyper- and hypomethylated CpG sets. Therefore, we took the
top n most significant CpGs from each set, where # is the smallest number of CpGs between
the two sets, and carried out enrichment analysis.

Construction of ER+ and ER- regulatory networks

TF binding motifs with P<0.01 in ER+ and ER- samples, and their first-order interacting part-
ners were extracted from the TF-TF physical interaction network and used as input into Cytos-
cape to construct a regulatory network. TF network analysis was implemented using the
“NetworkAnalyzer” function included in the software. The size of network nodes were mapped
to the enrichment P-values of TFs represented in the network (lower P-values correspond to
larger nodes). The font sizes of TF names were mapped to node degree in the network (larger
font sizes correspond to higher degree). These mappings were implemented using Cytoscape’s
VizMapper tools. If multiple motifs belonging to the same transcription factor fell below the
significance threshold, their p-values were averaged.

Clustering analysis of CpG sites

K-means clustering was applied to cluster CpGs based on their B-values. To determine the
number of clusters, k-means was applied using 1-10 clusters and the total within-cluster sum
of squares (WCSS) was calculated and graphed. Classification into 5 clusters yielded the last
point where there is noticeable decrease in total WCSS.

All statistical and computational analyses were implemented in the R statistical
programming environment.
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