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A B S T R A C T   

This study reported an application of Au nanogap substrates for surface-enhanced Raman scattering (SERS) 
measurements to quantitatively analyze melamine and its derivative products at trace levels in pet liquid food 
(milk) combined with a waveband selection approach, namely variable importance in projection (VIP). Six 
different concentrations of melamine, cyanuric acid, and melamine combined with cyanuric acid were created, 
and SERS spectra were acquired from 550 to 1620cm− 1. Detection was possible up to 200 pM for melamine- 
contaminated samples, and 400 pM concentration detection for other two groups. The VIP-PLSR models ob-
tained correlation coefficient (R2) values of 0.997, 0.985, and 0.981, with root mean square error of prediction 
(RMSEP) values of 18.492 pM, 19.777 pM, and 15.124 pM for prediction datasets. Additionally, partial least 
square discriminant analysis (PLS-DA) was used to classify both pure and different concentrations of spiked 
samples. The results showed that the maximum classification accuracy for melamine was 100%, for cyanuric acid 
it was 96%, and for melamine coupled with cyanuric acid it was 95%. The results obtained clearly demonstrated 
that the Au nanogap substrate offers low-concentration, rapid, and efficient detection of hazardous additive 
chemicals in pet consuming liquid food.   

1. Introduction 

The purposeful addition of harmful ingredients or additions to food 
products in order to make profit is recognized as a source of concern in 
the modern world. Food security protocols include issues that need to be 
addressed, as demonstrated through various past incidents. In 2007 the 
US Food and Drug Administration (FDA) found melamine in pet food 
imported from China, which was one well-known example of food 
falsification. Following the ingestion of melamine-contaminated food, 
this revelation resulted in the sickness and death of several dogs (Abbas 
et al., 2013). In 2008, melamine was fraudulently added to infant milk 
powders that were also provided by China, resulting in 50,000 hospital 

admissions and the deaths of six children (De Lourdes Mendes Finete 
et al., 2013; Miao et al., 2009). Due to their numerous beneficial qual-
ities, both melamine and cyanuric acid are commonly used as industrial 
chemicals. Additionally, both compounds are nitrogen-efficient mole-
cules, as shown in Fig. 1a and b, which has resulted in their inclusion in 
human and pet food products to increase the nitrogen content (Rovina 
and Siddiquee, 2015; Patel and Jones, 2007). Melamine and cyanuric 
acid have relatively little toxicity when consumed independently, but 
when combined, they have a strong affinity for one another, resulting in 
the formation of the barely soluble melamine-cyanurate complex 
(Ranganathan et al., 1999; Bielejewska et al., 2001) as shown in Fig. 1c. 
Melamine and cyanurate together have been linked to severe chronic 
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kidney inflammation, renal failure caused by blockage, and kidney and 
bladder stones, according to earlier research (Stine et al., 2014; Kuo 
et al., 2013; Dorne et al., 2013). 

Conventional approaches for cyanuric acid and melamine detection 
mostly entail wet chemistry methods such as gas chromatography- 
tandem mass spectrometry (Miao et al., 2009) and high-performance 
liquid chromatography (HPLC) (Filazi et al., 2012). Moreover, utiliz-
ing capillary electrophoresis-diode array detection technique (CE-DAD) 
with a limit of quantification (LOQ) of 0.20 ug/ml, several researchers 
have investigated melamine in milk and milk powder (Chen and Yan, 
2009), and in milk samples using matrix-assisted laser desorption/io-
nization combined with time-of-flight mass spectrometry (MALDI--
TOFMS) with a 0.10 mg/kg detection limit (Su et al., 2013). All of these 
aforementioned techniques offer a lower limit of detection (means the 
instrument could detect analytes presents in lower concentrations), 
higher sensitivity, and higher limit of quantification properties. How-
ever, their time-consuming, destructive, and complex sample prepara-
tion limit their applicability in the real time-monitoring of products. 

Due of the weak Raman effect, traditional Raman spectroscopy is not 
as applicable for detecting low concentration levels. In 1974, a team of 
researchers from the United Kingdom introduced a novel phenomenon 
called surface-enhanced Raman spectroscopy, which aimed to address 
the limitation of Raman spectroscopy for the detection of pesticides or 
harmful chemicals present in low concentration ranges. The researchers 
observed an increase in Raman signal intensity for pyridine molecules 
coated on an electrochemically roughened Ag electrode surface 
(Fleischmann et al., 1974). Modern nanotechnology and the creation of 
very sensitive substrates have led to the employment of SERS in medi-
cine, agricultural products, and biological science (Yilmaz and Culha, 
2022; Fan et al., 2015), (P. Wang et al., 2016) as evidenced by a number 
of recent studies. The application of machine learning techniques be-
comes crucial in order to extract the critical information included in the 
SERS spectrum data. Even though SERS spectroscopy is a popular 
technique for assessing the quality of food and agricultural goods, che-
mometrics is required to uncover relevant hidden information in the 
spectrum data. Therefore, the main objectives of this study might be 
explained by the following two current statements:  

1) To evaluate the feasibility of using the SERS Au nanogap substrate 
for the picomolar range measurement of melamine, cyanuric acid, 
and their combination in pet liquid meals (milk).  

2) Variable importance in the projection (VIP), in conjunction with the 
partial least squares regression approach and hybrid linear analysis, 
was used as a variable selection methodology in order to identify 

significant variables and increase model prediction accuracy by 
reducing computation time. 

2. Materials and methods 

2.1. Chemicals 

For the purpose of this research, 99% pure cyanuric acid and mel-
amine were purchased from Sigma-Aldrich in St. Louis, Missouri, USA. 
Additionally, pet food was brought from a nearby veterinary clinic in the 
form of pet liquid food (milk). 

2.2. Preparation of standard solution, mango juice, and milk samples 

For this investigation, melamine and cyanuric acid powder were first 
mixed in deionized water (DI). The limit of detection for this SERS Au 
nanogap substrate was tested by varying the amounts of melamine, 
cyanuric acid, and melamine coupled with cyanuric acid. The first step 
involved making a 1 μM stock solution with DI water as the solvent and 
stirring it for almost 3 h. Melamine was spiked into the liquid diet, and 
each milk sample at various levels (1200 pM, 1000 pM, 800 pM, 600 pM, 
400 pM, and 200 pM) was diluted from the 1 μM stock solution. Simi-
larly, 1 μM Cyanuric acid stock solution was made with DI water as a 
solvent and stirred for almost 3 h. The liquid diet and each milk were 
mixed with cyanuric acid at different concentrations: 1200 pM, 1000 
pM, 800 pM, 600 pM, 400 pM, and 200 pM. Using a Sorvall Biofuge 
Primo Centrifuge from Thermo Electron Corporation, all of the liquids 
are centrifuged for 30 min at 7000 rpm. Before SERS measurements, a 5 
cm by 5 cm au leaky NG sample was coated with supernatants and dried 
with nitrogen gas. On the other hand, pure veterinary feed (milk) that is 
free of cyanuric acid, melamine, and melamine mixed was also prepared 
during this experiment. 

2.3. Nanogap SERS substrates 

We employed very sensitive and uniform wafer-scale gold nanogap 
SERS substrates, made using the techniques outlined in (Adhikari et al., 
2022). The fabrication process was completed in three simple steps: Au 
deposition, rapid thermal annealing, and wet chemical etching. Fig. 2a 
shows a schematic representation of an Au nanogap substrates. Au 
nanospheres were perched above SiO2 nanopillars in the substrate, as 
shown in Fig. 2b, with nanogaps separating the nanospheres from the 
bottom Au film. The nanogap distance may be accurately regulated by 
modifying the etch depth and the thickness of the Au film. This nanogap 
SERS substrate demonstrated exceptional uniformity over a 6-inch 

Fig. 1. Chemical structure of (a) melamine and (b) cyanuric acid and (c) melamine− cyanurate complex.  
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substrate that was capable of quantitative detection, with a high 
enhancement factor of 4.6 × 108. When averaged over four locations, 
the relative standard deviation (RSD) was 4.2% (Adhikari et al., 2022). 
Based on computations employing the FDTD (Finite-Difference 
Time-Domain) method, the electric field intensity (|E|2) at the center of 
a 6 nm nanogap (90 nm diameter nanosphere) was found to be almost 60 
times higher than that of a nanosphere with the same diameter but no 
gap arrangement (Fig. 2c) (Lumerical Inc.). Here, the fabrication of the 
SERS substrate at the optimal conditions for nanosphere diameter and 
nanogap allowed for the perfect matching of the localized surface 
plasmon resonance (LSPR) and Raman frequency, which is necessary for 
strong enhancement. As was previously documented, explosives like 
TNT, PETN, and RDX may be found down to the level of a single 
molecule (Adhikari et al., 2021), this augmented electromagnetic field 
in a small nanogap enhances the sensor performance (∝|E|4). The 
remarkable uniformity and high sensitivity of the used nanogap SERS 
substrates are essential for the quantitative identification of melamine 
and its byproducts in pet liquid food matrices (milk). 

2.4. Raman measurements 

A LabRAM HR-800 UV–Visible–NIR microscope (Horiba Jobin Yvon) 
with a multichannel air-cooled CCD detector was used to conduct the 
Raman scattering experiments. Approximately ~50 μW of incident 
power from a 785 nm laser served as the excitation source. For the SERS 
test, a 50× objective lens (N.A.:0.75) and a 10-s integration time were 
used. The SERS spectral data collection was carried out in the spectral 
range between 500 and 1620 cm− 1 in order to identify the greatest 
amount of information about the melamine and cyanuric acid 

concentration without signal loss. 

2.5. Data analysis 

The raw SERS spectra were not fully acceptable during model con-
struction due to the introduction of undesired effects that might reduce 
the effectiveness of prediction and classification models. The SERS data 
was preprocessed using a variety of methods, including range normali-
zation, multiplicative signal correction (MSC), standard normal variate 
(SNV), and first and second Savitzky-Golay (SG) derivatives. The pre-
processed data were then used to create a partial least-squares regres-
sion (PLSR) prediction analysis model, which was then compared using 
a hybrid linear analysis (HLA/GO). Furthermore, the suitable spectral 
bands required to improve prediction performance were extracted using 
a variable selection process (VIP). MATLAB (Version 7; Math Works, 
Natick, MA, USA) was used to do the entire spectrum study. 2.6. Clas-
sification analysis. 

In this study, a partial least squares discriminant analysis (PLS− DA) 
model was created to differentiate between various concentrations of 
each of the three chemical categories examined in pet liquid food (milk). 
This supervised classification technique is typically regarded as an 
altered version of the partial least squares regression (PLSR) technique 
(Barker and Rayens, 2003). In the PLS-DA model, the response variable 
Y contains binary values that represent different sample groups or cat-
egories. The following general form can be used to represent the PLS-DA 
equation:  

Y = X × b + E                                                                              (1) 

X is the n × p matrix holding the SERS spectral data for each 

Fig. 2. (a) Schematic image of an Au nanogap sample. (b) Scanning electron microscope (SEM) image of an Au nanogap sample. (c) FDTD simulation result showing 
the enhancement of |E|2 around the nanogap, where E is the electric field. (d) Electric field around gold nanosphere of size 90 nm on SiO2 layer. 
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concentration sample, and b is the beta coefficient. E is the error matrix. 
The spectrum data for both pure samples and pet liquid food samples 

that had been contaminated with harmful chemicals were found in 
matrix X of this study, whereas artificial values for each concentration 
were found in matrix Y. While developing the PLS-DA model, the entire 
spectrum data sets comprising 1750 samples (the ones infected with 
melamine) and 1500 samples (the ones infected with cyanuric acid and 
melamine combined with cyanuric acid). Two sets of data were sepa-
rated from both datasets: a calibration set of 1400 samples and a vali-
dation set of 350 samples for melamine-contaminated samples. Of these, 
1200 samples were transferred to the calibration set and the remaining 
300 samples were used in the validation dataset for the remaining two 
categories. Additionally, a threshold of 0.5 was selected, implying that 
samples falling between the specified range will be categorized. There 
are three PLS-DA models created for every set of three sample groups. 

2.6. Regression analysis 

In this study, a popular machine learning algorithm called partial 
least-squares regression (PLSR) was used to analyze quantitatively the 
concentrations of melamine, cyanuric acid, and melamine combined 
with cyanuric acid present in pet liquid food (milk) samples. The pre-
diction performance of PLSR was compared to another chemometric 
methodology called NAS regression-based hybrid linear analysis (HLA/ 
GO). The following papers provide the mathematical aspects of NAS 
regression-based HLA/GO and PLSR (Bao and Dai, 2009; Goicoechea 
and Olivieri, 1999). 

2.7. Waveband selection 

Despite being highly significant, the large number of spectral 
wavebands in the spectrum data obtained with SERS contributed 
significantly to the elongation of the computing operation involved in 
analyzing the spectral data. Thus, choosing the right variables or 
waveband that enhanced the model’s prediction accuracy and were 
closely related to the predictor variables was a crucial step in the 
waveband selection process. This study employed an application of 
frequently used powerful algorithm named as variable importance in 
projection (VIP) for the identification of key spectral wavebands for the 
enhancement of prediction performance of the multivariate analysis 
models. The variable’s contribution to the description of the indepen-
dent or spectral variables (X) and the dependent or reference data sets 
(Y) is determined by VIP. For more details, please refer the following 
article (Lohumi et al., 2015). In the past, several reports showed the 
strong potential of VIP algorithm to perform the non− destructive 
quantitative assessment of food and agricultural products (Joshi et al., 
2023; Mohammadian et al., 2021). The VIP score of 0.85 was chosen as 
the ideal value in this study, and variables that were present below the 
threshold value were taken out of account. In order to improve predic-
tion performance and taking less processing time, VIP was integrated 
with PLSR and SVR models during the creation of quantitative analysis 
models. The flowchart of the whole SERS spectrum data analysis of 
samples of spiked pet food (milk) in all three chemical categories is 
shown in Fig. 3. 

Fig. 3. A diagrammatic representation of the process used to process SERS spectral data for all three varieties of chemical-mixed pet liquid food.  
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2.8. Limit of detection (LOD) 

The lowest concentration of an analyte in a sample that can be 
detected is the limit of detection. This parameter is used to assess the 
statistical significance of the quantitative analysis. For all three types of 
samples in this experiment, the LOD was calculated using Equation (2) 
in accordance with the International Committee on Harmonization 
(ICH) recommendations (Shrivastava and Gupta, 2011).  

LOD = 3 x S.D/C                                                                            (2) 

where the term SD is defined as standard deviation, while c represents 
the slope of the regression line. 

3. Results and discussions 

3.1. Raw spectra for melamine, cyanuric acid, and melamine with 
cyanuric acid pet liquid food (milk) 

Fig. S1 (a), (b), and (c) display the raw spectra of the three different 
types of samples: melamine mixed, cyanuric acid mixed, and melamine 
coupled with cyanuric acid mixed pet liquid food. The raw spectra, 
which typically consist of several overlapping peaks that undoubtedly 
depend on the noise generated by external factors, such as systematic 
noise, background, particle size, etc., suppress most of the useful infor-
mation required for the identification of these chemicals in the pet liquid 
food samples selected for this research. The quality of the signal is 
directly and significantly impacted by this. 

3.2. Spectral Interpretation for melamine, cyanuric acid, and melamine 
+ cyanuric acid mixed pet liquid food 

In this study, several different preprocessing steps, like normaliza-
tion, MSC, SNV, and derivatives (Savitzky–Golay first and second), were 
implemented in the acquired raw spectra for all the three categories of 
samples with five distinct concentrations (200 pM, 400 pM, 600 pM, 800 
pM, and 1200 pM), and the optimum preprocessing methods were 
selected based on the lowest root mean squares error values. The 
average preprocessed SERS spectra for the melamine-contaminated, 
cyanuric acid-contaminated, and melamine combined with cyanuric 

acid mixed pet liquid food (milk) samples were obtained using the Au 
nanogap substrate utilized in this work, and they are shown in Fig. 4a–c. 
The spectra were plotted from the 550–1610 cm− 1 wavenumber range, 
while the uninformative spectral regions above 1610 and below 550 
cm− 1 were omitted in this investigation. The intensities of the spectral 
peaks for each of the three types of samples also rose progressively with 
the increment in the concentrations of chemicals on the samples. In our 
analysis, three distinct peaks at 581 (very low intensity), 702, and 1236 
cm− 1 were found for the melamine-contaminated samples in Fig. 4a. 
However, according to previously published research, the most notice-
able spectrum peaks observed for melamine are at 703.5 cm− 1 (Chong 
et al., 2013), 708 cm− 1 (Tiwari et al., 2022), and 703 cm− 1 (Cook et al., 
2017) due to the triazine ring’s breathing mode of vibration. Yet, during 
our investigation, the notable peak for melamine was found at 702 
cm− 1, which is nearly identical and showed a minor shift of 1 cm− 1. 

On the other hand, for the other two categories of samples i.e, cya-
nuric acid, and melamine combined with cyanuric acid identical con-
centrations were prepared in pet liquid food (milk)and further subjected 
to testing using SERS. The SERS spectra for cyanuric acid-spiked samples 
are depicted in Fig. 4b. The spectral peak for cyanuric acid, which was 
formed by ring out-of-plane bending vibration, was observed at 703 
cm− 1 in our study, while the peak was observed at 701.5 cm− 1 in a 
published report (Chong et al., 2013). However, as the concentrations 
dropped from 1200 to 200 pM, the strength of the observed peak 
gradually decreased. As a result, cyanuric acid could be detected up to a 
400 pM concentration range. For the melamine and cyanuric acid-spiked 
samples, the SERS spectra presnted in Fig. 4c demonstrate a spectral 
peak for melamine at 679 cm− 1, while the cyanuric peak shifted to a 
higher wavenumber range of 5 cm− 1 and was observed at 708 cm− 1. 
Also, the spectral peaks intensities gradually decreased with the 
decrease in concentration. Therefore, the detection was also achievable 
up to a 400 pM concentration range in this category using the Au 
nanogap substrate used in this study. However, fewer additional spectral 
peaks were noticed at 1236 (due to Amide III (protein)) (Aitekenov 
et al., 2022) for melamine in Fig. 4a, while the SERS spectral peak in 
Fig. 4c at 988 cm− 1 represents cyanuric acid, and the region from 1200 
to 1300 cm− 1 represents protein information (Aitekenov et al., 2022). 
Howeverthese peaks recieved little consideration and were likewise 
unable to make a major contribution to the identification of the main 

Fig. 4. SERS average preprocessed spectra for (a) melamine-contaminated, (b) cyanuric acid-contaminated, and (c) melamine combined with cyanuric acid- 
contaminated pet liquid food (milk) samples. The term 0 pM represents control samples or pure samples free from any contamination. 
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characteristics of the spectral features of melamine and cyanuric acid. 

3.3. Dirichlet distribution algorithm 

For all the three cases of samples in this study, 100 samples were 
measured, which is comparatively lower during model construction for 
machine learning and deep learning; this may result in underfitting. In 
this work, an algorithm developed by Dirichlet was used to address this 
problem. This algorithm’s deep mathematical aspect has been described 
elsewhere (M. Wang et al., 2019). In the past, some researchers applied 
this technique to the assessment of phenolic compounds in Arabidopsis 
plants using IR, and NIR spectroscopy (Joshi et al., 2022), and moringa 
powder using FT-IR spectroscopy (Joshi et al., 2022). In total, 1750 
synthetic samples were generated by the Dirichlet technique and used to 
build models afterward. Fig. 5 displays a broad overview of the Dirichlet 
algorithm for each of the three sample case scenarios. The spectra pro-
duced using two replicates for SERS data collection at position 5 and 
position 6 and represented as 200pM_1 and 200pM_5 are referred to here 
as the "original samples" in Fig. 5 (a), (c), and (e). However, in Fig. 5 (b, 
d, and f), the phrase "sample without noise" refers to the preprocessed 
spectra used to create artificial data. 

3.4. PLS− DA classification model for melamine, cyanuric acid, and 
melamine combined with cyanuric acid samples 

A supervised machine learning technique called partial least squares 
discriminant analysis (PLS-DA) was utilized to develop three classifica-
tion models, one for each of the three data categories. The model 
developed for the melamine-spiked pet liquid food (milk) samples used a 
total of 1750 samples: 1400 for the calibration set and 350 for the 
validation dataset. Fig. 6a and b shows the classification plots for 
melamine-spiked samples, which used the SNV preprocessing strategy 
and obtained 100% overall accuracy. The remaining two sets of data 
(1200 for the calibration set and 300 for the validation set) totaled 1500 
samples that were used for PLS-DA models. As seen in Fig. 6c and d, the 
Savitzky-Golay second preprocessing strategy produced classification 
plots of pet liquid food samples infected with cyanuric acid with an 
overall accuracy of 96%. Nevertheless, the third category of data yielded 
an overall accuracy of 95% when the Savitzky–Golay second pre-
processing strategy was used. The classification plots for the calibration 
and validation sets are displayed in Fig. 6e and f, respectively. It can be 
concluded from the results that PLS-DA has the ability to qualitatively 
discriminate between pure and spiked pet liquid food samples when 
used in conjunction with appropriate preprocessing methods. 

Fig. 5. SERS spectra generated among two replicates 200_1, and 200pM_5 for melamine, cyanuric acid, and combination of melamine + cyanuric acid (a, c, and e) 
using Dirichlet distribution. A total of 1750 artificial samples were created for SERS spectra for all the three categories using Dirichlet distribution (b, d, and f). 
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3.5. Model development for the SERS spectral data 

For the melamine-, cyanuric acid-, and combined chemical (mel-
amine, cyanuric acid)-infected pet food (milk) samples, a quantitative 
prediction analytic model was built using PLSR regression. Since mel-
amine contamination in pet liquid meals could be detected up to a 200 
pM concentration range, 1750 samples were utilized in the model 
development process to produce calibration and prediction datasets. 
Although 400pM concentration levels were determined for the 
remaining two categories, 1500 samples were employed in the model’s 
development, of which 1200 were used for calibration and 300 were 
added to the prediction datasets. In this work, the coefficient of deter-
mination (R2), root mean square errors of calibration (RMSEC), pre-
diction (RMSEP), and bias were chosen as crucial statistical metrics for 
the model evaluation. A model was regarded as superior if it had a high 
R2 and lower values for errors and bias. Equation (3)− 5 were utilized for 
the calculations of these statistical parameters’ values in this study. 

R2 =

∑n

i=1
(yi − ŷi )2

∑n

i=1
(yi − y−i )2

(3)  

RMSEP=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
∑n

i=1
(yi − ŷi )2

n

√
√
√
√
√

(4)  

Bias=
1
n

∑n

i=1
(yi − ŷi ) (5)  

where yi and ŷi are the actual and predicted chemical concentration 
values in pet liquid milk, respectively, and n is the number of 
predictions. 

3.6. Prediction analysis results using PLSR for all three groups of samples 

A PLSR model was first created for all three groups of samples in 
order to make a quantitative prediction. All three models underwent 
several preprocessing stages, as described in Section 2, from which the 
best preprocessing was chosen. For the melamine-infected samples, 
maximum normalization outperformed other preprocessing methods 
and yielded a higher correlation coefficient (R2), with lower RMSE and 
bias values with the use of seven LVs selected based on the lower RMSE 
value. The results of the prediction study performed using the PLSR 
model for first group of samples are depicted in Fig. 7a and b. The results 

Fig. 6. PLS-DA classification plots for the following: (a, b) melamine spiked; (c, d) cyanuric acid spiked; and (e, f) melamine combined with cyanuric acid spiked pet 
liquid food samples. 
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Fig. 7. Calibration and prediction plots for melamine-contaminated (a,b), cyanuric acid-contaminated (c,d), and melamine and cyanuric acid-contaminated pet 
liquid food (e, f) developed using the PLSR model. 
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display a linear relationship between the actual and predicted concen-
tration values, and detection was achieved until 200 pM. For the cali-
bration set, the model produced an R2 value of 0.998 and an RMSEC 
value of 13.940 pM. Although the R2 values for the higher prediction 
sets were similar (0.998), the RMSEP error value was larger (14.062 
pM). On the other hand, the PLSR model for second contaminated group 
of samples produced an R2 values of 0.987 and 0.988, with RMSE values 
of 43.969 and 43.076 for both the calibration and prediction datasets, 
respectively shown in Fig. 7c and d. The relationship between the actual 
and predicted concentration values was also linear in this case, but 
detection was achieved up to 400 pM due to the absence of a spectral 
peak for cyanuric acid in 200 pM solution concentrations as shown in 
Fig. 4b. With the use of four LVs, mean normalization performed better 
as a preprocessing strategy in this group of samples. Additionally, for 
third group of contaminated samples, the calibration and prediction 
datasets delivered an R2 value of 0.999 with lower RMSE values of 
11.677 and 11.958 pM than the other two previously developed 
regression models as illustrated on Fig. 7e and f. However, the maximum 
detection of these combined chemicals was accomplished up to 400 p.m. 
due to absence of spectral peaks in Fig. 4c. Table 1 displays the entire 
prediction analysis results acquired using the PLSR models for all three 
categories of samples. Hybrid linear analysis (HLA/GO) based on NAS 
regression was used to compare the prediction performance of PLSR. 
Table 1 presents the results of the prediction analysis. It is evident from 
this that the developed PLSR model outperformed the HLA/GO model in 
terms of prediction errors values, as evidenced by the poor root mean 
square error of prediction for all three categories of samples obtained 
using HLA/GO models. 

3.7. Regression coefficients for the constructed PLSR model for all three 
groups of samples 

For the purpose of identifying significant spectrum regions that were 
directly related to the chemical characteristics of molecules, regression 
or beta coefficients plots were of greatest significance. In this study, beta 
coefficients plots were produced for each of the three cases of contam-
inated pet liquid food samples using the established PLSR models. A beta 
coefficient plot for the melamine-contaminated samples is shown in 
Fig. S2a. These samples showed spectral signatures for melamine at 702 
cm− 1 due to triazine ring’s breathing mode of vibration and for protein 
(Amid III) at 1200–1300 cm− 1, which were both the same as the average 
spectra for melamine that were previously shown in Fig. 4a and marked 
with arrow and rectangle box. Similar beta coefficients plots were pro-
duced using the PLSR models for the other two categories of contami-
nated samples, as shown in Fig. S2 b, c. According to Fig. 4b and c, both 
plots produced identical spectral peaks that were sensitive to the 
harmful chemicals in pet meals, suggesting that beta coefficient plots 
were an important tool for finding characteristic spectrum wavelengths. 

3.8. Quantitative model development using VIP waveband selection 

A waveband selection technique known as VIP was added to the 
three PLSR models that had already been developed in order to improve 
prediction performance and identify key spectral waveband regions that 
are sensitive to additional chemicals in pet liquid foods. This was done 

because the PLSR model had a higher prediction performance as dis-
cussed in section 3.6. Several values for the VIP score were used, and 
throughout the VIP waveband selection process, an optimum value of 
1.2 was chosen. Following this procedure, PLSR models were con-
structed using the obtained waveband regions for each of the three 
sample groups. The number of variables, or wavenumbers, for the 
reference solution, mango juice, and milk samples were lowered from 
2040 to 396, 428, and 422 following the completion of the VIP analysis. 
For each of the three categories of data, the following pre-selected 
variables were used to generate the PLSR model. Then, the perfor-
mance of that model was compared with the performance of the PLSR 
model that included all 2040 variables. The prediction performance 
outcomes for the chosen variables that were produced using VIP are 
displayed in Table 2 alongside the total set of variables. For the standard 
solution, mango juice, and milk prediction datasets, the coefficient of 
determination (R2) values were 0.999, 0.985, and 0.981, respectively. 
These results were nearly indistinguishable from the whole PLSR model 
with a bias values of 1.369, − 1.426, and 0.999. 

Furthermore, the VIP score graphs associated to cyanuric acid and 
melamine are displayed in Fig. 8, together with sensitive spectral 
wavelength areas. The VIP score plot in Fig. 8a illustrates the spectra of 
the melamine-spiked pet liquid food samples. The regions marked in red 
with the rectangle box represent similar spectral peaks as those reported 
in Fig. 4a in Section 3.2. Similarly, for other remaining two categories, 
the VIP score plots in Fig. 8b and c displays sensitive spectral signatures 
for cyanuric acid and melamine mixed with cyanuric acid which are 
identical with that mentioned in Fig. 4b and c in Section 3.2 and high-
lighted with rectangular boxes. Even though the VIP-PLSR model’s 
prediction dataset has higher RMSEP error values than the PLSR 
model’s, the former model was crucial in identifying important spectral 
signatures by removing undesired variables, which also had an imme-
diate impact on the amount of computational time required for the 
analysis when designing any industrial applications. It may thus be 
concluded that the VIP-PLSR model outperforms the PLSR model with 
all variables in terms of processing speed and important waveband re-
gion identification. 

3.9. Model validation 

A new variety of pet liquid food (milk) was purchased, and similar six 
different concentrations, including the pure milk mentioned in Section 
2.2, were prepared for melamine-, cyanuric acid-, and melamine com-
bined with cyanuric acid-contaminated milk samples. This was done to 
ensure the applicability of the developed VIP− PLSR models for all three 
groups of contaminated samples. The average preprocessed SERS 
spectra for melamine, cyanuric acid, and melamine and cyanuric acid 
contaminated samples are shown in Fig. 9a–c. The distinctive spectral 
SERS peak is visible in the melamine-contaminated SERS spectra in 
Fig. 9a and is comparable to that in Fig. 4a. As the concentration was 
reduced to 200 pM, the intensity of this peak steadily decreased. The 
detection, however, was successful up to a 200 pM concentration range. 
The SERS spectral peak for cyanuric acid at 702.455 cm− 1, the peak for 
melamine at 680 cm− 1, and the peak for cyanuric acid at 707 cm− 1 

exhibited in Fig. 9b and c was all in good agreement with the peak first 
identified in Fig. 4b and c, and detection was successful up to the 400 pM 

Table 1 
Prediction analysis findings achieved through the PLSR model for all three group of samples.  

Region Samples Model/Preprocessing R2
c RMSEC (pM) R2

p RMSEP (pM) LVs bias 

SERS spectroscopy Melamine + pet liquid food PLSR/Max. norm. 0.998 13.940 0.998 14.062 7 − 0.665 
HLA/GO/Range norm. 0.985 18.972 0.991 20.123 6 0.702 

Cyanuric acid + pet liquid food PLSR/Mean norm. 0.997 18.095 0.998 16.677 5 0.791 
HLA/GO/MSC 0.992 20.123 0.985 21.001 8 0.878 

Melamine + Cyanuric acid + pet liquid food PLSR/Mean norm. 0.999 11.677 0.999 11.958 6 − 0.555 
HLA/GO/SNV 0.957 21.252 0.961 20.125 7 0.997  
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concentration range. 
To further confirm how the previously constructed model works for 

different types of pet liquid food (milk) samples, similar PLSR models to 
those developed in Section 3.5 were employed for each of the three sets 
of samples in this case. The model outcomes for the melamine- 
contaminated samples are shown in Fig. 10a. The result had a greater 
corelation coefficient (R2) of 0.999 for both the calibration and predic-
tion datasets with lower RMSEC and RMSEP values of 10.495, and 
10.501 pM, respectively. On the other hand, Fig. 10b and c presents the 

obtained results for the final two sample groups. The model performed 
well in both of these categories, achieving greater R2 and lower RMSEC 
and RMSEP error rates, as well as a higher correlation coefficient. The 
final results for the PLSR models for each of the three types of samples 
are presented in Table 3. 

The obtained results clearly show that the SERS Au nanogap sub-
strate has a high potential for the fast and efficient detection of mel-
amine, cyanuric acid, and their combined form at concentrations as low 
as picomolar in pet liquid food samples when combined with VIP− PLSR 

Table 2 
Prediction analysis findings achieved through the PLSR and VIP− PLSR model for all three group of samples.  

Samples Models/Preprocessing R2
c RMSEC (pM) R2

p RMSEP (pM) LVs bias 

Melamine + pet liquid food PLSR/Max. norm. 0.998 13.940 0.998 14.062 7/2040 − 0.665 
VIP− PLSR/Max. norm. 0.997 19.388 0.997 18.492 6/396 1.369 

Cyanuric acid + pet liquid food PLSR/Mean norm. 0.997 18.095 0.998 16.677 5/2040 − 0.791 
VIP− PLSR/Mean norm. 0.992 18.874 0.985 19.777 8/428 − 1.426 

Melamine + Cyanuric acid + pet liquid food PLSR/Mean norm. 0.999 11.677 0.999 11.958 6/2040 − 0.555 
VIP− PLSR/ Mean norm. 0.980 16.021 0.981 15.124 7/422 0.990  

Fig. 8. VIP score diagrams for the following three scenarios: (a) melamine, (b) cyanuric acid, and (c) melamine combined with cyanuric acid spiked pet liquid food 
samples (a). The rectangular dashed box indicates the key wavenumber regions that were selected using VIP and are prone to added chemicals. 
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(partial least-squares regression) and suitable preprocessing techniques. 
Additionally, the new method unequivocally shown that, in comparison 
to conventional spectroscopies and imaging approaches, the SERS Au 
nanogap substrate offers greater detection capabilities. In a prior study, 
cyanuric acid and melamine in milk were detected using a SERS gold 
substrate with an R2 of 0.90 (Liu et al., 2010). These two dangerous 
chemicals were, nonetheless, detected in milk up to a quantity of 2 ppm 
according to this investigation. In a different investigation, melamine in 
milk up to 0.5 ppm was detected using SERS in combination with an Ag 
nanocube array substrate (Li and Chin, 2021). Both of these results, 
however, are completely unreliable if the relevant dangerous com-
pounds are present in amounts lower than 0.5 ppm. The limitation of 
previous research on low concentration detection was overcome by our 
study, which was able to achieve a stronger detection capacity by using 
the SERS Au nanogap substrate in this inspection. Further, GC/MS (Pan 
et al., 2013) and LC/MS (Turnipseed et al., 2008) methods have been 
used to detect melamine and cyanuric acid in food products, including 
dairy products, although these two approaches are highly sensitive and 
offer detection up to ng levels. Nevertheless, SERS offers other advan-
tages, such as simple sample preparation, quick detection, and the 
absence of complex instrumentation needed for sample measurements. 

We further addressed the shortcomings of these methods in our study by 
using more samples in the model analysis and achieving the lowest 
RMSE errors and a higher correlation coefficient (R2) for each of the 
three categories of data. So, based on the results obtained, it could 
therefore be concluded that the SERS Au nanogap substrate in 
conjunction with the VIP-based partial least squares regression (PLSR) 
model could replace time-consuming, destructive procedures for the 
quantitative analysis of melamine and cyanuric acid in pet liquid food 
(milk) samples. This research will be extended in the future to detect 
additional hazardous chemical additives that may be present in different 
kinds of pet food matrices. 

4. Conclusions 

In the present investigation, melamine, cyanuric acid, and melamine 
coupled with cyanuric acid were identified in pet liquid food (milk) 
samples using a SERS Au nanogap substrate. With RMSEP values of 
14.062, 16.677, and 11.958 pM, respectively, the PLSR machine 
learning model earned the highest correlation coefficients (R2) of 0.998, 
0.998, and 0.999 in contrast to the NAS-based HLA/GO model. Addi-
tionally, the three sets of infected pet liquid food (milk) samples had 

Fig. 9. SERS average preprocessed spectra for (a) melamine-contaminated, (b) cyanuric acid-contaminated, and (c) melamine combined with cyanuric acid- 
contaminated pet liquid food (milk) for a new variety of sample. 

R. Joshi et al.                                                                                                                                                                                                                                    



Current Research in Food Science 8 (2024) 100726

12

good LOD values of 0.40, 0.42, and 0.31 pM due to the Au nanogap 
substrate’s higher sensitivity, homogeneity, and enhancement factors. 
VIP score plots were also utilized to improve prediction accuracy by 
identifying significant spectral signatures that were responsive to the 
additional compounds in pet food matrices. The constructed PLSR 
models were used with a waveband selection technique to exclude un-
wanted spectral waveband areas. Our model performance findings were 
confirmed by utilizing more food-related data, which resulted in lower 
RMSEP values and a higher R2 values. Furthermore, PLS-DA showed the 
highest classification accuracy of 100%, 96%, and 95% for all three 
categories of added chemicals, demonstrating its ability to distinguish 
between pure and spiked samples. The findings unambiguously 
demonstrated that the SERS Au nanogap substrate, when used in 
conjunction with the VIP− PLSR machine learning method, could serve 

as an effective replacement for conventional spectroscopic and 
destructive chemical analysis techniques. It could also offer a rapid and 
efficient quantitative assessment of melamine and its byproducts in 
liquid meals intended for animal consumption. 
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