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Abstract

7-Carboxy-7-deazaguanine synthase (QueE) catalyzes a key S-adenosyl-L-methionine (AdoMet)- 

and Mg2+-dependent radical-mediated ring contraction step, which is common to the biosynthetic 

pathways of all deazapurine-containing compounds. QueE is a member of the AdoMet radical 

superfamily, which employs the 5′-deoxyadenosyl radical from reductive cleavage of AdoMet to 

initiate chemistry. To provide a mechanistic rationale for this elaborate transformation, we present 

the first crystal structure of a QueE, along with structures of pre- and post-turnover states. We find 

that substrate binds perpendicular to the [4Fe-4S]-bound AdoMet, exposing its C6 hydrogen atom 

for abstraction and generating the binding site for Mg2+, which directly coordinates to the 

substrate. The Burkholderia multivorans structure reported here varies from all other previously 

characterized members of the AdoMet radical superfamily in that it contains a hypermodified 

(β6/α3) protein core and an expanded cluster-binding motif CX14CX2C.
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Introduction

S-adenosyl-L-methionine (AdoMet or SAM) radical enzymes are a rapidly expanding 

superfamily: the estimated number was 600 in 20011, but more recent clustering methods2 

now place the number closer to 48,000. These [4Fe-4S]-containing proteins catalyze the 

reductive cleavage of AdoMet to generate the highly reactive and unstable oxidant 5′-

deoxyadenosyl radical (dA•), which initiates a broad array of chemically complex reactions 

by H-atom abstraction from diverse substrates3. The radical AdoMet superfamily was 

originally identified on the basis of a conserved CX3CXΦC motif, in which Φ is an aromatic 

residue and Cys-thiolate side chains coordinate three of the Fe atoms of the essential 

[4Fe-4S] cluster1. Structures of all AdoMet radical enzymes solved to date show the 

adoption of either a full or a partial (β/α)6 triose-phosphate isomerase (TIM) barrel fold, 

which has been called an “AdoMet radical core”4,5.

7-Carboxy-7-deazaguanine (CDG) synthase (QueE) catalyzes the unprecedented 

rearrangement of 6-carboxy-5,6,7,8-tetrahydropterin (CPH4) into CDG with loss of 

ammonia, generating the pyrrolopyrimidine base of 7-deazapurines (Fig. 1). This reaction is 

the key step in transforming the purine base of GTP into the 7-deazapurine core structure 

that is found in >30 natural products and in the tRNA base queuosine (Fig. 1)6,7. QueE is an 

AdoMet radical enzyme, and like lysine 2,3-aminomutase and spore photoproduct lyase, 

AdoMet is used catalytically, i.e. reformed during each reaction cycle8–10. QueE from B. 

subtilis also has a clear dependence on Mg2+ ions10, a newly reported feature for an AdoMet 

radical enzyme.

Here we report biochemical and X-ray crystal structure analyses of the QueE from 

Burkholderia multivorans. We find that this QueE has similar biochemical properties to the 

B. subtilis enzyme, but differs significantly in terms of structure: containing both a non-

canonical cluster-binding motif (CX14CXΦC) and a hypermodified protein fold. This work 

represents the first example of an AdoMet radical enzyme in which structural information is 

reported for all cofactors, the intact substrate, and product, making QueE from B. 

multivorans the best structurally characterized AdoMet radical enzyme to date as well as 

being one of the most divergent.

Results

B. multivorans QueE is a metal-dependent radical enzyme

Biochemically, the B. multivorans and B. substilis QueEs are quite similar. Both use 

AdoMet catalytically in the radical-based rearrangement of CPH4 to CDG, and both show 

metal-dependence (Supplementary Results, Supplementary Fig. 1a,b). In terms of the 

former, assays of B. multivorans QueE reveal the production of greater than stoichiometric 

amounts of CDG compared to supplied AdoMet, supporting the catalytic use of AdoMet in 
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this QueE as well (Supplementary Fig. 1a). In terms of the later, Mg2+ enhances activity of 

B. multivorans QueE by 3-fold, with a final kcat value of 0.19 ± 0.06 min−1 (Supplementary 

Fig. 1b,c). Although the 3-fold activation observed is smaller than the ~10-fold activation 

found for the Bacillus protein, both QueEs display clear acceleration of activity in the 

presence of Mg2+. Other cations, such as Na+ or Mn2+ ions, show no acceleration of QueE 

activity (data not shown).

To initiate radical chemistry, all AdoMet radical enzymes require the one-electron reduction 

of the [4Fe-4S] cluster11. This electron is typically supplied by a flavodoxin4,12–14. For B. 

multivorans QueE, more product is generated using the chemical reductant dithionite than 

the commonly used E. coli flavodoxin/flavodoxin reductase system (Supplementary Fig. 

1d); these results provide an unexpected difference with the B. subtilis enzyme10, which 

displays the opposite trend.

B. multivorans QueE has a modified core fold

The crystal structure of QueE from B. multivorans complexed with AdoMet and 6-

carboxypterin (6CP) was solved by single wavelength anomalous dispersion method to an 

Rwork and Rfree of 0.183 and 0.212, respectively (Supplementary Table 1). In the final 2.6 Å 

resolution structure, electron density is observed for all protein residues except for the N-

terminal His6-tag and the QueE starting methionine. Subsequent structures with ligands and 

metal ions were solved by isomorphous replacement using the initial protein model minus 

ligand atoms (Supplementary Table 2).

Both structurally and biochemically, QueE is a homodimer with each monomer displaying a 

variant of the (β/α)6 AdoMet radical fold (Fig. 2a,b and Supplementary Figs. 2,3). Of the 

structures determined to date, pyruvate formate-lyase activating enzyme (PFL-AE) is most 

similar to QueE overall, with an RMSD value determined by DALI of 2.7 Å for 171 Cα 

atoms14,15 (Supplementary Table 3). Such structural conservation is unexpected between 

QueE and PFL-AE because their substrates are drastically different in size; QueE binds the 

small molecule CPH4, while PFL-AE generates a glycyl radical within the protein pyruvate 

formate-lyase (PFL). However, the structures of PFL-AE from E. coli and QueE from B. 

multivorans are 246 and 210 residues in length, respectively, making them the smallest 

structural examples available of AdoMet radical enzymes, embodying the minimal core 

structure of this protein family.

In contrast to other AdoMet radical enzymes, including PFL-AE, the structural core of 

QueE, represented by a (β6/α3) architecture, is even more modest. Three α-helices (α3, α4, 

and α5) of the common AdoMet radical fold are replaced by short loops (L3 and L4) and by 

a short 310-helix (310H5) (Fig. 2a,b and Supplementary Fig. 2). These loops bury 

hydrophobic residues and are packed against the β-sheet, exposing backbone atoms and a 

few polar side chains to solvent (Supplementary Fig. 4). The replacement of these helices 

with loops has not been observed previously (see Discussion).

Structural features outside of the AdoMet radical core (Fig. 2a,b) are involved in substrate 

binding and oligomerization. QueE has a β-strand at the N-terminus of the protein (β1′) and 

both a 310-helix (310H1′) and a small β-strand (β2′) inserted between the cluster-binding 
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loop and the first α-helix of the protein core (α1); at the C-terminus, it has a seventh β-

strand and associated helix (β7′/α7′) (Fig. 2a and Supplementary Fig. 2). Interestingly, 

reciprocal interactions between the β1′–loop–β1 segment of QueE and the final β-strand 

(β7′) of the adjacent dimer molecule connect the beta sheet cores of the monomers, resulting 

in extension of the (β6/α3) protein core to an inter-monomer 10-stranded β-sheet resembling 

a crown (Fig. 2b,c). This expansion would presumably help stabilize this trimmed down 

core of the individual subunits. Although a similar β1′–loop–β1 segment is also observed in 

PFL-AE, PFL-AE is a monomer in solution and this protein segment interacts with its 

peptide substrate instead (Supplementary Fig. 5d)14.

Another notable difference between some QueEs and other AdoMet radical enzymes occurs 

in the cluster-binding loop where a novel insert interrupts the canonical CxxxC sequence. 

334 of 1589 QueE sequences contain an extended motif (Supplementary Fig. 6b). The vast 

majority of these insertions consist of fourteen residues (CX14CXΦC), whereas two QueEs 

have twenty (CX20CX2ΦC). Considering all 334 sequences, the consensus extended motif is 

CNLW(S/T)GX4(R/K)X2–8(A/S)XCXFC (Supplementary Fig. 5a). The B. multivorans 

QueE structure reveals that this eleven-residue insertion adopts a 310-helical structure 

(310H1′) that extends away from the protein core (Fig. 2 and Supplementary Fig. 2). 

Although it does not significantly alter the interactions between the Cys ligands and Fe 

atoms of the cluster, the insert leads to further burial and shielding of the [4Fe-4S] cluster 

from solvent (Supplementary Fig. 5b–e), as well as an increase in negative charge near the 

cluster (Supplementary Fig. 7).

AdoMet binding motifs conserved despite modified fold

The cluster-binding motifs of each monomer are located at opposite ends of the dimer 

molecule (Fig. 2a,c). Electron density for a complete [4Fe-4S] cluster within each monomer 

reveals that three of the Fe atoms from the cluster are coordinated by three cysteine residues 

from the CX14CXΦC motif. The remaining unique Fe binds the α-amino and α-carboxyl 

groups of AdoMet, which adopts an anti orientation about the glycosidic bond (Fig. 3 and 

Supplementary Figs. 8,9). Despite its modified fold, QueE employs all the structural motifs 

previously described for AdoMet binding: “GGE motif”, the “ribose motif”, the “β5 or 

GxIxGxxE motif”, and the “β6 motif” (Fig. 3a and Supplementary Figs. 2,8)4. G91GE93 of 

the so-called “GGE motif” interact with the α-amino group of AdoMet and contain a cis-

peptide linkage. The ribose moiety of AdoMet is within hydrogen bonding distance to the 

hydroxyl of S133, which is located within a “ribose motif” at the end of strand β4, and 3.4 Å 

from the amino group of K135. These residues are most likely involved in directing the 

formed dA• for correct H-atom abstraction, as the mutation of similar residues in biotin 

synthase leads to the formation of alternative products16.

The adenine moiety of AdoMet is tightly packed against V151 of the “β5 motif” and F48 of 

the “cluster-binding loop motif” (Φ). The protein makes five hydrogen bonds with the 

adenine moiety of AdoMet from both the “β6 motif” (D176 and Q173) and the cluster-

binding motif (F48 and D50) (Fig. 3a). Intriguingly, QueE is the first AdoMet radical 

structure in which a protein side chain (Q173) directly hydrogen bonds with the adenine 

moiety of AdoMet. An additional hydrogen bonding network is formed above the face of the 
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adenine ring proximal to the substrate binding site between D50 of the cluster-binding loop, 

K149 of β5, D176 of β6, and Q202 and K205 of the β7′/α7′ C-terminal extension (Fig. 3a).

Structure with 6CP reveals location of active site

Structures of QueE complexed with AdoMet and 6CP reveal an intricate hydrogen-bonding 

network to position 6CP within the lateral opening of the partial barrel (Figs. 2a and 3b), 

consisting of residues located both within the N- and C-terminal extensions and the protein 

core. The pterin ring is further positioned in the active site by favorable π-π stacking 

interactions with noncore H204 and core F25. This binding mode positions an oxygen of the 

carboxylic acid moiety of 6CP close (3.2 Å) to the C5′ of AdoMet.

The C-terminus of the protein “plugs” the active site by making a unique hydrogen-bonding 

interaction between the carboxylic acid group of the C-terminal protein residue (P210) and 

both the N3 atom and exocyclic amine of the pterin ring (Fig. 3b). Despite having electron 

density for the entire protein chain except for M1, part of the active site remains slightly 

open to solvent near where radical generation would occur (Supplementary Fig. 10a), 

suggesting that binding of the reduced substrate, CPH4, is accompanied by further small 

structural changes to fully close the active site and avoid side reactions.

Substrate binding generates a metal-binding site

In the 2.2 Å resolution crystal structure of QueE complexed with CPH4, the substrate 

molecule is bound within the active site similarly to the binding mode observed with 6CP; 

however, the reduced ring system of the tetrahydropterin is not planar, directing the 

carboxylic acid moiety of CPH4 away from the C5′ of AdoMet and towards R27 and T90 

(Fig. 3c). This binding orientation positions C6 of the substrate closest to the C5′ of AdoMet 

with a carbon-carbon distance of 3.9 Å, supporting the biochemical data that show dA• 

abstracts the H-atom at C6 to initiate catalysis10. Also, the side chain of Q13 rotates towards 

the substrate to form a hydrogen bonding interaction with the now protonated N8 of CPH4.

With CPH4 bound, the small active site opening that was observed in the 6CP-bound 

structure is now plugged with an apparent mononuclear ion (Fig. 3c, Supplementary Fig. 

10b). Given the observed Mg2+ dependence of QueE chemistry, we considered whether this 

putative metal-binding site could be the location to which catalytic Mg2+ binds. Anomalous 

dispersion is an excellent tool for confirming that metal ions are bound at putative metal-

binding sites in crystal structures. Unfortunately, neither the Na+ ions that were present in 

the crystallization buffer nor the physiologically relevant Mg2+ ions have a strong 

anomalous signal. Thus, to confirm assignment of this putative metal-binding site, Mn2+-

QueE was used. Anomalous data collected at a wavelength of 1.7399 Å for crystals of QueE 

soaked with 0.1 M MnSO4 revealed anomalous signal for two Mn2+ ions per QueE 

molecule. The first Mn2+ is bound in the same site described above, confirming that this is a 

metal-binding site (Fig. 4a); the second is bound on the surface of the protein 

(Supplementary Fig. 11).

With Mn2+ anomalous data corroborating the relevance of this site for metal binding, QueE 

crystals grown in the presence of 50 mM MgCl2 allowed for the first description of a 

catalytic metal ion site in an AdoMet radical enzyme. The ligand environment about Mg2+ is 
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pseudo-octahedral, with three water ligands (H2O-A,-B, and -C), the substrate C4 carbonyl 

and C6 carboxylate oxygens, and the hydroxyl of T51 (Fig. 4b). This threonine, which 

follows the cluster-binding loop, may be activated for metal coordination by the carboxylate 

of D50 (Fig. 3c, 4b). Although T51 is the only residue to interact directly with the metal ion, 

H2O-A and -B ligands to Mg2+ are involved in hydrogen bonding interactions with nearby 

residues (E15, D50 and H204). Metal ion-ligand distances are slightly longer than expected 

for a tightly coordinated Mg2+ ion (Supplementary Table 4)17,18, potentially due to the 

partial occupancy of this site by Na+ ions, which were also present in the crystallization 

solution.

In terms of metal ion specificity, neither Mn2+ or Na+ increase QueE activity (data not 

shown) and neither show identical binding interactions as Mg2+. While hard-soft acid-base 

theory predicts that Mg2+ favors hard ligands such as oxygen, Mn2+ readily interacts with 

both oxygen and nitrogen. Presumably because of this property, Mn2+ directly coordinates 

the cyclic N5 of the substrate with a distance of 2.0 Å (Fig. 4a). Although Mn2+ also 

interacts with the substrate carbonyl and carboxylate moieties, and H2O-B and –C, the 

distance to T51 is long (~3.6 Å), and water A is not observed (Supplementary Table 4)17,18.

The structure of QueE solved with Mg2+ also shows subtle differences relative to the 

structure solved with Na+ (Fig. 4b,c and Supplementary Table 4). In particular, only Mg2+ 

appears to interact favorably with both the substrate carboxylate (~3.0 Å) and carbonyl 

moieties (2.9 Å), whereas the distance is longer between Na+ and the substrate carbonyl (3.4 

Å). Interestingly, the C4a-N5-C6-C torsion angle of substrate varies by ~30° for Mg2+ and 

Mn2+ compared to Na+ (Fig. 4d).

Hydrogen-bonding network maintained in CDG-bound QueE

The structure of QueE co-crystallized with AdoMet and product, CDG, provides a 

comparison between how substrate and product bind (Figs. 3c,d and 4b,e,f). There are little 

to no changes in the structure, including the protein residues in the active site, with an 

RMSD for 208 Cα atoms of the protein dimer of 0.120 Å. CDG and CPH4 are bound 

similarly; however, the smaller size and strictly planar nature of CDG leads to slightly 

altered ring rotation (~30°) and somewhat altered interactions (Fig. 4f). In particular, the 

Mg2+ is coordinated by the C7-carboxylate of CDG in a monodentate fashion (2.2 Å), while 

maintaining similar interactions with the carbonyl moiety of CDG, the hydroxyl of T51, and 

three water molecules as in the CPH4-bound structure (Fig. 4e). Conversion of CPH4 to 

CDG most likely proceeds through a gem-amino carboxylic acid pyrrole-like intermediate, 

and modeling of this intermediate places the proposed exocyclic C7 nitrogen radical 

proximal to the C5′ of AdoMet, poised to abstract an H-atom from bound dA-H, which 

would regenerate the AdoMet cofactor (Fig. 4g).

Discussion

The structure of the B. multivorans QueE reveals a new protein architecture for an AdoMet 

radical enzyme that represents a drastic deviation from the (β/α)6 “AdoMet radical core” 

fold4. Here we find that QueE performs AdoMet radical chemistry with a “pared-down” 

β6/α3 architecture and a unique insertion into the canonical CX3CXΦC cluster binding 
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motif. The B. multivorans QueE structure is not the first report of a modified TIM barrel, as 

the majority of AdoMet radical enzymes are TIM-fold variants, but to the best of our 

knowledge this type of alteration is unprecedented in this or any enzyme superfamily. 

Previously, a structure of a “Tiny TIM” from the hyperthermophile Pyrococcus woesei was 

reported, which yielded a glimpse of a trimmed down TIM barrel consisting of only 228 

amino acids in comparison to the average of 298 residues19,20. Tiny TIM has shorter α-

helices and loops, but still retains all eight α-helices. Structures also have been reported with 

“distorted TIM barrel” folds21–27. In all cases where modifications to the barrel core have 

been reported, the variations involve either the full deletion of a (β/α) unit or the 

replacement of an α-helix by additional protein material; therefore, the deletion of three α-

helices in QueE from B. multivorans is even more surprising.

Part of the reason that these deletions are unanticipated is that an analysis of TIM barrel 

structures predicts that α-helices are required to provide conformational flexibility to the 

rigid barrel frame28. In contrast to helices, the short L3 and L4 loops of QueE would not be 

predicted to contain a great deal of flexibility due to their limited length in connecting β-

strands of the partial barrel, and thus this substitution of helices by loops is unexpected. 

However, the B-factor values (a measure of thermal disorder in Å2) of these loops are not 

that different from the α-helices, indicating that the loops may just be long enough 

(Supplementary Fig. 4a). Thus, with the correct design of the loop, the substitution may 

allow for the requisite flexibility.

The structure of QueE from B. multivorans is also the first example of an AdoMet radical 

enzyme displaying a substantially modified cluster-binding motif. We find that the eleven-

residue insertion adopts a 310-helix that is oriented above the barrel and [4Fe-4S] cluster. 

Although other sequences for binding the cluster have been reported29–31, they contain only 

minor modifications, e.g. CX5CXΦC in HmdB30 compared to the standard CX3CXΦC. 

Other reported differences include the presence of a slightly modified CX2CX4C motif in 

ThiC on a separate domain rather than on a loop that follows β-strand 1 of the AdoMet 

radical core29. Importantly, the modified CX14CXΦC motif in B. multivorans QueE is not 

essential for the CDG synthase reaction given that other QueEs (e.g. Bacillus subtilis in 

Supplementary Figs. 2 and 6) contain the traditional CX3CXΦC motif. Instead, we propose 

that this eleven-residue insert, along with loops L3 and L4, controls specificity of the B. 

multivorans QueE for its protein reductase. Flavodoxin is a common reductase for AdoMet 

radical enzymes and is believed to bind near the cluster-binding motif and helices 3 and 4 of 

the “core” fold4,12–14, i.e., the regions that are modified in this QueE (Supplementary Fig. 

7). Nonetheless, we expect that flavodoxin will bind to the B. multivorans enzyme in this 

same general location, since despite the protein modifications, this site still represents the 

closest binding surface to the [4Fe-4S] cluster for electron transfer. However, differences in 

the shape complementarity and electrostatics in the QueE from B. multivorans may impair 

the ability of certain flavodoxins to bind and reduce this enzyme. Consistent with this 

notion, more CDG is detected when B. multivorans is incubated with dithionite than with E. 

coli flavodoxin/flavodoxin reductase system (Supplementary Fig. 1d). Further studies with 

flavodoxins from B. multivorans and other species will aid in determining whether 

modification of the cluster-binding loop and of barrel helices accompanies the evolution of 
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protein-protein interaction of AdoMet radical enzymes with their respective physiological 

reductant.

The conversion of CPH4 to CDG by QueE is extremely challenging chemistry. The enzyme 

must activate a tetrahydropterin to convert its tetrahydropyrazine ring into a five-membered 

pyrrole ring with loss of ammonia. Stable isotope experiments have previously shown that 

the reaction entails abstraction of the C6 hydrogen of the substrate by dA•, and that in the 

course of conversion of CPH4 to CDG, the pro-R C7 hydrogen is lost to solvent10. The 

Mg2+ dependence of the reaction, which was first noted with the Bacillus protein10 but is 

also observed here with the Burkholderia homolog, was enigmatic. These structures of the 

Burkholderia protein with 6CP substrate analog, CPH4, and CDG, solved in the presence of 

Mg2+, provide exquisite molecular level detail of the active site, confirming and extending 

the biochemical findings.

A mechanistic proposal that incorporates structural findings is shown in Fig. 5. The X-ray 

crystal structure confirms that the C5′ of the dA moiety of AdoMet is close (3.8 Å) to the 

substrate C6, poised to abstract the C6 hydrogen upon reductive cleavage of AdoMet in 

steps I→II. Mg2+ may facilitate this H-atom abstraction through its interaction with both the 

carbonyl and carboxylate moieties of the substrate. Following substrate radical formation, a 

number of routes are possible to generate the 5-membered pyrrole ring, all of which are 

reminiscent of group migration reactions catalyzed by adenosylcobalamin-dependent and 

AdoMet radical mutases32. By analogy to lysine aminomutases9, one may envision a 

migration via an azocyclopropyl radical intermediate III-A that is stabilized by resonance. 

Alternatively, the rearrangement may proceed by ring opening in III-B followed by a 5-exo 

trig ring-closure, resulting in the pyrroline ring. Next, the amino-centered radical IV would 

reabstract a hydrogen atom from dA-H to reform AdoMet for use in a subsequent catalytic 

cycle, forming a gem-amino carboxylate pyrrole-like ring V that is modeled in Figure 4g. 

The following step, elimination of the amino group in V→VII, must be enzyme catalyzed 

based on the stereoselective loss of deuterium from the substrate C7 position10. Here, 

enzyme-bound Mg2+ could act as a Lewis acid facilitating path VI→VII-A; alternatively, 

the protein C-terminal carboxylic acid group (P210) could promote path V→VII-B through 

its interaction with the six-membered ring of substrate. Subsequent deprotonation of the 

Pro-R C8 proton of either VII-A or VII-B would lead to the final aromatized product VIII. 

E116 is positioned nearby (Fig. 4f,g) and is likely responsible for this deprotonation.

Mg2+ is not a “spectator” in this reaction and is likely to play a role at more than one step in 

this complex chemical transformation. These structures suggest that Na+ and Mn2+ cannot 

substitute for Mg2+ due to their differential interactions with substrate, either the loss of 

coordination with the carbonyl moiety of substrate or the gain of interaction with a ring 

nitrogen, respectively. Divalent and monovalent metals are known to assist in 

adenosylcobalamindependent chemistry33–35, but the QueE reaction is the first characterized 

example for the AdoMet radical superfamily. Importantly, no sequence motif exists for the 

Mg2+ binding site with only one protein residue involved in coordination. Thus, 

identification of metal-dependent activities of other AdoMet radical enzymes must await 

biochemical characterization.
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Once called a “poor man’s adenosylcobalamin” due to the relatively inexpensive nature of 

its biosynthesis36, AdoMet bound to a [4Fe-4S] cluster has proven to be a ubiquitous 

catalyst for spectacular chemical transformations. With only 210 amino acids, B. 

multivorans QueE represents a kind of “poor man’s AdoMet radical enzyme,” whose 

structure has caused us to reconsider key features of AdoMet radical enzyme structure and 

reactivity. This QueE structure challenges the idea that the size of an AdoMet radical 

enzyme is inversely correlated to its substrate’s size14. Here we find that QueE is most 

similar to PFL-AE in terms of structure but the two are not at all equivalent in terms of the 

sizes of their substrates. More importantly, this QueE structure prompts us to question the 

use of the CX3CXΦC sequence motif as the defining feature of an AdoMet radical enzyme. 

The B. multivorans QueE structure indicates that CX3CXΦC cysteine spacing is not required 

for the canonical binding of AdoMet or for AdoMet radical chemistry. Although impossible 

to predict by sequence alignments, the QueE structure also reveals that an AdoMet radical 

core fold can be established without three of the six α-helices. Recent work on another 

AdoMet radical enzyme, BtrN, further shows that the sixth strand of the (β/α)6 barrel can 

also be deleted without significantly altering AdoMet binding37. Thus, bioinformatic 

analyses of AdoMet radical enzymes must consider protein sequences with expanded 

cluster-binding motifs and contracted core folds. Currently, the predicted 48,000 unique 

AdoMet radical enzyme sequences map to a vast area of sequence space (Supplementary 

Fig. 6), presumed to reflect a great array of chemical reactivities and substrate specificities. 

Although much of this sequence variation is undoubtedly due to the above, this work 

reminds us that two enzymes with identical functions are not necessarily close in sequence 

space. This work also suggests that AdoMet radical enzymes may have evolved to recognize 

different protein reductases, and that some of the magnitude of sequence diversity may be 

due to the latter. Finally, this series of structures provides long-awaited snapshots of an 

AdoMet radical reaction, providing a template for mechanistic considerations and 

computational investigations of this stunning radical-based chemistry.

Online Methods Section

Protein overexpression and purification

The E. coli codon-optimized gene encoding B. multivorans QueE was obtained from 

GenScript (Piscataway, NJ) (Supplementary Fig. 12). The gene was excised from the 

supplied pUC57 with NdeI and HindIII and ligated into a similarly digested pET28a vector 

for expression of the N-terminal His6-tagged protein. E. coli BL21(DE3) cells were co-

transformed with the QueE expression vector and pDB128238 for enhanced [4Fe-4S] cluster 

biosynthesis. Cells were grown in LB containing 34 µg/mL kanamycin and 100 µg/mL 

ampicillin at 37 °C. At OD600 ~0.3, arabinose and iron(III) chloride were added to a final 

concentration of 0.05 % (w/v) and 50 µM, respectively. At OD600 ~ 0.5 expression of QueE 

was induced by the addition of isopropyl β-D-1-thiogalactopyranoside to a final 

concentration of 0.1 mM. Cells were harvested 6 h after induction and flash frozen.

Recombinant QueE was purified and reconstituted in an anaerobic chamber (Coy Lab 

Products) under 5% H2/95% N2. Cells were resuspended in buffer containing 50 mM 

potassium phosphate (pH 7.4), 0.5 M potassium chloride, 50 mM imidazole, and 1 mM 
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phenylmethylsulfonyl fluoride (buffer A) and lysed via a digital sonifier (Branson) operated 

at 50% amplitude. The resulting lysate was centrifuged at 18,000 × g for 30 min at 4 °C to 

clear the cellular debris from the lysate. His6-tagged protein was purified from the soluble 

lysate with a 1 mL HisTrap™ HP column (GE Healthcare) charged with nickel sulfate. The 

column was equilibrated with buffer A prior to loading the supernatant, washed with 5 

column volumes of buffer A, and eluted with a linear gradient from 0 to 100% buffer B 

(buffer A supplemented with 0.5 M imidazole) in a total of 10 mL. Fractions containing 

QueE were pooled, concentrated to 3 mL, and desalted into 50 mM PIPES (pH 7.4) and 10 

mM DTT using an Econo-Pac 10DG column (Bio-Rad). The purified enzyme was then 

reconstituted by rapidly adding 8 molar equivalents of iron(III) chloride and sodium sulfide 

and incubated at room temperature for 4 h. The reconstitution reaction was centrifuged to 

remove precipitate and the reconstituted protein was desalted in the same manner as 

previously described. Protein concentration was determined by Bradford method with BSA 

as the standard. The final reconstituted and desalted enzyme was >95% pure by SDS PAGE 

analysis. Protein was flash frozen in aliquots and stored at −80 °C.

Size-exclusion Chromatography

To determine the oligomerization state of B. multivorans QueE, reconstituted protein was 

injected (0.5 mL of 6 mg/mL protein) onto a HiPrep 16/60 Sephacryl S-200 high-resolution 

size exclusion column (GE Healthcare) equilibrated in 50 mM PIPES (pH 7.4) and 10 mM 

DTT. The column was operated at 1 mL/min at room temperature in an anaerobic chamber 

(Coy Lab Products) under 5% H2/95% N2. QueE was injected onto the column two times, 

once alone and once with size exclusion standards (Bio-Rad) that included bovine 

thyroglobulin (670 kDa), bovine γ–globulin (158 kDa), chicken ovalbumin (44 kDa), horse 

myoglobin (17 kDa), and vitamin B12 (1.35 kDa). The standards were also injected onto the 

column alone. The elution volume of QueE was compared to the elution volumes of the 

standard to obtain the approximate molecular weight of the protein.

QueE activity assays

The purified N-terminally His6-tagged enzyme was assayed for activity as follows. Assays 

contained 50 mM PIPES (pH 7.4), 10 mM DTT, 10 mM dithionite, 2 mM AdoMet 

(enzymatically synthesized and purified as previously described10; >95% pure by HPLC at 

259 nm), 2 mM MgSO4, QueE and 2 mM CPH4 (enzymatically synthesized and purified as 

previously described10; >99% pure by HPLC at 298 nm). Aliquots (60 µL) were withdrawn, 

quenched with 6 µL of 30% (w/v) TCA and analyzed by HPLC. An aliquot (60 µL) was 

injected onto an Agilent Zorbax Eclipse C-18 column (4.6 mm × 250 mm) pre-equilibrated 

in 0.1 % (v/v) TFA. Analyte components were eluted over 40 min with a linear gradient 

from 0 to 6% acetonitrile with 0.1 % (v/v) TFA at a flow rate of 0.75 mL/min, monitoring 

the elution profile from 200 to 500 nm using a photodiode array detector. The peak area 

corresponding to CDG was converted to concentration of CDG via a calibration curve 

constructed by injecting known amounts of CDG onto the C-18 column. All reactions were 

run in triplicate and the data are represented by the mean values; errors are the standard 

deviation of the triplicate data. In all of the reactions, all components except CPH4 were 

mixed and incubated at room temperature for 10 min. Reactions were initiated upon addition 

of CPH4. To determine the optimal reductant, assays with 5 µM QueE were conducted in the 
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presence of either 10 mM dithionite or 40 µM flavodoxin/flavodoxin reductase with 2 mM 

NADPH to compare the amount of CDG formed after 30 min, run in triplicate. To determine 

the kcat, the [QueE] was varied at 2, 4, 7, and 10 µM under saturating AdoMet, CPH4 and 

Mg2+ conditions. For the Mg2+ activation assays, reactions were set up with 2 µM QueE and 

0 or 2 mM MgSO4. In these assays, AdoMet (Sigma-Aldrich; >75% pure) was used because 

of a magnesium contamination in the enzymatically synthesized AdoMet.

Stoichiometric requirement of AdoMet

To determine the stoichiometric requirement of AdoMet, a reaction was prepared as 

described above, except that 10 µM enzymatically prepared AdoMet and 10 µM QueE were 

used in a total reaction volume of 0.22 mL. The reaction was initiated by addition of 

substrate after incubating QueE in the presence of dithionite and AdoMet for 10 min. 

Aliquots (40 µL) were withdrawn at 5, 60, 180, 360, and 540 min, quenched with 4 µL of 

30% (w/v) TCA, and analyzed by HPLC, as described above.

Crystallization

Crystallization conditions were identified at 21 °C using a Mosquito pipetting robot (TTP 

LabTech) housed within an anaerobic chamber (MBraun) under a nitrogen atmosphere (O2 

< 0.1 ppm) and optimized in an anaerobic chamber (MBraun) at either 21 °C or 4 °C. All 

solutions larger than 100 µL were purged with argon for greater than 30 min. Volumes 

smaller than 100 µL were frozen, exposed to vacuum, brought into the anaerobic chamber 

and allowed to thaw and gas exchange before use. AdoMet was enzymatically synthesized 

and purified as previously described10 (>99% pure by HPLC at 298 nm), and 6-

carboxypterin (6CP; Sigma Aldrich; >98 % purity) was used without further purification. 6-

carboxy-5,6,7,8-tetrahydropterin (CPH4; >99% purity by HPLC at 298 nm) and 7-

carboxy-7-deazaguanine (CDG; > 95% purity by HPLC at 300 nm) were generated and 

purified as previously described10.

Initial crystals of QueE in complex with 6CP and AdoMet formed at 21 °C by mixing 0.1 µL 

protein solution [13.9 mg/mL QueE in 50 mM PIPES (pH 7.4) and 10 mM DTT, 5 mM 

AdoMet, and 5 mM 6CP; added in that order] and 0.1 µL of precipitant solution [2.0 M 

NaK2PO4 (pH 6.8) and 0.1 M sodium acetate (pH 4.5)] over a 70 µL reservoir. Protein 

solutions were centrifuged prior to setting up crystal trays to remove insoluble 6CP. Crystals 

of 50 µm × 100 µm × 30 µm dimensions formed within a week. Crystals were optimized 

using sitting drop vapor diffusion method, and crystals formed in both 1:1 and 3:1 ratios of 

protein to precipitant solution with a final drop size of 2 µL. Crystals were transferred to an 

anaerobic chamber (Coy Lab Products) under 95% argon, 5% hydrogen at 24 °C, harvested 

and cryoprotected in 2.6 M NaK2PO4 (pH 6.8), 50 mM sodium acetate (pH 4.5), and 10 % 

glycerol. All crystals were then cryocooled in liquid nitrogen within an anaerobic chamber 

(Coy Lab Products).

QueE complexed with AdoMet and CPH4, with or without Mg2+ [13.9 mg/mL QueE in 50 

mM PIPES (pH 7.4) and 10 mM DTT, 5 mM AdoMet and 5 mM CPH4, ± 50 mM MgCl2; 

added in that order] formed optimal crystals between 1.8 – 2.2 M NaK2PO4 (pH 6.8) and 0.1 

M sodium acetate (pH 4.5) at 4 °C. Crystals without MgCl2 present have a similar 
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morphology to those grown with 50 mM MgCl2. QueE complexed with CDG and Mg2+ 

were obtained using identical conditions. All crystals were cryoprotected and flash cooled 

anaerobically with 2.6 M NaK2PO4 (pH 6.8), 50 mM sodium acetate (pH 4.5) and 10 % 

glycerol, ± 25 mM MgCl2.

Crystal soaking experiments with Mn2+

Crystals grown in a 4 °C MBraun anaerobic chamber in the presence of AdoMet and CPH4, 

but in the absence of MgCl2 (see above), were used for Mn2+ soaking experiments. In order 

to obtain a structure of QueE with Mn2+ ions, it was necessary to exchange the 

crystallization condition [2.0 M NaK2PO4 (pH 6.8) and 0.1 M acetate (pH 4.6)] before 

addition of excess Mn2+ ions to prevent formation of salt precipitates within the drop. Buffer 

exchange was achieved by streaking crystals of QueE through a 10 µL drop of stabilization 

buffer [0.1 M HEPES and 30% v/v Jeffamine ED-2001 (pH 7.0)] prior to transferring 

crystals into the same solution supplemented with 0.1 M MnSO4. After 12 hrs, crystals were 

backsoaked briefly in stabilization solution and directly cryocooled in liquid nitrogen.

X-ray diffraction data, structure determination and refinement

Diffraction data for QueE with AdoMet and 6CP were collected on a RAxis IV++ detector 

with Rigaku MicroMax007-HF rotating anode, and a higher resolution data set was collected 

at the National Synchrotron Light Source (NSLS, Brookhaven, X25). Data were collected, 

indexed, integrated, and scaled in space group P43212, with 2 molecules in the asymmetric 

unit, using the software HKL200039 (Supplementary Table 1). Phases were determined by 

single-wavelength anomalous dispersion methods with data collected at the Cu Kα edge 

(1.54178 Å) for QueE complexed with AdoMet and 6CP. The data displayed good 

anomalous signal to approximately 5 Å resolution, and the program SOLVE in phenix 

AutoSol40 identified two sites with occupancies greater than 1.0, indicative of two [4Fe-4S] 

clusters per dimer in the asymmetric unit. Sites were refined and experimental electron 

density maps were generated using the program SHARP/autoSHARP41, with an overall 

figure-of-merit of 0.47 to 5.0 Å resolution. The resulting figure-of-merit weighted electron 

density map yielded interpretable electron density for building protein secondary structure.

Secondary structure elements were built into electron density maps in the program COOT42, 

using the structure of AdoMet radical enzyme pyruvate formate-lyase activating enzyme 

(PFL-AE, PDB accession code 3CBA)14 as a guide. The resulting QueE model was used to 

update the mask generated in SHARP for solvent flattening and phase extension in steps of 

~0.5 Å to 3.1 Å resolution, allowing for completion of a poly-alanine model. The addition of 

side chains was carried out using the cluster-binding motif and [4Fe-4S] cluster as initial 

anchors for the protein sequence. Initial refinement protocols at 3.1 Å resolution consisted of 

rigid body refinement, followed by deformable elastic network assisted simulated annealing 

refinement in CNS version 1.343, applying non-crystallographic symmetry (NCS) restraints 

for all atoms. Following iterative rounds of refinement (using simulated annealing, energy 

minimization and B-factor refinement protocols in phenix and/or CNS 1.3 without sigma 

cutoff44–46) and model building in COOT42, phases were extended to the full 2.9 Å 

resolution of the “R-axis” data. The subsequent QueE model was refined similarly against 

an isomorphous “NSLS” 2.6 Å resolution remote dataset, following truncation of this data 
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using the French and Wilson method in the ccp4 suite of programs47,48. Toward the end of 

the refinement process, NCS restraints were released from all atoms, alternate side chain 

conformations were identified, and TLS restraints were used (seven per molecule, 

determined by the TLS Motion Determination Server49,50). Water and ligand molecules 

were added in later rounds of refinement, and composite omit maps were generated to verify 

the structure. The final protein model contained all residues except for the N-terminal His6-

tag and initial methionine (residues T2-P210), and analysis of the Ramachandran plot by 

Procheck indicates 87.9% of non-glycine and non-proline residues are in the most favored 

regions, and no residues are in the generously allowed or disallowed regions51.

The resulting structure of AdoMet/6CP QueE, minus metal, water and ligand atoms, was 

used to solve structures of AdoMet/CPH4-Na+ (Advanced Photon Source, APS; 24ID-C; 

Pilatus 6MF), AdoMet/CPH4-Mg2+ (APS; 24ID-E; ADSC Q315), AdoMet/CPH4-Mn2+ 

(APS; 24ID-C; Pilatus 6MF), and AdoMet/CDG-Mg2+ (APS; 24ID-C; Pilatus 6MF) by 

isomorphous replacement. Structures were built and refined using identical protocols as 

described above with the same Rfree test sets (5%, originating from the AdoMet/6CP-bound 

dataset). Refinement statistics are presented in Supplementary Table 2. All structures 

contain residues T2-P210, with only the N-terminal affinity tag and initial methionine 

missing from the model.

Small molecule topology and definition files for 6CP, CPH4, CDG, and AdoMet were 

generated using the Grade Web Server (http://grade.globalphasing.org). Protein figures were 

generated using PyMOL, and electrostatic calculations were performed with the APBS52 

plugin within PyMOL. Topology diagrams were generated using the software TOP in the 

CCP4 suite of programs53, and graphs were generated in the software PRISM. Sequence 

similarity diagrams were generated using the software Cytoscape54 with protein sequences 

obtained from the Structure Function Linkage Database2.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Biosynthetic pathway for the common precursor of all deazapurines, preQ0
GTP is converted to CPH4 by the sequential action of GCH I and QueD6. QueE catalyzes 

the AdoMet-and Mg2+-dependent rearrangement of CPH4 to CDG10. QueC catalyzes the 

ATP-dependent conversion of CDG and ammonia to preQ0. Two deazapurine natural 

products derived from preQ0 are depicted: the antibiotic toyocamycin and the ubiquitous 

hypermodified tRNA base queuosine.
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Figure 2. Overall structure of QueE
(a) Ribbon depiction of QueE dimer displayed with a red dashed line delineating the dimer 

interface, and cluster-binding loop with inserted 310-helix colored in cyan. The rest of the 

modified (β6/α3) core is colored in yellow for loops and strands and purple for helices, with 

N– and C–terminal extensions to the core colored gray and orange, respectively. Carbons for 

AdoMet and the 6CP ligand are colored green and light blue, respectively. Iron-sulfur 

cluster is in ruby and yellow sticks. Residues from the N– and C–terminal extensions 

primarily make up the dimer interface, in addition to α6. (b) Topology diagram of the QueE 

dimer is depicted, colored as in (a), with inter-monomeric 10-stranded β-sheets of 

1′1234567′11′ (bold and underline typesets indicate secondary structure from the dimer 

molecule and antiparallel β-strands, respectively, and the symbol prime denotes elements 

outside of the AdoMet radical protein core). 310-helices are assigned based on hydrogen 

bonding, and [4Fe-4S] clusters are indicated as brown diamonds. (c) Alternative view of 

QueE dimer, displayed as though looking along the red dotted line of (a).
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Figure 3. Binding of AdoMet, 6CP, CPH4, and CDG
(a) The AdoMet binding pocket contains multiple hydrogen-bonding interactions, in 

addition to a protein hydrogen-bonding network located above the plane of the adenine 

(dashed gray lines)(see Supplementary Fig. 8 for stereoview). Coordination bonds to the 

iron-sulfur cluster are displayed as solid black lines. Protein-ligand interactions are 

represented as magenta dashed lines. Protein backbone is displayed as a transparent ribbon 

with ligand interacting residues as sticks. Protein carbons are colored cyan for the cluster-

binding loop, yellow for the AdoMet radical core, gray for the N-terminal extension, and 

orange for the C-terminal extension. AdoMet and ligand carbons are colored green and light 

blue, respectively. (b) The substrate analogue 6CP is bound such that an oxygen of the C6-

carboxylate moiety is positioned 3.2 Å from the C5′ of AdoMet (dashed gray line). (c) 

Binding of substrate, CPH4, and Mg2+ ion (green sphere) in the 2.2 Å resolution structure 

positions C6 of the substrate 3.9 Å from the C5′ of AdoMet (dashed gray line). (d) Binding 

of product (CDG) and Mg2+ ion (green sphere) in the 1.9 Å resolution structure.
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Figure 4. Metal ion interactions
(a–c) QueE structures with CPH4 and different metals, colored as follows: (a) Mn2+/CPH4, 

pink/purple; (b) Mg2+/CPH4, green/cyan; and (c) Na+/CPH4, purple/yellow. Hydrogen 

bonding interactions with metal-bound water molecules are displayed as magenta dashed 

lines; coordination distances are shown as solid black lines; and metal-ligand distances 

between 2.5–3.2 Å are represented by dotted black lines. Distances are presented in 

Supplementary Table 4. Anomalous difference electron density for Mn2+ is contoured at 3σ 

(pink mesh). AdoMet carbons, green; protein carbons, gray; water, red spheres. (d) An 

overlay of all three CPH4-bound structures, colored as in (a–c). The distance between C6 of 

the substrate and the C5′ of AdoMet is represented as a dashed gray line. (e) QueE 

cocrystallized with Mg2+/CDG in green/tan; lines and other colors as in (a). (f) A 

superposition of substrate- and product-bound QueE colored as in (a) with Mg2+/CPH4 and 

Mg2+/CDG in green/light blue and gray/tan, respectively. The distance (3.4 Å) between the 

AdoMet C5′ and the CPH4 C6 H-atom is displayed as a dashed gray line. (g) The proposed 

exocyclic nitrogen-containing intermediate is modeled into the QueE active site with cyan 

carbons, based on the binding mode of CPH4 to preserve reasonable distances to the metal 

ion-binding site. This orientation positions the proposed nitrogen radical within reasonable 

distance (~ 4 Å) to the C5′ of AdoMet, displayed as a dashed gray line, for re-abstraction of 

an H-atom to regenerate AdoMet cofactor. The distance (~ 3.5 Å) between the C7 proton to 

be lost in the reaction and the nearest protein residue, E116, is also represented as a dashed 

gray line.
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Figure 5. Proposed mechanism for QueE
The fates of hydrogen atoms colored in blue or magenta have been confirmed by isotope 

labeling studies10. Steps are described in the text.
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