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Loss of DNA mismatch repair facilitates reactivation of
a reporter plasmid damaged by cisplatin

B Cenni 1,†, H-K Kim 1, GJ Bubley 2, S Aebi 1, D Fink 1, BA Teicher 3,*, SB Howell 1 and RD Christen 1

1Department of Medicine 0058, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0058, USA; 2Beth Israel Deaconess Hospital, Harvard
Medical School, Boston, MA 02115, USA; 3Division of Cancer Pharmacology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA

Summary In addition to recognizing and repairing mismatched bases in DNA, the mismatch repair (MMR) system also detects cisplatin DNA
adducts and loss of MMR results in resistance to cisplatin. A comparison was made of the ability of MMR-proficient and -deficient cells to
remove cisplatin adducts from their genome and to reactivate a transiently transfected plasmid that had previously been inactivated by
cisplatin to express the firefly luciferase enzyme. MMR deficiency due to loss of hMLH1 function did not change the extent of platinum (Pt)
accumulation or kinetics of removal from total cellular DNA. However, MMR-deficient cells, lacking either hMLH1 or hMSH2, generated
twofold more luciferase activity from a cisplatin-damaged reporter plasmid than their MMR-proficient counterparts. Thus, detection of the
cisplatin adducts by the MMR system reduced the efficiency of reactivation of the damaged luciferase gene compared to cells lacking this
detector. The twofold reduction in reactivation efficiency was of the same order of magnitude as the difference in cisplatin sensitivity between
the MMR-proficient and -deficient cells. We conclude that although MMR-proficient and -deficient cells remove Pt from their genome at equal
rates, the loss of a functional MMR system facilitates the reactivation of a cisplatin-damaged reporter gene.

Keywords: cisplatin; DNA mismatch repair; hMLH1; hMSH2; colon cancer; endometrial cancer
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Cisplatin is a widely used chemotherapeutic drug that has serv
the basis for development of subsequent generations of platin
coordination compounds. Its mechanism of cytotoxicity is 
formation of a variety of DNA adducts of which the covalent 1
intrastrand cross-link between two adjacent guanines is the 
abundant (reviewed in Zamble and Lippard, 1995). Acquired re
tance to cisplatin occurs frequently during treatment and is im
tant due to the narrow therapeutic index of this drug. Small cha
in sensitivity, in the range of twofold, are sufficient to account 
the failure of treatment (Andrews et al, 1990; Fink et al, 1997).

The proteins involved in DNA mismatch repair (MMR) a
evolutionarily conserved. The MMR system detects and rep
frameshifts, replication errors, mainly base mismatches, 
regulates recombination events (Kolodner, 1995). Interestin
the MMR system is also involved in the detection of DNA dama
produced by 6-thioguanine and methylating agents, as we
cisplatin and carboplatin (Kat et al, 1993; Hawn et al, 1995; A
et al, 1996; Drummond et al, 1996; Fink et al, 1996). It has b
known for some time that loss of MMR results in high level res
tance to 6-thioguanine and moderate resistance to a varie
methylating agents, including N-methyl-N′-nitro-N-nitrosoguani-
dine (MNNG). Recently, we and others have shown that los
MMR also results in low-level resistance to cisplatin and car
platin (Aebi et al, 1996; Drummond et al, 1996; Fink et al, 199
In the case of cisplatin, it has previously been shown that hM
is a component of the protein complex that binds to DN
containing cisplatin adducts (Duckett et al, 1996; Fink et al, 19
Mello et al, 1996), and it has been suggested that the M
1-
 by
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proteins serve as a detector system for the presence of 
damage (Hawn et al, 1995; Kat et al, 1993). The repai
mismatched bases by the MMR system involves incision of
mismatch-containing strand, either upstream or downstream o
mismatch, excinuclease-helicase-mediated removal of a porti
the incised strand creating a gap, and then filling of the gap
religation by DNA polymerase and ligase (reviewed in Kolodn
1995). Many of these steps are similar to those performed b
nucleotide excision repair system, a DNA repair system th
known to remove cisplatin adducts from DNA (Zamble a
Lippard, 1995).

We sought to determine whether the MMR system is involve
the removal of cisplatin adducts from DNA by comparing 
ability of MMR-proficient and -deficient cells of the same gene
background to form and remove adducts in endogenous DNA
to reactivate expression of the luciferase gene from a transi
transfected cisplatin-damaged plasmid. We report here that lo
MMR had no effect on the extent of cisplatin adduct formation
the kinetics of adduct removal from genomic DNA as measure
atomic absorption spectroscopy, but that, contrary to expecta
loss of MMR facilitated the expression of a reporter gene disa
by treatment with cisplatin.

MATERIALS AND METHODS

Cell lines and chemicals

The cell lines HCT116+ch2 (clone HCT116/2–1) a
HCT116+ch3 (clone HCT116/3–6), derived from the hMLH
deficient human colorectal adenocarcinoma cell line HCT116
699
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Table 1 Platinum content of genomic DNA as a function of time after cisplatin exposure

40 µM cisplatin 80 µM cisplatin

Time (h) HCT116 +ch2 +ch3 HCT116 +ch2 +ch3

0 100 100 100 100 100 100
6 12.0 ± 3.5 12.1 ± 3.6 10.5 ± 2.7 13.1 ± 2.7 12.2 ± 2.1 11.3 ± 3.3

20 6.4 ± 2.8 4.3 ± 1.7 5.3 ± 1.8 7.2 ± 3.0 6.8 ± 2.2 6.6 ± 2.0
28 1.1 ± 0.3 1.2 ± 0.2 0.9 ± 0.3 1.6 ± 0.5 1.8 ± 0.7 1.7 ± 1.3

The rates of platinum removal were determined in HCT116 sublines at 0, 6, 20 and 28 h after the end of 1 h exposure to 40 and 80 µM

cisplatin. Initial adduct levels were the same in all HCT116 sublines, i.e. 384 fmol µg–1 DNA and 650 fmol µg–1 DNA following exposure to
40 µM and 80 µM cisplatin respectively. Values represent mean ± s.d. (n = 3) per cent of the initial content at the end of the 1 h treatment
with cisplatin. There was no significant difference between MMR-proficient and -deficient cells in the rate of platinum removal over time.
complementation with chromosomes 2 and 3, respectively, 
obtained from Drs CR Boland, M Koi and TA Kunke
Complementation with chromosome 3 provides a wild-type c
of hMLH1 that renders the HCT116+ch3 cells MMR-proficie
(Koi et al, 1994). The hMSH2-deficient human endomet
carcinoma cell line HEC59 and its subline HEC59+ch2 (cl
HEC59/2–4), complemented with chromosome 2, were 
provided by Drs CR Boland, M Koi and TA Kunkel. In th
HEC59+ch2 cells, the chromosome 2 complementation res
wild-type hMSH2 and MMR function (Umar et al, 1997). T
cells were grown as previously described (Aebi et al, 1996).
status of expression of hMLH1 and hMSH2 was confirmed
Western blot. Cisplatin was obtained from Sigma (St Louis, M
USA) and dissolved in 0.9% (w/v) saline. Lipofectin w
purchased from Life Technologies (Gaithersburg, MD, USA).

Cellular pharmacology

The effect of MMR on the repair of cisplatin-damaged DNA w
compared using two pairs of cell lines. The HCT116-deri
sublines differed with respect to MMR activity due to the loss
hMLH1 function, and the HEC59 cells due to the loss of hMS
function. The HCT116 cells contain a hemizygous mutation
hMLH1 resulting in a truncated, non-functional protein (Boye
al, 1995; Carethers et al, 1996). Thus far, complementatio
hMLH1 and hMSH2 defects by expression of these genes fro
vector has not been reported by any laboratory; howe
successful complementation has been achieved using whole
mosomes. The HCT116+ch3 subline is MMR-proficient due
complementation with a wild-type copy of hMLH1 on chrom
some 3; the HCT116+ch2 subline is complemented with chro
some 2 and is MMR-deficient (Koi et al, 1994; Carethers e
1996). Similarly, the HEC59 cells are mutated at different loc
both alleles of hMSH2 and are deficient in MMR activity (Boy
et al, 1995); the HEC59+ch2 subline complemented with a w
type copy of hMSH2 on chromosome 2 is MMR-proficient (Um
et al, 1997). The MMR-deficient HCT116 cells are 2.1-fo
resistant to cisplatin when compared to the MMR-profici
HCT116+ch3 cells in clonogenic assays, and the MMR-defic
HEC59 cells are 1.8-fold more resistant to cisplatin than 
MMR-proficient HEC59+ch2 cells (Fink et al, 1996). The comp
mented cells grown in G418 have remained stable for more th
years in culture, and repeat clonogenic assays confirmed 
differences in cisplatin sensitivity (data not shown).
British Journal of Cancer (1999) 80(5/6), 699–704
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Assay of platinum adducts in DNA

The extent of DNA platination was measured by exposing ex
nentially growing cells for 1 h to 100µM cisplatin; the cells were
then washed with cold phosphate-buffered saline (PBS) and l
in a buffer containing 1% sodium dodecyl sulphate (SDS), 2.M

sodium chloride, 0.3M EDTA pH 8.0. DNA was isolated by
phenol–chloroform extraction and dissolved in buffer contain
10 mM Tris and 1 mM EDTA pH 8.0. Aliquots of the DNA were
digested in 1M hydrochloric acid at 75°C for 2 h and the
hydrolysate was used for the quantitation of platinum (Pt)
flameless atomic absorption spectrophotometry (Perkin-El
Model 2380). The rate of cisplatin adduct removal was meas
in cells that were exposed for 1 h to 40 and 80µM cisplatin and
harvested 0, 6, 20 and 28 h after the end of exposure. Th
content of the DNA was measured by atomic absorption s
troscopy as described above.

Plasmid reactivation assay

A plasmid carrying a 2.4 kb fragment from pB/LUC that includ
the 1.6-kb firefly luciferase cDNA was prepared by ligating
SalI/NotI fragment that contained the luciferase coding region 
the 6.9-kb mammalian expression vector pKEX-2-XR (Rittner
al, 1991) placing the luciferase expression under control of
cytomegalovirus (CMV) promoter. One to 4 mg of plasmid DN
was dissolved in buffer containing 10 mM Tris and 1 mM EDTA
pH 7.4 and incubated with 5µM cisplatin at 37°C for 3 h. The
platinated DNA was then purified by ethanol precipitation a
unreacted drug was removed by passage of the DNA throu
G50 Sephadex column. This procedure resulted in plasmid D
that was > 90% supercoiled as verified by gel electrophoresis.
platination procedure yielded 1.5 ± 1.4 pg µg–1 DNA which is
equivalent to 9.3 adducts per plasmid or 3.2 adducts per 
coding region and promoter. Similar levels of platination ha
previously been shown not to affect the efficiency of transfec
(Eastman and Schulte, 1988).

Equal number of cells (i.e. 200 000 per well) were transfecte
serum-free medium with 1µg platinated or unplatinated pKEX-2
XR-Luc in combination with 5µl lipofectin for a period of 5 h.
Intra-assay variability was minimized by using one lipofec
mixture for all samples in each experiment. Subsequently,
DNA was washed off and fresh medium was added. At vari
time points after transfection, triplicate samples were washed 
ice-cold PBS and then lysed in a solution containing 1% Tr
© Cancer Research Campaign 1999
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Figure 1 Luciferase activity as a function of time in HCT116 cells.
Luciferase activity was determined following transfection of pKEX-2-XR-Luc
in MMR-deficient HCT116+ch2 cells (A) and MMR-proficient HCT116+ch3
cells (B). (●), non-platinated vector; (●●), platinated vector. Luciferase activity
is expressed as per cent of maximum luciferase activity generated by the
unplatinated vector at 36 h. Data points represent the mean ± s.e.m. of three
experiments each performed with triplicate transfections for every time point
X-100, 15 mM MgSO4, 4 mM EGTA, 1 mM dithiothreitol, and
25 mM glycylglycine at pH 7.8 for 10 min. After centrifugation fo
5 minutes at 16 000 g, aliquots of the cleared lysate were assa
for luciferase activity as previously described (Brasier et al, 19
The generation of luciferase activity as a function of time 
compared for cells transfected with the unplatinated versus p
nated vector (Eastman and Schulte, 1988). To control for vari
in transfection efficiency between experiments, luciferase act
was expressed as percent of maximum activity attained in 
experiment. In each cell line, the area under the curve of lucife
activity versus time was computed up to the time of maxi
activity which was 36 and 20 h for HCT116 and HEC59 c
respectively. The efficiency of plasmid reactivation was calcula
as the ratio of the area under the curve of the platinated vec
the area under the curve of the unplatinated plasmid.

RESULTS

Effect of MMR on platinum adduct formation and
removal

We have previously shown that after a 1 h incubation in 100µM

cisplatin the HCT116+ch2 and HCT116+ch3 cells do not di
significantly in their total cellular uptake of Pt with accumulat
being 303 ± 58 (s.d.) fmol µg–1 protein and 289 ± 82 (s.d.) fmol
µg–1 protein in the two cell lines respectively (P = 0.75, two-tailed
t-test, n = 4) (Aebi et al, 1997). Thus, resistance to cisplatin in
HCT116+ch2 cells is not due to reduced drug uptake. Likew
the extent of DNA platination was similar in the two cell lin
(Aebi et al, 1997).

In order to determine whether loss of MMR altered the kine
of adduct removal from the whole genome, the Pt removal 
were measured in the HCT116 cell lines at 0, 6, 20 and 28 h
the end of a 1 h exposure to 40 and 80µM cisplatin. As shown in
Table 1, HCT116 cells and their chromosome-compleme
sublines demonstrated a rapid decrease in adduct content ov
first 6 h following exposure to both cisplatin concentrations, 
the kinetics were similar to those previously reported for cisp
adduct removal (Dijt et al, 1988; Eastman and Schulte, 1
Jones et al, 1991). However, there was no significant differ
between MMR-proficient and -deficient cells in the rate 
platinum removal over time.

Effect of MMR on plasmid reactivation

The effect of loss of MMR on the function of a gene inactivated
cisplatin adducts was examined by comparing the ability of MM
proficient and -deficient cells to express luciferase from a p
nated plasmid-transfected into the cell. Figure 1 shows 
luciferase activity appeared in both the MMR-proficient and -d
cient HCT116 sublines with the same kinetics when they w
transfected with non-platinated vector. Maximum lucifer
activity was reached at 36 and 20 h in HCT116 and HEC59 c
respectively. When the platinated vector was transfected into
MMR-deficient HCT116+ch2 subline, there was little impairm
in the generation of luciferase activity (Figure 1A). Howev
when the same platinated vector was transfected into the M
proficient HCT116+ch3 subline, both the rate of appearance o
luciferase activity and the maximal activity attained over 
whole observation period were reduced (Figure 1B). A sim
pattern was observed in the HEC59 system (Figure 2). The kin
© Cancer Research Campaign 1999
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of appearance of luciferase activity was the same in the HE
and HEC59+ch2 cells in the absence of vector platinat
However, the MMR-proficient HEC59+ch2 cells were le
capable of generating luciferase activity from the platinated ve
than the MMR-deficient HEC59 cells.

Figure 3 shows that the efficiency of reactivation, calcula
from all three sets of experiments as the ratio of the area unde
curve of luciferase activity versus time for the platinated plas
divided by that for the unplatinated plasmid in each cell line, 
consistently lower in the MMR-proficient cells than in the
MMR-deficient counterparts in both cell systems. The MM
proficient HCT116+ch3 cells were 2.1 ± 0.7-fold (± s.d., n = 3)
less efficient at expressing luciferase from the platinated ve
than their MMR-deficient HCT116+ch2 counterparts (P = 0.0355
by paired t-test for the comparison of MMR-proficient v
British Journal of Cancer (1999) 80(5/6), 699–704
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Figure 2 Luciferase activity as a function of time in HEC59 cells. Luciferase
activity was determined following transfection of pKEX-2-XR-Luc in MMR-
deficient HEC59 cells (A) and MMR-proficient HEC59+ch2 cells (B). (●),
non-platinated vector; (●●), platinated vector. Luciferase activity is expressed
as percent of maximum luciferase activity generated by the unplatinated
vector at 20 h. Data points represent the mean ± s.e.m. of three experiments
each performed with triplicate transfections for every time point

Figure 3 Efficiency of the generation of luciferase activity in MMR-deficient
and -proficient cells. The efficiency of plasmid reactivation is expressed as
the ratio of the area under the curve of luciferase activity over time for the
platinated vector divided by the area under the curve for the unplatinated
vector in the same cells. Bars indicate mean ± s.e.m. (n = 3). MMR-proficient
HCT116+ch3 cells were less efficient at expressing luciferase from the
platinated vector compared to MMR-deficient HCT116+ch2 cells (P = 0.0355
by paired t-test). Similarly, MMR-proficient HEC59+ch3 cells were less
efficient at expressing luciferase compared to MMR-deficient HEC59 cells
(P = 0.002 by paired t-test)
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-deficient HCT116 cells). In the HEC59 system, the MMR-p
ficient HEC59+ch2 cells were 1.9 ± 0.6-fold (± s.d, n = 3) less
efficient at expressing luciferase activity compared to MM
deficient HEC59 cells (P = 0.002 by paired t-test for the
comparison of MMR-proficient vs-deficient HEC59 cells).

DISCUSSION

The mechanism by which loss of MMR causes resistanc
cisplatin is unknown. A current hypothesis is that MMR prote
serve as a detector for DNA damage caused by cisplatin, as
do for damage produced by methylating agents or the incorp
tion of 6-thioguanine, and that MMR proteins are involved in 
generation of a pro-apoptotic signal since loss of MMR in ca
British Journal of Cancer (1999) 80(5/6), 699–704
-

-

to
s
ey
a-

r

cells results in increased resistance to cisplatin (Branch et al, 1
Kat et al, 1993; Aebi et al, 1996; Drummond et al, 1996; Fink e
1996). It is, however, not known whether simple assembly of 
or all of the MMR protein complex on the platinated DNA is su
cient to generate such a signal or whether the apoptosis is act
by additional damage done to the DNA resulting from attem
made by the MMR system to remove the cisplatin adduct. A fu
cycle of excision and resynthesis has been suggested as the
for the cytotoxicity of agents such as MNNG and 6-thioguan
that produce damage recognized by the MMR system (Karran
Bignami, 1994).

Impaired cellular accumulation of cisplatin is a comm
mechanism of resistance in the majority of cell lines selected
resistance to this drug (Gately and Howell, 1993). Howe
MMR-deficient HCT116+ch2 and -proficient HCT116+ch3 ce
accumulated the same amount of Pt and had the same ext
DNA platination after a 1 h exposure to cisplatin. The fact that
nucleotide excision repair system proteins can both recognize
remove cisplatin adducts begs the question of whether the M
system is similarly able to remove cisplatin adducts as well a
detect them. The observation that the kinetics of cisplatin ad
removal appeared to be equivalent in the MMR-proficient 
© Cancer Research Campaign 1999
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Loss of DNA mismatch repair enhances reactivation of cisplatin-damaged DNA 703
-deficient HCT116 cells suggests that this is not the case. T
the difference in sensitivity to cisplatin cannot be explained
differential drug uptake or differential cytosolic detoxification 
cisplatin prior to its reaction with the DNA, and the mechanism
resistance does not alter the rate of adduct removal from the
genome. One cannot conclude, however, that the MMR sy
plays no role in the actual removal of cisplatin adducts from
DNA since it has been established that cisplatin adducts are p
entially removed from transcribed genes as compared to the
genome, and that the coding strand is repaired preferen
compared to the non-coding strand (Jones et al, 1991; May 
1993). Thus, measurement of total genomic platination may 
important functional differences in the ability of MMR-deficie
and -proficient cells to successfully express genes damage
platination, since assays of total genomic platination do 
measure the final completion of the repair process.

The reporter gene reactivation assay has several advan
over total genome Pt measurement as an assay of overall r
First, generation of luciferase activity reflects repair activ
directed to a transcribed gene. Second, the assay measur
ability of the repair systems to complete all steps in the pro
and actually generate a functional protein. Third, the reporter 
reactivation assay has previously been validated for cisp
adduct repair (Sheibani et al, 1989; Jennerwein et al, 1991; P
et al, 1991; Ali-Osman et al, 1994). One limitation of this as
system is that it reflects repair processes occurring in an extra
mosomal segment of DNA rather than in an endogenous gene

The finding that MMR proficiency resulted in impaired expre
sion of luciferase from the platinated vector was unexpected.
fact that the same result was obtained in two independent
types, each rendered MMR-deficient by the loss of a diffe
MMR protein, lends credence to the observation. Several exp
tions are possible. First, successful binding of the MMR comp
of proteins to the cisplatin adduct may sterically hinder the ab
of nucleotide excision repair proteins to access and proces
lesion, as has previously been suggested (Mello et al, 1996)
ability of the nucleotide excision repair system to remove cispl
adducts has been well-documented, as has the fact that a
removal by this system is a major determinant of cellular se
tivity to cisplatin (reviewed in Zamble and Lippard, 1995). Th
steric hindrance by the MMR proteins would be expected to s
repair by the nucleotide excision repair system and reduce ge
tion of luciferase activity. Such a mechanism has been propos
explain the ability of another group of cisplatin adduct-bind
proteins, the HMG proteins, to interfere with adduct repair (Hu
et al, 1994). However, in a recent study, (Mu et al, 1997) repo
that addition of the hMSH2/hMSH6 heterodimer to a cell-f
excision repair system did not impair the ability of the nucleo
excision repair system to remove cisplatin adducts from DNA. 
assay system utilized by these investigators measured onl
excision nuclease activity in the absence of transcription, 
the possibility of a negative interaction between the MMR 
nucleotide excision repair systems in assays including trans
tion needs further investigation.

A second possibility is that, following recognition, the MM
system processes the adduct in some way that impairs tran
tion, perhaps by damaging the template strand as has 
suggested for the 6-thioguanine and MNNG adducts (Karran
Bignami, 1994). The MMR system may incise the strand oppo
the adduct resulting, through the action of an exonuclease, i
creation of a gap whose filling is blocked by the persistence o
© Cancer Research Campaign 1999
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adduct. Under circumstances where the gapped strand 
template strand this would be expected to diminish transcript

Finally, a third possible explanation is that the MMR prote
normally prevent RNA polymerase II from bypassing the cisp
adduct, and that when the MMR system is disabled there
higher probability of successful bypass transcript
Transcriptional bypass of Pt adducts by RNA polymerase II
similar reporter plasmid has previously been described, alb
low levels for cisplatin (Mello et al, 1995). Interestingly, 
cisplatin-resistant human ovarian carcinoma cells A2780/C
have increased DNA replication bypass of cisplatin add
compared to the parental A2780 cells (Vaisman et al, 1997)
they have previously been reported to lack hMLH1 expression
MMR function (Drummond et al, 1996). Additionally, t
A2780/CP70 cells exhibit increased ability to reactivate a rep
gene (Parker et al, 1991). Further, defects in hMSH6 are asso
with increased resistance and enhanced replicative bypa
cisplatin (Vaisman et al, 1998). These findings suggest tha
hMutSα heterodimer consisting of hMSH2 and hMSH6 part
pates in the recognition of cisplatin adducts and that the lo
hMutSα results in resistance to cisplatin by allowing enhan
replicative bypass of cisplatin adducts. Although transcripti
bypass is likely to generate mutant transcripts, a significant 
tion of these may carry silent mutations that still permit 
synthesis of functional proteins. Thus, successful transcriptio
damaged genes could explain the reduced toxicity of cisp
adducts in cells lacking MMR.

Independent of the mechanism, it is of interest that the lo
MMR activity has an effect of similar magnitude on both the 
ciency of luciferase expression and the level of cellular resis
to cisplatin. This is consistent with the hypothesis that 
enhanced reactivation ability observed in the MMR-deficient c
is mechanistically linked to determinants of cellular resistance
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