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Risk subtyping and prognostic assessment of
prostate cancer based on consensus genes

Jialin Meng® 23>, Yu Guan'®, Bijun Wang', Lei Chen', Junyi Chen!, Meng Zhang® 234 &

Chaozhao Liang® 23"

Prostate cancer (PCa) is the most frequent malignancy in male urogenital system around
worldwide. We performed molecular subtyping and prognostic assessment based on con-
sensus genes in patients with PCa. Five cohorts containing 1,046 PCa patients with RNA
expression profiles and recorded clinical follow-up information were included. Univariate,
multivariate Cox regression analysis and least absolute shrinkage and selection operator
(LASSO) Cox regression were used to select prognostic genes and establish the signature.
Immunohistochemistry staining, cell proliferation, migration and invasion assays were used to
assess the biological functions of key genes. Thirty-nine intersecting consensus prognostic
genes from five independent cohorts were identified. Subsequently, an eleven-consensus-
gene classifier was established. In addition, multivariate Cox regression analyses showed that
the classifier served as an independent indicator of recurrence-free survival in three of the
five cohorts. Combined receiver operating characteristic (ROC) analysis achieved synthe-
sized effects by combining the classifier with clinicopathological features in four of five
cohorts. SRD5A?2 inhibits cell proliferation, while ITGA11 promotes cell migration and inva-
sion, possibly through the PI3K/AKT signaling pathway. To conclude, we established and
validated an eleven-consensus-gene classifier, which may add prognostic value to the cur-
rently available staging system.
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male urogenital system around worldwidel-2. Although the

majority of localized PCa patients can be cured by surgery
and/or radiation therapy, some PCa patients still face the severe
scenario of progressing to castration-resistant PCa (CRPC)34. In
contrast, some patients have indolent tumors, which rarely pro-
gress to an advanced stage or influence their quality of life. Thus,
it is crucial to recognize the potential risk of recurrence for
patients before therapy.

The Gleason score is a widely used feature to reflect the degree
of malignancy for PCa®>3. Along with the published studies,
patients with Gleason score <6 rarely suffer threat of death, while
those patients with Gleason score >8 frequently confront the fact
of tumor progression®. Although histological examination easily
discriminates tumors with Gleason score <6 or >8, it is still dif-
ficult to verify patients with an intermediate stage (Gleason score
3 +4 or 4+ 3)19, Commonly, PCa patients with Gleason score of
3 4 4 are less aggressive than those with Gleason score of 4 + 3.
However, sampling error, bias among separate pathologists, and
the subjectivity of assessments are clear confounding factors for
misleading results!!. Therefore, it is urgent to develop a universal
molecular classifier to recognize patients with a high risk of poor
prognosis.

Since the early 2000s, gene-expression profiles have been
applied to classify early-stage tumor patients into distinct
subtypes based on molecular markers, and these subtypes of
patients were correlated with diverse outcomes or clin-
icopathological features. Furthermore, studies also indicated
that the gene-expression panel test could guide tailored treat-
ment decisions for doctors, promoting the development of
personalized medicine!2. Recently, increasing evidence has
shown that gene-expression-based classifiers may be useful for
disease classification independent of the available prognostic
factors, serving as clinical implementations. Although the
gene-expression classifier could be constructed and validated in
the publicly released dataset or even a single-center study, there
remains a gap invalidating the identified classifier in large
cohorts.

We aimed to assess the usage of consensus recurrence-free
survival (RES)-associated genes derived from five independent
cohorts to generate molecular subtyping with different clinical
outcomes for PCa patients.

Prostate cancer (PCa) is the most frequent malignancy in

Results

Construction of the eleven-consensus-gene classifier. In the
current study, we enrolled a total of 1046 PCa patients from the
MSKCC (n = 140), TCGA-PRAD (n = 488), GSE116918 (n = 223),
GSE70769 (n=285), and GSE70768 (n=109) datasets. The clin-
icopathological features of all the PCa patients are listed in Table 1.
We overlapped the significant genes (P <0.05) generated by uni-
variate Cox regression analyses in five independent cohorts and
found that there were 39-consensus candidates and significantly
associated with the RFS of PCa patients in all five datasets (Fig. 1a,
and Supplementary Table 1). The expression landscape of these 39
genes in the MSKCC cohort is shown in Fig. 1b. To obtain a more
stable and significant consensus-gene-based classifier, we employed
LASSO Cox analysis based on the MSKCC dataset. Finally, 11 RFS-
related consensus genes were selected, including MYBPCI, DPP4,
UBE2]1, KIF13B, SRD5A2, OGN, NOX4, ITGA11, COL1IA1, STMNI,
and CDKN3 (Fig. 1c, d). Then, the risk score of each patient was
calculated by the prognostic model: 0.541407161 * CDKN3 +
0.986301077 * COLIAI + 0.055793216 * DPP4+ 1.204285151 *
ITGA11 — 0.329370122 * KIF13B — 0.353092775 * MYBPCI +
0228495902 * NOX4 — 0.374366498 * OGN — 0.711376668 *
SRD5A2 + 0.492742742 * STMNI + 0.417671671 * UBE2J1.

The median risk score was set as the cutoff value in each
cohort, and these patients with lower-risk scores were assigned to
the low-risk subgroup, while others were classified into the
high-risk subgroup (Supplementary Data 1). Furthermore, we
correlated the expression of the 11 genes with clinicopathological
features, and the results indicated that UBE2J1, SRD5A2, OGN,
MYBPCI, KIF13B, and DPP4 were negatively correlated with
Gleason score, PSA level, and pathological tumor stage, while
opposite results were obtained for the STMNI, NOX4, ITGA1l,
COLI1AI, and CDKN3 genes (Fig. le).

Prognostic assessment of the eleven-consensus-gene classifier
in five cohorts. Referring to the subgroups, in the training
MSKCC cohort, 70 patients were divided into the high-risk
group, and the other 70 patients belonged to the low-risk group
(Fig. 2a). Patients in the high-risk subgroup showed an unfa-
vorable prognosis (log-rank P <0.001, Fig. 2f), with AUC values
of 0.908 at 1 year, 0.898 at 3 years, and 0.857 at 5 years (Fig. 2k).
The predicting classifier also applied well in four external data-
sets. The K-M curves showed similar RFS outcomes in
the GSE116918 (log-rank, P <0.001), GSE70768 (log-rank,
P =0.049), GSE70769 (log-rank, P <0.001), and TCGA-PRAD
cohorts (log-rank, P<0.001) (Fig. 2b-e, g-j). The classifier
showed moderate predictive accuracy in all four validation
cohorts (AUC values of 0.936, 0.735, and 0.705 at 1, 3, and 5 years
in the GSE116918 cohort; AUC values of 0.816, 0.706, and 0.554
at 1, 3, and 5 years in the GSE70768 cohort; AUC values of 0.858,
0.806, and 0.745 at 1, 3, and 5 years in the GSE70769 cohort;
AUC values of 0.717, 0.711, and 0.641 at 1, 3, and 5 years in the
TCGA-PRAD cohort, Fig. 21-0). We also validated the prognostic
value of the eleven-consensus-gene classifier in the external
GSE46602 cohort, and we revealed that patients with higher-risk
score had a poor prognosis (P=0.033, HR=3.55 95%
CI=1.108-11.385), with a prognostic AUC value of 0.760
(Supplementary Fig. 1).

To further investigate the clinical application value of the
eleven-consensus-gene classifier, we performed the K-M analyses
in different clinicopathological subgroups. The signature precisely
subclassified the high- and low-risk groups of PCa patients into
different subgroups with an adequate number of samples but
failed in some conditions, potentially attributing to the small
sample size (Supplementary Fig. 2). For example, in the MSKCC
cohort, which comprised 140 PCa cases, the results suggested that
the classifier significantly discriminated the high- and low-risk
subgroups in separate age (260 vs. <60 years old), PSA level (>10
vs. <10 ng/dl), pathological tumor stage (T3 + T4 vs. T1 + T2),
and Gleason score (>7 vs. <7) subgroups (all, log-rank P < 0.05).
For the GSE70769 cohort, which comprised 85 PCa cases, we also
revealed that the classifier significantly discriminated the high-
and low-risk subgroups of the different PSA (>10 vs. <10), tumor
stage (T3+T4 vs. T1+4T2) subgroups (log-rank P <0.05),
Gleason score (>7 vs. <7) subgroups, and surgical margin
(negative vs. positive) (all, log-rank P <0.05). Further clinical
trial is warranted to verify our findings.

Notably, the clinical outcomes of PCa patients with Gleason
score 3+4 and 443 were different. It is necessary to
distinguish these two subgroups with not only pathological
results. We investigated the value of this classifier in
distinguishing patients with Gleason score 3+ 4 and 4+ 3
subgroups in the MSKCC, TCGA-PRAD, GSE70768, and
GSE70769 datasets, while GSE116918 missed the information
of primary and secondary Gleason score was removed from the
analysis. We observed that patients with a Gleason score of
443 had a higher-risk score than patients with a Gleason
score of 3+ 4 (MSKCC, P=0.092; TCGA-PRAD, P<0.001;
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Table 1 Summary of the clinicopathological parameters of five independent prostate cancer datasets.
Items MSKCC (n =140) TCGA-PRAD (n=488) GSE70768 (n =109) GSE70769 (n = 85) GSE116918 (n = 223)
Age
<60 87 219 42 — 26
>60 53 269 67 - 197
Pathology T grade
T +T2 86 187 34 46 127
T3+ T4 54 301 75 39 96
Gleason?
5 — - — 2 —
6 41 45 17 17 39
7 76 246 83 53 88
8 n 63 8 5 47
9 10 137 1 7 49
10 — 3 — 1 —
ISUP groupb
1 41 42 17 19 -
2 53 143 62 34 —
3 23 100 21 19 —
4 n 63 8 5 -
5 10 140 1 8 -
EAU group®
Low 38 42 n 14 —
Middle 73 226 70 50 -
High 27 220 27 21 —
PSAd
>10 ng/ml 24 15 26 26 —
<10 ng/ml na 416 82 59 -
PCa type
Primary 131 488 109 85 223
Metastasis 9 0 0 0 0
Recurrence rate 25.71% 19.06% 17.43% 48.24% 22.87%
a, b, cGleason score information is missing in two patients from MSKCC cohort.
dPSA data are missing in two patients from MSKCC cohort, in 57 patients from TCGA-PRAD cohort, in one patient from GSE70768 cohort.

GSE70768, P =0.006; GSE70769, P =0.007). In addition, the
risk score distinguished the 3 + 4/4 + 3 subgroups with good
accuracy (MSKCC, AUC = 0.636; TCGA-PRAD, AUC = 0.718;
GSE70768, AUC =0.712; GSE70769, AUC =0.731). As con-
firmed by Fisher’s extract test, we found that more patients
with high risk belonged to the Gleason score 4 + 3 subgroup
(MSKCC, P=0.079; TCGA-PRAD, P<0.001; GSE70768,
P =0.024; GSE70769, P =0.010) (Supplementary Fig. 3).

Analysis results of multivariate Cox regression and combined
ROC. To determine the independence of the eleven-consensus-gene
classifier in each cohort, we performed multivariate Cox regression
analyses. Our results showed that for the cohorts whose recurrence
rate >15%, the classifier served as an independent indicator for REFS
(MSKCC cohort: HR=544, 95% CIL 1.83-16.16, P=0.002;
GSE116918 cohort: HR=3.64, 95% CIL. 1.82-7.29, P<0.001;
GSE70769 cohort: HR = 2.53, 95% CI: 1.22-5.24, P =0.013; TCGA-
PRAD cohort: HR = 1.39, 95% CI: 0.76-2.52, P = 0.282; GSE70768
cohort: HR =0.818, 95% CIL: 0.29-2.28, P=0.701; Fig. 3a—c, and
Supplementary Fig. 4a, b).

We also compared the prognostic value of eleven-consensus-
gene classifier, ISUP, EAU risk group by the ROC curve, it is
gratifying that the eleven-consensus-gene classifier showed a
comparable prognostic value to ISUP, EAU risk group in MSKCC
cohort (AUC value, classifier: 0.879 vs. ISUP: 0.837 vs. EAU:
0.814; Comparison P-value, classifier vs. ISUP: P=0.214,
classifier vs. EAU: P =0.085, Fig. 3d), GSE70769 cohort (AUC
value, classifier: 0.754 vs. ISUP: 0.789 vs. EAU: 0.718; Comparison
P-value, classifier vs. ISUP: P=0.548, classifier vs. EAU:
P =0.567, Fig. 3f), TCGA-PRAD cohort (AUC value, classifier:

0.720 vs. ISUP: 0.732 vs. EAU: 0.690; Comparison P-value,
classifier vs. ISUP: P=0.684, classifier vs. EAU: P=0.423,
Supplementary Fig. 4c), GSE70768 cohort (AUC value, classifier:
0.721 vs. ISUP: 0.721 vs. EAU: 0.591; Comparison P-value,
classifier vs. ISUP: P=0.997, classifier vs. EAU: P=0.052,
Supplementary Fig. 4c), and a preferable prognostic value in
GSE116918 cohort (AUC value, classifier: 0.703vs. ISUP: 0.594 vs.
EAU: 0.596; Comparison P-value, classifier vs. ISUP: P = 0.046,
classifier vs. EAU: P=0.017, Fig. 3e). Taken together, the eleven-
consensus-gene classifier showed a comparable prognostic value
with ISUP and EAU risk group.

IHC validation the protein of SRD5A2 and ITGA11. We chose
SRD5A2 and ITGAI11 for further validation, due to the high
weight of these two genes in the risk score formula, 1.20428 for
ITGAII and 0.71137 for SRD5A2. What’s more, several studies
reported the association between SRD5A2 polymorphism and
PCa risk, while rarely study reported the function of ITGA11 in
PCa, therefore, we final chose these two genes for experimental
validation. To address and confirm the associations of SRD5A2
and ITGAI1 protein levels with clinicopathological features, we
used THC assay on a prostate cancer tissue array, which contains
tumor tissues from 42 patients. The standard definition of the
SRD5A2 protein level is described in the Methods section. Then,
we calculated the staining density of each tissue. Tissues with
score equal to or higher than 3 were regarded as positive, while
those with score less than 3 were negative.

We observed decreased protein expression of SRD5A2 in
advanced tumor stages (Gleason<7 vs. Gleason >7, P=0.031,
Stage I+ 1II vs. Stage III+1IV, P=0.148, Gleason 3+ 4 vs.
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Fig. 1 Recognizing of the consensus recurrence-free survival-related genes and establishing the classifier. a Venn diagram showing the 39 overlapping
recurrence-free survival (RFS)-associated genes with a P-value < 0.05 in the five independent datasets. b Heatmap showing the expression landscape of
the 39 RFS-related genes in the MSKCC dataset; blanks/gaps indicate missing values. ¢ LASSO analysis revealed the coefficients in the model at varying
levels of penalization plotted against the log (lambda) sequence. d Partial likelihood deviance was plotted versus log (lambda). e Correlation analyses
between the expression of the eleven consensus genes and clinicopathological features in the MSKCC, GSE70768, TCGA-PRAD, GSE116918, and
GSE70769 cohorts. *P<0.05, **P<0.01.
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Fig. 2 The prognostic value of the eleven-consensus-gene classifier. a-e The plots display the risk classification (upper), corresponding to the distribution
of real recurrent samples (middle), and the heatmap displays the expression of the 11 candidates in distinct risk subgroups (lower) in five cohorts.

f-j Kaplan-Meier plots showed the distinguishing value of favorable and poor recurrence-free survival in five cohorts. k-0 ROC curves showed the
predictive accuracy of the eleven-consensus-gene-based classifier for RFS prognosis in five cohorts.

Gleason 4 + 3, P=10.035, Fig. 4a). Moreover, with the help of
Fisher’s extract test, we investigated the different distributions of
SRD5A2 expression (strong positive, weak positive, or negative)
in different clinicopathological subgroups. We revealed a negative
association of SRD5A2 and tumor progression, reflected by the
Gleason score (P=0.013) and pathological tumor stage
(P =0.047) (Table 2). Regarding ITGA11, we observed elevated
protein expression in the advanced stage compared with the early
stage (Gleason <7 vs. Gleason > 7, P = 0.067, Stage I + II vs. Stage
I+ 1V, P=0.014, Gleason 3 + 4 vs. Gleason 4 + 3, P=0.028,
Fig. 4b). Fisher’s extract test of the categorical variables illustrated
similar results. These patients whose Gleason score was higher
than 7 or who were in tumor stages III and IV showed strong
positive staining of ITGA11 (Gleason score, P = 0.049, patholo-
gical tumor stage, P = 0.022, Table 3). All these results indicated
that the SRD5A2 protein is negatively associated with the
progression of PCa, while the ITGAIl protein is positively
associated with the advanced stage.

Knockdown of SRD5A2 and ITGA11 impacts prostate cancer
cell behaviors. After knocking down the expression of SRD5A2
(P <0.05, Supplementary Fig. 5), we found that cell proliferation
was significantly increased, as determined by MTT assay and
colony formation assays, in C4-2 and PC-3 cells (all P<0.05,
Fig. 5a, b). Since the functional role of SRD5A2 in regulating PCa
cell migration and invasion has been investigated by Suruchi
Aggarwal et al.!3, we only focused on the proliferation effects
here. In contrast, we found that silencing ITGA11 expression
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decreased the migration and invasion of C4-2 and PC-3 cells but
not cell proliferation (all P < 0.05, Fig. 5¢, d). These results con-
firm the tumor-suppressive role and oncogenic role of SRD5A2
and ITGAL11, respectively.

Exploring the underlying mechanisms of how ITGAI1l reg-
ulates PCa progression. Many studies have already demonstrated
the mechanisms of how the selected 11 genes influence the pro-
gression of PCa, while few studies have focused on the role of
ITGA11. We conducted Pearson correlation analyses to identify
the highly coexpressed genes in each cohort and overlapped these
genes derived from all five cohorts. Then, KEGG analysis was
used to enrich the significant signaling pathways. We found that
ITGA11 might be involved in the regulation of calcium signaling,
Rapl signaling, Ras signaling, and PI3K/Akt signaling pathways
(Fig. 6a). Moreover, we collected two gene sets that could reflect
the activation status of PI3K/AKT signaling and calculated the
NES score of each patient by ssGSEA. We observed that the
elevated expression of ITGA1l was linked with the increasing
NES score of the HALLMARK PI3K/AKT/mTOR signaling gene
set (P <0.05, r =0.43, Fig. 6b) and the REACTOME PI3K/AKT
activation gene set (P <0.05, r =0.34, Fig. 6¢). In addition, we
validated the function of ITGA11 in the activation of PI3K/AKT
signaling in vitro. After knocking down the expression of
ITGA1l, we found that Ser473 phosphorylated-AKT1/2/3 was
significantly decreased instead of total AKT1/2/3 (Fig. 6d, e),
indicating that ITGA11 promotes the malignant phenotypes of
PCa by the activating of PI3K/AKT signaling.
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Comparison between the eleven-consensus-gene classifier and
proposed signatures. We calculated the risk score of the current
classifier, Zhang et al.’s score, Liu et al.’s score and CCP score in
the MSKCC, GSE70768, GSE70769, GSE116918, GSE46602, and
TCGA-PRAD cohorts, respectively. It is gratifying that we
observed that the eleven-consensus-gene classifier showed better
prognostic value than the other three signatures in the MSKCC,
GSE70768, GSE70769, and GSE46602 cohorts (Fig. 7a). The
eleven-consensus-gene classifier showed comparable prediction
efficiency with other signatures in the GSE116918 cohort and
TCGA-PRAD cohort (Fig. 7a).

Discussion

The interpatient heterogeneity in PCa is well recognized!4-16.
However, the molecular stratification of PCa based on predictive
biomarkers to guide treatment selection has not yet been applied
in the clinic. In our study, we analyzed five datasets derived from
the GEO and TCGA databases to generate an eleven-consensus-
gene classifier (Fig. 7b). We first employed univariate Cox
regression analyses and identified 39 candidate genes that are
closely related to the RFS of PCa patients in all five datasets. The
RFS predicting classifier was established by the LASSO Cox
regression analysis based MSKCC dataset. The classifier showed
satisfying molecular subtyping accuracy determined by the log-
rank, K-M, and ROC analyses in both the training and four
external validation cohorts. Furthermore, the multivariate ana-
lyses suggested that the classifier served as an independent indi-
cator of RFS in a set of cohorts. Notably, the combined ROC
curve, which synthesized the classifier with clinicopathological

6

features, added prognostic value to the currently available staging
system. We conducted Pearson correlation analyses to determine
the highly coexpressed genes in each cohort and overlapped these
genes derived from all five cohorts. Then, we employed KEGG
pathway analyses to reveal the underlying mechanisms of these
critical candidates influencing tumor progression. For the eleven
candidates, Yu et al.1” reported that CDKN3 downregulated the
expression levels of cell-cycle- and DNA-replication-related
proteins. It has also been reported that abundant miR-92a-1-5p
from PCa exosomes can downregulate COL1Al and thus pro-
mote osteoclast differentiation and inhibit osteoblast genesis!S.
Pan et al.!” revealed the higher level of DPP4 in malignant
prostate tissue than that in benign prostate tissue, its expression
correlated with PSA and tumor stage. Kamata et al.20 reported
that zinc finger mutation of PARP7 can result in the loss of
PARP7, and further impact the enhancement of AR-dependent
transcription of the MYBPCl gene. Wu et al?! found that
silencing of NOX4 can contribute to the decreasing of lactate
production, glucose uptake, ATP production, and cell prolifera-
tion but increasing the apoptosis. In aggressive prostate cancers,
the oncoprotein STMNI1 is often overexpressed, Chakravarthi
et al?? reported that CtBPl-regulated miR-34a modulates
STMNI1 expression and involved in the progression of prostate
cancer via the regulation of GDF15. Thus, we predicted the
biological function of ITGA11 through the bioinformatic method
indicated above, and the results indicated that ITGAII might be
involved in the regulation of calcium signaling, Rapl signaling,
Ras signaling, and PI3K-Akt signaling pathway activity. Con-
sistently, studies also reported that SRD5A2 regulates cell
migration and invasion by indirectly regulating the ERK/MAPK
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Fig. 4 Immunohistochemistry validation of SRD5A2 and ITGA11 expression in PCa tumor tissues. a Representative pictures showing the different
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and pathological tumor stage subgroups. b Representative pictures showing the different protein levels of ITGA11 in prostate cancer patients with different
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Table 2 Association between SRD5A2 protein level and pathological features in tissue array.

I-11
-1v

24 (66.67%)
2 (33.33%)

Parameter IHC results for SRD5A2
Strong positive (n, %) Weak positive (n, %) Negative (n, %) P-value
Age 0.357
<60 4 (66.67%) 1(16.67%) 1(16.67%)
>60 22 (61.11%) 12 (33.33%) 2 (5.56%)
Envelope invasion 0.304
No 24 (64.86%) 11 (29.73%) 2 (5.41%)
Yes 2 (40.00%) 2 (40.00%) 1(20.00%)
Seminal vesicle invasion 0.395
No 26 (63.41%) 12 (29.27%) 3 (7.32%)
Yes 0 (0.00%) 1 (100.00%) 0 (0.00%)
Gleason score 0.013*
<7 25 (67.57%) 11 (29.73%) 1(2.70%)
>7 1(20.00%) 2 (40.00%) 2 (40.00%)
Pathology stage 0.047*

11 (30.56%)
2 (33.33%)

1(2.78%)
2 (33.33%)

*P<0.05.

pathway!3. Ntais et al.23 also reported that the A49T and TA
repeat polymorphisms of SRD5A2 can increase the PCa sus-
ceptibility to human beings, elevating the important function of
SRD5A2 in PCa. We further investigated the functional role of
these two candidates in regulating cancer cell fates, as well as the
protein expression in clinical samples. Our results confirm the
tumor-suppressive role of SRD5A2 and the oncogenic role of
ITGA1l in PCa. Next, we validated the pathway enrichment
results based on coexpressed genes by western blot assay. Our
results suggested that silencing ITGA11 suppresses the activity of

AKT signaling, indicating that ITGA11 promotes PCa cell pro-
gression potentially through activating AKT signaling. Overall, we
successfully established a solid prognosis prediction system.

In recent days, several prognostic classifiers have been devel-
oped to predict the outcome of PCa patients based on clinical
features, gene genetics, or epigenetics. Zhao et al.2* reported that
PD-L2 is a prognostic biomarker for PCa based on patients, and
they also reported that the infiltration of T cells and macrophages
is increased in the poor outcome group, which is also consistent
with our work that M2 macrophages are linked with unfavorable
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Table 3 Association between ITGA11 protein level and pathological features in tissue microarray.

I-11
-1v

16 (44.44%)
6 (100.00%)

Parameter IHC results for ITGA11
Strong positive (n, %) Weak positive (n, %) Negative (n, %) P-value
Age 0.461
<60 2 (33.33%) 3 (50.00%) 1(16.67%)
>60 20 (55.56%) 12 (33.33%) 4 (11.11%)
Envelope invasion 0.667
No 19 (51.35%) 14 (37.84%) 4 (10.81%)
Yes 3 (60.00%) 1(20.00%) 1(20.00%)
Seminal vesicle invasion 1.000
No 21 (51.22%) 15 (36.59%) 5 (12.20%)
Yes 1 (100.00%) 0 (0.00%) 0 (0.00%)
Gleason score 0.049*
<7 17 (45.95%) 20 (54.05%)
>7 5 (100.00%) 0 (0.00%)
Pathology stage 0.022*

20 (55.56%)
0 (0.00%)

*P<0.05.

prognosis, while the combination of immunocytes and clinical
features could distinguish the different ends of recurrence?.
Bhargava et al?® illustrated an African-American specifically
automated stromal classifier, which has the potential to sub-
stantially improve the accuracy of prognosis and risk stratifica-
tion. Yang et al2’” established a 28-hypoxia-related-gene
prognostic classifier for localized PCa, which could predict bio-
chemical recurrence and metastasis events. A Gleason score of
4+ 3 is resulted in almost 3-fold metastasis risk at diagnosis
compared with a Gleason score of 3 + 4, although the overall
incidence is low?32%, In our study, we investigated the value of
this classifier in distinguishing patients with Gleason score 3 + 4
and 4 + 3 subgroups in the MSKCC, TCGA-PRAD, GSE70768,
and GSE70769 datasets. We observed that patients with Gleason
score 4+ 3 had a higher-risk score than patients with Gleason
score 3 + 4. In addition, the risk score distinguished the 3 + 4/
4+ 3 subgroups with good accuracy, a result consistent with
Fisher’s extract test. Another limitation of these studies was that
their findings were not validated in two more independent
cohorts, and the potential mechanisms of how these markers
influence tumor progression were not predicted or investigated.
Herein, we established an eleven-consensus-gene classifier and
validated its usage in five independent cohorts. We also predicted
the potential mechanisms through bioinformatic methods. Thus,
our findings are stable and convincing.

The advantages of the current study are summarized and
presented as follows. First, we identified 39-consensus prognostic
genes from five independent cohorts, and with the help of LASSO
Cox regression analysis, we chose the eleven most suitable can-
didates to establish the RFS prediction classifier. The classifier
showed satisfying molecular prognostic subtyping accuracy
determined by the log-rank, K-M, and ROC analyses in all five
cohorts. Second, we further confirmed that the eleven-consensus-
gene classifier serves as an independent RFS predictor through
multiple platforms and provides a novel method for the prognosis
predition. Third, the eleven-consensus-gene classifier is not
dependent on the Gleason score as compared with ISUP grading
group and EAU risk group, therefore the prediction accuracy will
not be impacted by the work experience of pathologist. Forth, we
predicted the potential mechanisms of how these critical candi-
dates influence the progression of PCa, which would benefit the
development of targeted drugs. However, the lack of survival
analysis in our samples and the lack of systematic functional

studies to show the function and mechanisms of these consensus
genes are the major limitations of the current study.

Our study successfully classified PCa patients with different
prognostic outcomes under a consensus ensemble framework
using a large clinical cohort of 1046 cases, ending up with an
eleven-consensus-gene classifier. The classifier shows comparable
prognostic value with ISUP Gleason group and EAU risk group,
and also presented a preferable prognostic value after combined
with other major clinical features. Comparing with whole-
transcriptome profile, target gene profiling panel of small num-
ber of genes is wildly applied in the clinical with the high cost-
performance ratio. Therefore, the eleven-consensus-gene classifier
is promising to be applicable in clinical setting to propel the
prognosis prediction for PCa patients.

Methods

Data preparation and processing. We searched the Gene Expression Omnibus
(GEO) to enroll eligible datasets that met the following criteria: (1) PCa cases with
available expression data, and (2) available clinicopathological features, particularly
RFS status and time. Then, the gene-expression profiles were generated from four
eligible GEO datasets [GSE11691830, GSE70769%!, GSE707681, and GSE21032/
Memorial Sloan Kettering Cancer Center (MSKCC)3?], as well as the gene-
expression profile from The Cancer Genome Atlas Prostate Adenocarcinoma
(TCGA-PRAD, https://www.cancer.gov/tcga). For gene-expression profile of
TCGA-PRAD, the number of fragments per kilobase million (FPKM) was com-
puted and converted into transcripts per kilobase million (TPM) and further log 2
transformed, which showed more similarity to the numbers obtained from
microarray analysis and improved comparability between samples, the ensemble
IDs were mapped to gene symbols along with the GENCODE 27 file (https://
www.gencodegenes.org/human/release_27.html). For the gene symbol with more
than one probe IDs, the mean value was calculated as its expression value. We also
removed the potential cross-dataset batch effect via the “sva” package along with
the empirical Bayes framework33. The matched clinicopathological data were also
downloaded along with the expression profiles. Patients who lacked pathological T
stage data were excluded. We also identified the ISUP groups and EAU risk groups
by Gleason score and PSA value343>.

Univariate Cox regression analysis and consensus-gene selection. We con-
ducted the univariate Cox regression analysis to identify the consensus RFS-related
genes from five datasets. Subsequently, we intersected these RFS-related candidates
that appeared in all five datasets, with a cutoff P-value of less than 0.05. The
following analyses were performed based on these selected genes.

Classifier establishment and validation. According to the results provided by
univariate Cox regression analysis, we employed least absolute shrinkage and
selection operator (LASSO) Cox regression to select stable prognostic candidates.
LASSO is a regression method that uses both regularization and variable selection
to elevate the prediction accuracy and interpretability of the results. We calculated
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Fig. 5 Knockdown OF SRD5A2 and ITGAT1 alters cell proliferation, migration, and invasion. Comparison of cell proliferation among the control and
knockdown SRD5A2 groups in PC-3 and C4-2 cell lines by MTT assay (a) and colony formation assay (b). Comparison of cell migration (¢) and invasion
(d) among the control and knockdown ITGA11 groups in PC-3 and C4-2 cell lines. Data are presented as the mean = SD based on three independent
experiments (*P < 0.05, **P < 0.01, ***P < 0.001 by t-test), bars represent mean values, error bars represent SD. Scale bars, 100 pm.

the recurrence rate of each cohort, 25.71% for MSKCC, 19.06% for TCGA-PRAD,
17.43% for GSE70768, 48.24% for GSE70769, and 22.87% for GSE116918. We
reviewed the published literatures, and acquired that the biochemical recurrence
(BCR) rate of localized PCa after radical prostatectomy is about 20-40%36-38;
therefore, we chose the MSKCC cohort as the training for LASSO analysis. The
classifier was established referring to the expression and coefficient of each can-
didate based on the MSKCC cohort. We computed the risk score for each patient

with the following formula:

n
risk score = 3_[coef (mMRNA/) * Expression(mRNAj)]
i=1

The median value of the risk score was set as the cutoff value in each cohort,
and patients with risk scores lower than the median value were assigned to the low-
risk subgroup, while others belonged to the high-risk subgroup. The risk score of
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Fig. 6 ITGA11 inhibits prostate cancer cell migration and invasion through PI3K/AKT signaling. a Overlapping coexpressed genes of ITGAT1 in five
cohorts and KEGG pathway enrichment analysis. b Correlation between ITGAT1 expression and the activation level of PI3K/AKT signaling assessed by the
HALLMARK PI3K/AKT/mTOR signaling signature. ¢ Correlation between ITGA11 expression and the activation level of PI3K/AKT signaling assessed by
the REACTOME PI3K/AKT activation signature. d Western blot analysis validated the inhibition of Ser473 p-AKT1/2/3 activation via knockdown of
shITGA11 in both C4-2 and PC-3 cells. e Quantification of the western blotting results showing in d. Data are presented as the mean = SD based on three
independent experiments (ns not significant, *P < 0.05, **P < 0.01 by one-way ANOVA), bars represent mean values, error bars represent SD.

patients in the other four external validation cohorts, TCGA-PRAD, GSE70768, The comparison between two ROC curves was also conducted by the “pROC”
GSE70769, and GSE116918, was also calculated by this risk formula, and then these ~ package. Furthermore, subgroup analyses were executed to test the accuracy of the
patients were dichotomized into two different risk subgroups by the median risk  classifier in different clinicopathological subgroups, such as different Gleason score

score in each cohort. (<7 vs. >7), pathological tumor stage (T1 + T2 vs. T3 + T4), and age (<60 vs. >60).
Survival and receiver operating characteristic (ROC) analyses. Survival ana- Immunohistochemistry (IHC) validation. To validate the association between

lyses were executed using the “survminer” package (https://github.com/ SRD5A2 and ITGA11 and the clinicopathological features, we used the IHC assay to
kassambara/survminer), with BCR as the endpoint. Furthermore, the area under detect the protein expression of the above two genes in a prostate cancer tissue array

the ROC curve (AUC) was employed to assess the predictive value of the formula. ~ (Outdo Biotech Co., Ltd., Shanghai, China), which contains tumor tissue from 42
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Fig. 7 Comparing the prognostic prediction value between the eleven-consensus-gene classifier and proposed signatures. a Comparison of time-
dependent area under the receiver operating characteristic curve value in MSKCC, GSE70768, GSE70769, GSE46602, GSE116918, and TCGA-PRAD

cohorts. b Flow chart for the steps applied in the current study.

patients. The antibodies of SRD5A2 (Cat. #: DF8416, Affinity Biosciences LTD.,

Ohio, USA) and ITGA11 (Cat. #: bs-13771R, Bioss Antibodies LTD., Massachusetts,
USA) were applied for IHC staining at a dilution of 1:250. We recorded the staining
intensity as follows: 0, negative; 1, weak positive; 2, moderate positive; and 3, strong
positive. In addition, the staining area was indicated as follows: 0, 0%; 1, 1-25%; 2,
26-50%; 3, 51-75%; and 4, >76%. The intensity score multiplied by the staining area
was defined as the ultimate score (>3, positive staining; <3, negative staining)3.

Cell culture and knockdown of SRD5A2 and ITGAT1. We cultured the C4-2 and
PC-3 cell lines with RPMI 1640 medium, which also contained 10% fetal bovine
serum and 1% penicillin and streptomycin, which contained 100 U/ml penicillin
and 100 mcg/ml streptomycin. Cells were cultured at 37 °C and 5% CO,. PC-3 cell
line were kindly provided by Procell Life Science & Technology Co., Ltd (Wuhan,
China) and certified by STR profiling cell line authentication (Supplementary
Table 2). C4-2 cell line was obtained from Sunncell Bioscience Inc. (Wuhan,
China), and certified by STR profiling cell line authentication (Supplementary
Table 3). We routinely confirmed that these cell lines were negative for myco-
plasma contamination using an e-Myco mycoplasma PCR detection kit (25235;
iNtRON Biotechnology, Kirkland, WA, USA). We obtained 1 x 108 TU/ml
shSRD5A2 and shITGA11 lentiviruses from Shanghai Novobio Co., Ltd. (Shanghai,
China). To obtain the lentivirus, shITGA11-1#, shITGA11-2#, shSRD5A2-1#, and
shSRD5A2-2# were inserted into the PDS126_pL-U6-shRNA-GFP vector. The
knockdown sequences were as follows: shITGA11-1#-F: GCTCTTACTTTGGGA
GTGAAA, shITGA11-1#-R: TTTCACTCCCAAAGTAAGAGC; shITGA11-2#-F:
GCCATCCAAGATCAACATCTT, shITGA11-2#-R: AAGATGTTGATCTTGGA
TGGC; shSRD5A2-1#-F: GTGGTGTCTGCTTAGAGTTTA, shSRD5A2-1#-R:
TAAACTCTAAGCAGACACCAG; shSRD5A2-2#-F: CTCAATCGAGGGAGG
CCTTAT, shSRD5A2-2#-R: ATAAGGCCTCCCTCGATTGAG. The knockdown
cell lines of ITGA11 and SRD5A2 in PC-3 and C4-2 cells were obtained according
to the manufacturer’s instructions, 5 pl knockdown lentivirus or control lentivirus
was added to each well of a six-well plate, and the cells were treated with ampicillin
(50 pg/mL) for 1 month to establish stable ITGA11- or SRD5A2-knockdown

cell lines.
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Assay of cell proliferation, migration, and invasion. To evaluate the impact of
SRD5A2 and ITGA11 on prostate cancer cells, we employed MTT and colony
formation assays to assess the alteration of cell proliferation, while Transwell-based
invasion and migration assays were used to evaluate cell migration and invasion.

For the MTT assay, 5000 cells were seeded per well of 24-well plates, and the
results were collected by adding 50 uL of prepped 5 mg/mL MTT reagent to 450 uL
of refreshed medium (with a concentration of 0.5 mg/mL) and incubating at 37 °C
for 1.5h. We collected the plates on the 0, 2nd, 4th, and 6th days to block cell
viability and stored them at —20 °C. On the 6th day, we added DMSO solution to all
plates to dissolve the formazan crystals and then read the optical density value at
570 nm to display the cell viability. For colony formation, 800 cells were seeded per
well and grown for 12 days. The cells in plates were fixed with 4% paraformaldehyde
for 20 min, and 0.05% crystal violet subsequently used to stain these fixed cells for
another 20 min.

For the migration assay, Transwell Permeable Supports (Corning Inc., Maine,
USA) were used. A total of 1x 10° cells with FBS-free medium were put into the
upper chamber of transwell plate, and 500 uL fresh medium with 10% FBS was
filled into the lower chamber. The cells that migrated to the bottom of the
membranes were fixed with methanol and further stained with 0.01% crystal violet.
The steps of the invasion assay were similar to those of the migration assay, which
also used permeable supports but with extra Matrigel (Biocoat, Corning, New York,
USA) diluted and coated in the upper chambers and incubated for 36 h. The cell
numbers were calculated by counting three random fields.

Functional prediction. Increasing evidence indicates that highly coexpressed genes
potentially have similar biological functions**-42, and we identified the coexpressed
genes of ITGAII in the five cohorts (correlation >0.7) by Pearson correlation
analysis. After overlapping these coexpressed genes, we performed Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathway enrichment analysis to sub-
classify their functions based on the “clusterProfiler” R package®3. In addition, we
also used Cytoscape (v3.5.1, San Diego, La Jolla, California, USA) to visualize the
functional network. Two external gene sets, HALLMARK PI3K/AKT SIGNALING
and REACTOME PI3K/AKT ACTIVATION, were employed to assess the
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association between ITGAI11 expression and the activation of the PI3K signaling
pathway. Single-sample gene set enrichment analysis (ssGSEA)*4*%, implemented
in the GSVA R package, was applied to calculate the normalized enrichment score
(NES) of the above 2 gene sets. For a gene matrix, the enrichment score (ES)

reflects the degree to which a gene set is overrepresented at the top or bottom of a
ranked list of genes, and NES means the corrects for differences in ES between gene
sets due to differences in gene set sizes, NES was calculated with below formula:

Actual ES

NES =
Mean (ESs against all permutations of the dataset)

Western blot validation. For the C4-2 and PC-3 cell lines with or without
knockdown of SRD5A2 and ITGA11, we collected the cells at log phase and lysed
cells with RIPA lysis buffer (Cat. #P0013B, Beyotime, Shanghai, China) added
protease inhibitor and phosphatase inhibitor (Cat. #P1405, Beyotime, Shanghai,
China). Proteins (40-50 pg) were separated on 12.5% SDS/PAGE gels and then
transferred onto nitrocellulose blotting membranes (GE Healthcare Life Science,
Germany). Membranes were blocked with 5% bovine serum albumin
(Sigma-Aldrich, St. Louis, MO, USA) for 1h at room temperature and then
incubated with appropriate dilutions of specific primary antibodies against
SRD5A2 (Cat. #: DF8416, Affinity Biosciences LTD., Ohio, USA), ITGA11 (Cat. #:
bs-13771R, Bioss Antibodies LTD., Massachusetts, USA), AKT1/2/3 (Cat. #:
AF6216, Affinity Biosciences LTD., Ohio, USA), p-AKT1/2/3 (Ser’3) (Cat. #:
AF0016, Affinity Biosciences LTD., Ohio, USA), GAPDH (Cat. #: 1049-1-AP,
Proteintech Group, Illinois, USA) overnight at 4 °C. The next day, after incubation
with HRP-conjugated secondary antibodies for one hour, the membranes were
visualized using an ECL system (Pierce; Thermo Fisher Scientific, Inc., USA).

Collection of proposed prognostic signatures. To assess the prognostic value of
the eleven-consensus-gene classifier with other tools, we collected the formula

of proposed signatures. Liu et al.4® reported a 13-stem call-associated signature, with the
formula: Risk score = (0.245 x expression level of BMP8B) + (0.630 x expression level
of BOD1) + (0.446 x expression level of CTNNBIP1) + (—0.594 x expression level of
FZD5) + (0.207 x expression level of GREM1) + (—0.265 X expression level of
LATS2) + (0.349 X expression level of NAMPT) + (— 0.263 x expression level of
PRKACB) + (0.342 x expression level of RBPJL) + (— 0.076 x expression level of
SEL1L) + (0.825 x expression level ofSTK36) + (0.05 x expression level of TCF15) +
(0.287 x expression level of WNT4). Zhang et al.#’ reported a PCSS score with 13 genes
as well, with the formula: PCSS = — 0.39233*ASF1B-0.21563* AURKB-0.02372*
CCNA2 + 0.12167*CDC20-0.38666*CDKN3 -+ 0.73003*CHTF18 + 0.05862*EZH2-
0.26846¥*FOXM1 + 1.40193*KIF4A + 0.10177*MYBL2 + 0.7149*PLK1 + 0.30036*P-
TTG1-1.10124*TRIP13. The CCP score* was calculated by 31 CCP genes (FOXM],
ASPM, TK1, PRCI1, CDC20, BUB1B, PBK, DTL, CDKN3, RRM2, ASF1B, CEP55,
CDC2, DLGAP5, Cl18orf24, RAD51, KIF11, BIRC5, RAD54L, CENPM, KIAA0101,
KIF20A, PTTG1, CDCAS8, NUSAP1, PLK1, CDCA3, ORC6L, CENPF, TOP2A,
MCM10) and 15 housekeeping genes (RPL38, UBA52, PSMC1, RPL4, RPL37, RPS29,
SLC25A3, CLTC, TXNL1, PSMA1, RPL8, MMADHC, RPL13A, PPP2CA, MRFAP1).
The CCP score = average expression of 31 CCP genes/average expression of 15
housekeeping genes.

Statistics and reproducibility. All comparisons of continuous data among two
subtypes were performed by Student’s t-test and Mann-Whitney U test for nor-
mally and nonnormally distributed data. Correlations between staining intensity
subgroups and clinicopathological subgroups were evaluated by Fisher’s exact test.
Spearman’s correlation analysis was utilized to explore the correlation between
continuous variables. One-way analysis of variance (ANOVA) was used for the
comparison of more than two groups. For all statistical analyses, a two-tailed P-
value less than 0.05 was considered statistically significant. All experiments were
taken from distinct samples and the number of biological replicates (n) is indicated
in figure legends. Flow chart for the steps applied in the current study demon-
strated in Fig. 7b.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All data used in this work can be acquired from the Gene-Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) and the GDC portal (https://portal.gdc.cancer.gov/).
Uncropped and unedited blot/gel images are listed in Supplementary Fig. 6.
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