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Abstract

In nature, vector-borne flaviviruses are persistently cycled between either the tick
or mosquito vector and small mammals such as rodents, skunks, and swine.
These viruses account for considerable human morbidity and mortality worldwide.
Increasing and substantial evidence of viral persistence in humans, which includes
the isolation of RNA by RT-PCR and infectious virus by culture, continues to be
reported. Viral persistence can also be established in vitro in various human,
animal, arachnid, and insect cell lines in culture. Although some research has
focused on the potential roles of defective virus particles, evasion of the immune
response through the manipulation of autophagy and/or apoptosis, the precise
mechanism of flavivirus persistence is still not well understood. We propose
additional research for further understanding of how viral persistence is estab-
lished in different systems. Avenues for additional studies include determining
whether the multifunctional flavivirus protein NS5 has a role in viral persistence,
the development of relevant animal models of viral persistence, and investigating
the host responses that allow vector-borne flavivirus replication without detrimental
effects on infected cells. Such studies might shed more light on the viral–host
relationships and could be used to unravel the mechanisms for establishment of
persistence.

Introduction

Defining mechanisms of viral persistence will be critical for
understanding vector-borne flavivirus infections. These viral
infections account for considerable human morbidity and
mortality worldwide. Furthermore, incidence is increasing
and infections are being appreciated in previously nonen-
demic geographic locations. Prominent vector-borne flavivi-
ruses (VBFVs) associated with significant human infections
include both tick-borne and mosquito-borne agents. The
tick-borne flaviviruses (TBFVs) are exemplified by the
tick-borne encephalitis virus (TBEV) sero-complex group,
Omsk hemorrhagic fever virus, Kyasanur forest disease
virus, Alkhurma virus, Powassan virus (POWV), and deer
tick virus (DTV), the latter two occurring in the United States
(Holbrook et al., 2005; Brackney et al., 2008b; Ebel, 2010).
The mosquito-borne flaviviruses (MBFVs) are perhaps
better known and include yellow fever virus (YFV), West
Nile virus (WNV), Japanese encephalitis virus (JEV), and
dengue virus (DENV) serotypes 1–4. Infections with all of
these viruses can lead to severe disease, prolonged
debilitating neurological sequelae, hemorrhagic fever, and/

or death in some cases (Solomon et al., 1998; Glass et al.,
2002; Haglund & Gunther, 2003; Madden, 2003; Van
Gerpen, 2003; Carson et al., 2006).
Viral persistence is a hallmark of the ecology of VBFVs.

Both TBFVs and MBFVs are cycled between arthropod
and vertebrate hosts (Figs 1 and 2), and in many cases,
they are maintained without deleterious effects on the
hosts. In nature, TBFVs, such as POWV and TBEV,
alternately infect small vertebrates such as rodents, hares,
some carnivores, and a range of hard-bodied (ixodid) ticks,
although recent evidence suggests that the soft-bodied
Ornithodoros (argasid) ticks can also support TBFV (Raj-
agopalan et al., 1969; Charrel et al., 2007). Similarly,
MBFVs, such as WNV and JEV, primarily alternate in
nature between small mammals, birds, and mosquitoes
(Fig. 1). In addition, there is evidence that MBFV and
TBFV persistence also occurs in humans, and persistence
in cell culture is well documented (Poidinger et al., 1991;
Lancaster et al., 1998; Bugrysheva et al., 2001; Farfan-Ale
et al., 2009; Murray et al., 2010).
Although the hosts for the VBFVs are highly varied,

the genomic and structural organization of the viruses
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themselves is remarkably similar. All flaviviruses are
spherical, enveloped particles that contain a genome of
(+) ssRNA measuring approximately 11 kb. The genome
also functions as mRNA and encodes a single polyprotein
that is cleaved into 10 proteins (Table 1). Reasonable
progress has been made toward understanding how these

viruses replicate (Chambers et al., 1990; Mandl, 2005;
Miorin et al., 2008; Tuplin et al., 2011; Pierson & Diamond,
2012; Brinton, 2013; Pierson & Kielian, 2013). We present
a simplified overview of the general aspects of a VBFV
replication cycle in Fig. 3. The individual proteins are three
structural proteins: capsid (C), precursor membrane/mem-

Fig. 1 Flavivirus maintenance and transmission cycle in ticks and vertebrate hosts. Ticks are crucial for viral persistence as they remain infected once

they acquire viral infection. Infected ticks are capable of transmitting TBFVs to other ticks when they feed in close proximity on the same animal, as

well as the different stages of the tick life cycle. TBFVs persist also in a cycle between small mammals (e.g. rodents) and the ticks that feed on them.

Large mammals and humans tend to be incidental, dead-end hosts.

Fig. 2 A representation of a

mosquito-borne flavivirus amplification and

transmission cycle. WNV is cycled between

the mosquito and avian hosts that play an

amplification and maintenance role. Swine

are important amplifying hosts for JEV, and

mosquitoes that acquire blood meals on

infected pigs can become infected and

transmit the virus. Similar to TBFVs, MBFV

infection in humans and large animals,

such as horses, is accidental.
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brane (prM/M), and envelope (E), and seven nonstructural
proteins: NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5
(Chambers et al., 1990; Ryan et al., 1998; Bollati et al.,
2010). The defined functions of these proteins are pre-
sented in Table 1. However, the precise function of some
of the proteins remains to be elucidated. Furthermore, it
should be noted that the bulk of the studies have been
carried out in MBFV systems, and it is possible that the
functions may not be identical in TBFV.
Recognizing that the VBFVs cycle between vertebrate

and arthropod hosts and that both viral and host factors are
likely to be involved, it is highly probable that viral persis-
tence is exceedingly complex. The purpose of this review is
to evaluate the current literature on flavivirus persistence as
well as to suggest ideas for additional research into this
interesting and important area.

Flavivirus infection and persistence in humans

Humans are inadvertent targets of VBFV infection (Figs 1
and 2), and infection is often associated with debilitating,
acute neurological syndromes or hemorrhagic fever. How-
ever, there are several lines of evidence suggesting flavi-
virus persistence in humans (Murray et al., 2010; Gibney
et al., 2011; Baty et al., 2012). The establishment of
flavivirus persistence in humans seems to be mainly
associated with encephalitic flaviviruses (Diamond, 2003).
However, YFV and DENV persistence has been described
in eukaryotic cells in culture and in successive generations
of Aedes mosquitoes (Lodge et al., 1987; Takasaki et al.,
2001; Farfan-Ale et al., 2009). YFV and DENV commonly
cause a hemorrhagic illness, jaundice, and dengue shock
syndrome, and encephalitis is atypical and extremely rare

Fig. 3 A simplified overview of the replication cycle for a vector-borne flavivirus. Inbound virions bind to the cell membrane via poorly characterized

receptors (a), are captured in vesicles by a clathrin-mediated pathway (b), and delivered to endosomes, where a pH-dependent fusion of the particles

with the endosome membrane occurs (c). Subsequent to uncoating, the single-stranded, positive-sense RNA genome (d) migrates to the endoplasmic

reticulum (ER) and is translated (e) as a polyprotein traversing the ER membrane several times (f). The polyprotein is cleaved into the viral proteins by

viral and cellular proteases, although prM and E remain covalently attached. Through the agency of several viral nonstructural proteins and cellular

proteins, there is a proliferation of ER-derived membranes and the formation of spherules that maintain a pore-like connection to the cytoplasm (g); the

viral genome is replicated within these spherules by the viral proteins comprising the replication complex. By an as yet uncharacterized mechanism,

progeny genomes are delivered to adjacent ER membranes where the capsid protein mediates assembly and inclusion of prM-E into immature virions

(h). The immature virions transit the Golgi membrane system (i), and as a mild pH change occurs, the cellular enzyme furin cleaves the prM-E linkage

(j), allowing the virus particle to assume its final mature stage prior to release from the cell (k). Defined roles for the individual viral proteins are

enumerated in Table 1.
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(Tomori, 2004; Gulati & Maheshwari, 2007; Varatharaj,
2010), but persistence cannot be excluded.
Human infection with the encephalitic viruses almost

always occurs following a bite from infected ticks or
mosquitoes (Figs 1 and 2). Generally, illness tends to be
biphasic. The first phase is characterized by a flu-like illness
with symptoms such as headache, arthralgia, and malaise.
The second phase may present with neurological symp-
toms, such as mild meningitis to severe encephalitis.
Survivors of encephalitis may develop persistent neurolog-
ical sequelae, suggesting neurological tissue damage and/
or viral persistence. Neurological tissue damage, such as
loss of neurons, has been reported for WNV infection
(Guarner et al., 2004). Long-term morbidity following TBEV
infection is known to occur frequently (Haglund et al., 1996;
Haglund & Gunther, 2003). A study conducted in Sweden
reported chronic postencephalitic syndrome in 36% of
patients who had been infected with TBEV (Haglund et al.,
1996). In up to 60% of patients who develop encephalitis
due to WNV infection, neurological and/or neuropsycholog-
ical symptoms continue to be reported for up to 7 years
following the infection (Murray et al., 2010; Sadek et al.,
2010).
The most definitive evidence for viral persistence would

be the isolation of viable virus or the demonstration of viral
antigens or RNA long after the acute illness. Several reports
describe the isolation of infectious VBFVs from persistently
infected humans. For example, the Siberian TBEV strain Za
was isolated from an individual who had harbored the virus
for 10 years (Gritsun et al., 2003). He later died following
2 years of a progressive form of TBEV encephalitis (Gritsun
et al., 2003). In addition, isolation of JEV from the cerebro-
spinal fluid was possible for more than 3 weeks following
infection in 19% of individuals that had developed enceph-
alitis (Ravi et al., 1993). JEV persistence was also demon-
strated in peripheral mononuclear cells in infected children
in northern India (Sharma et al., 1991). In these children,
virus could be isolated by culture 8–9 months after acute
infection (Sharma et al., 1991). Furthermore, WNV has
been transmitted to patients who had received blood
transfusions or organ transplants from asymptomatic donors
(Pealer et al., 2003; Montgomery et al., 2006; CDC, 2009),
suggesting viral persistence in the donors as well as stored
blood for transfusion.
Long-term presence of viral nucleic acid is another

indicator for persistent infection; however, study results
are inconsistent. Viral RNA can be readily sought using
molecular biology techniques, such as RT-PCR and tran-
scription-mediated amplification (TMA) (S�anchez-Seco
et al., 2005; Mu~noz-Jord�an et al., 2009; Patel et al.,
2013). Using TMA, WNV RNA was detectable in the blood
of donors for up to 104 days following the index donation
(Busch et al., 2008; Prince et al., 2008). Using RT-PCR,
WNV RNA could also be detected in urine of persistently
infected individuals for up to 6.5 years following the acute
phase of infection (Murray et al., 2010), although virus could
not be isolated from the RNA-positive urine samples. In
contrast, WNV RNA could not be detected after 6 years in
urine in another study reported a year later (Gibney et al.,

2011). Baty and colleagues also failed to detect WNV RNA
by RT-PCR, but were able to detect viral RNA using TMA
(Baty et al., 2012). Similarly for JEV, viral RNA could not be
detected by RT-PCR in the individuals who had anti-JEV
IgM antibodies (Zhao et al., 2013). In the study by Gibney
et al. (2011), WNV persistence could not be excluded. Even
though the results in these studies are somewhat variable, it
seems reasonable to conclude that the presence of viral
RNA can also be taken as an indicator of persistent
infection.
Viral serology may be an additional surrogate measure for

VBFV persistence. In general, infection or vaccination leads
to a sterilizing immunity, but long-term persistence of
anti-VBFV IgM antibodies has often been assumed to
indicate continued exposure to viral antigens or virus
particles (Ravi et al., 1993; Stiasny et al., 2012). An
exception to this is, of course, DENV where antiviral
antibody plays a key role in pathogenesis (Martina et al.,
2009; Pierson, 2010). IgM antibodies induced by flavivirus-
es, such as TBEV and WNV, are known to persist in serum
and CSF for 12 months or more (Kapoora et al., 2004;
Stiasny et al., 2012). Indeed, IgM antibodies against TBEV
persisted for up to 32 months (Stiasny et al., 2012).
Furthermore, anti-WNV IgM antibodies persist in previously
exposed blood donors for up 16 months (Busch et al., 2008;
Prince et al., 2008). However, IgM antibody persistence
does not necessarily correlate with infectious virus persis-
tence. For example, persistent IgM antibodies against TBEV
can be detected in some cases following vaccination without
active viral infection (Rendi-Wagner et al., 2004; Stiasny
et al., 2012). For WNV infection, IgM antibodies against the
nonstructural protein NS5 cannot be used to distinguish
between recent/active infection from past infection (Prince
et al., 2008). Thus, serology may be a less useful marker for
viral persistence.
A major consideration in VBFV in humans would be

identification of sites of viral persistence. As flavivirus
persistence seems to be mainly associated with the neuro-
tropic and encephalitogenic viruses, the central nervous
system may well be the preferred site for viral persistence.
Furthermore, this may account for why patients who recover
from encephalitis often have prolonged neurological symp-
toms. However, other studies by Murray and colleagues
postulated kidneys as a preferred site for the establishment
of persistent flavivirus infections following the detection of
WNV RNA in urine (Murray et al., 2010). Certainly, addi-
tional work is required to define the true incidence, the
biology, and the pathogenic potential in humans of persis-
tent VBFV infections.

The role of arthropods and arachnids in
flavivirus persistence

Arthropod hosts play crucial roles in the biology of both
TBFV and MBFV and contribute to persistent infection. In
nature, ticks are the important arachnid reservoirs of TBFVs.
The persistence of the TBFVs in arachnids is well estab-
lished, and the role of ticks as long-term reservoirs and
vectors for the viruses is clear. Estimates suggest that ticks
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transmit about 25% of the known flaviviruses. TBFVs are
capable of infecting about 14 tick species, but the ixodid
ticks, Ixodes scapularis and Ixodes ricinus, account for
nearly all transmission of TBEV to humans. Ixodes cookei
may also harbor POWV and DTV, while the soft-bodied
Onithodoros tick transmits Alkhurma virus (Main et al.,
1979; Charrel et al., 2007). To transmit virus, these ticks
need only 15 min of attachment to the host (Crowder et al.,
2013). The virus is present in the tick salivary glands, and
saliva constituents enhance infectivity (Nuttall & Labuda,
2003; Girard et al., 2004). A recent publication revealed that
a selected subset of salivary gland genes is expressed when
infected ticks feed on na€ıve mice (McNally et al., 2012).

Ticks acquire the virus while feeding on infected rodents,
typically by a process called ‘cofeeding’ (Fig. 1; Labuda
et al., 1993a, b), and the virus persists throughout several
life stages. Ticks at the larvae, nymph, and adult life stages
can become infected by feeding on infected animals
(horizontal transmission) or can transmit virus vertically
across instars (transstadial transmission) and through the
eggs (transovarial transmission; Fig. 1a; Labuda et al.,
1993a, 1996; Nuttall & Labuda, 2003). Indeed, results of a
carefully controlled study in our laboratory show that
transstadial transmission seems to be very high (Mitzel
et al., 2007). The blood meal remains in the midgut for long
periods of time, allowing infection of the epithelial cells lining
the midgut with subsequent translocation into the hemocoel
(Nuttall & Labuda, 2003). Infection of the midgut cells may
be facilitated by the heterophagous nature of ticks (i.e. blood
meal digestion is principally an intracellular process). In the
open circulatory system, tissues and organs are bathed in
hemolymph, which acts as a medium for transporting
nutrients, hormones, and immune effector molecules.
Therefore, the hemolymph likely serves as a viral dissem-
ination medium. TBE virus was found in the esophagus and
subesophageal ganglion in Dermacentor marginatus larvae
and in columnar epidermal cells of Dermacentor reticulatus
nymphs (Nuttall & Labuda, 2003). In D. reticulatus nymphs,
TBE virus was demonstrated in epidermal cells and in
vacuoles in the region of Golgi complexes of salivary gland
cells (Nosek et al., 1984). The precise mechanisms by
which TBFVs traverse various tissues in the tick and reach
the salivary glands remain to be fully elucidated.
Prevalence surveys indicate that 0.5–5% of ixodid ticks

carry the virus in Europe, but prevalence of up to 40% has
been reported in Russia (Ustinova et al., 1997). In
north-central USA, up to 4.9% of I. scapularis ticks are
infected by Powassan or DTV (Brackney et al., 2008b;
Dupuis et al., 2013). Interestingly, in a study carried out in
Chicago, I. scapularis was found to infest 2.8% of wild birds,
which figure prominently in the MBFV cycle (Fig. 1b; Hamer
et al., 2011). However, identification of TBFV was not
attempted in this study. In brief, TBFV persistence in ticks
is well established, and the essential role of ticks in the
biology of these viruses is not in doubt.
As is the case for TBFVs, the role of mosquitoes in the

maintenance of the MBFV cycle is also well characterized.
Mosquitoes are thought to account for transmitting approx-
imately 50% of more than 70 known flaviviruses (Gould,

2001). Diverse mosquito species can be infected by MBFVs.
However, the two major mosquito vectors are Aedes aegypti
(e.g. transmission of YFV and DENV) and Culex species
(e.g. transmission of WNV and JEV). Adult female mosqui-
toes become infected when they obtain blood meals from
flavivirus-infected animals, and virus replication in the
mosquito has been well described (Girard et al., 2005;
McGee et al., 2010; Colpitts et al., 2012). Girard et al.
(2004) used immunohistochemistry to demonstrate that
WNV infects epithelial cells of the Culex pipiens midgut
and that viral antigen can be detected as early as day 2
postinfection. Viral antigen staining becomes more intense
in the cells of the midgut over time until day 14 to 21
following infection (Girard et al., 2004). Using DENV-2,
virus titer in the midgut peaks to about 9 9 103 pfu mL�1

by 10 days postinfection, but declines to about
7.4 9 102 pfu mL�1 by day 12 (S�anchez-Vargas et al.,
2009). Dissemination of virus into various tissues occurs
at various time points, and the amount of antigen also
varies. Similar to TBFVs in ticks, the hemolymph serves as a
vehicle for viral dissemination. However, virus also spreads
in a cell–cell fashion to the muscle of the posterior midgut
from 6 to 27 days postinfection (Girard et al., 2004). Studies
with DENV-2 showed that infected mosquitoes mount an
RNA interference (RNAi)-mediated antiviral response, but
impairing the vector RNAi resulted in increased viral
replication (S�anchez-Vargas et al., 2009). This mechanism
could be associated with observations of flavivirus-related
RNA that persists as DNA in mosquitoes (Crochu et al.,
2004). As mosquitoes are such efficient vectors for the
transmission of the MBFVs, these reports suggest that the
viruses have evolved a mechanism of evading the host
response to persist in the vector.
Mosquitoes also acquire and deliver virus horizontally

during blood meals and are competent to transmit vertically
to progeny by transovarial passage (Rosen et al., 1983).
WNV can persist overwinter in mosquitoes that hibernate in
cold months. Cool temperatures also facilitate persistence of
flaviviruses in adult female mosquitoes. For example, St.
Louis encephalitis virus (SLEV) survived for more than
100 days of winter in Culex quinquefasciatus (Kramer &
Ebel, 2003). Similarly, JEV and WNV have been transmitted
by mosquitoes that carried the viruses at cold temperatures
when exposed to temperature increases equal to ambient
levels (Kramer & Ebel, 2003). However, at low temperature,
mosquitoes are less likely to acquire new infections (Colpitts
et al., 2012). At 18 °C, low WNV dissemination to the legs of
the C. pipiens was observed, and rapid viral dissemination
occurred at higher temperatures (Colpitts et al., 2012).
Furthermore, higher temperatures increase vector popula-
tion growth rate and the rate of viral evolution in the
mosquito (Girard et al., 2005).
The prevalence and maintenance of WNV across land-

scapes is mediated by environmental factors, such as local
effects of agriculture on vector and host communities
(Crowder et al., 2013). Results of investigations carried out
in the states of Oregon and Washington showed that the
prevalence of WNV in both C. pipiens and Culex tarsalis was
similar at 14.5% or 13.5%, respectively (Crowder et al.,
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2013). However, a study conducted in Stratford, Connecticut,
showed that the C. pipiens was the most dominant mosquito
captured in this WNV focus area (Anderson et al., 2004). In
the captured mosquitoes, more than 85% of WNV isolations
were from the same species, whereas Culex salinarius
accounted for between 5% and 12% (Anderson et al.,
2004). In a similar study conducted in Mexico, C. quinque-
fasciatus was more common at 48.3% and MBFV RNA was
detected in 70% of the pools (Farfan-Ale et al., 2009). It is
evident that mosquitoes are important as viral hosts and
vectors. Furthermore, it can be concluded that the MBFVs
have evolved mechanisms of evading the host innate
responses to persist in the MBFVs.

Flavivirus infection and persistence in animals

The principal vertebrate hosts for VBFVs are small mam-
mals, marsupials, and birds (Fig. 1), but the viruses can also
infect reptiles (Mackenzie et al., 2002, 2004; Steinman
et al., 2003; Jacobson et al., 2005; Root et al., 2005;
Marschang, 2011). In most instances, larger animals, such
as cervids, goats, and sheep, are incidental hosts. The 1999
outbreak of WNV in humans in New York is thought to be
associated with WNV infection in birds (Strausbaugh et al.,
2001). The mosquito-borne Wesselsbron virus could also be
cycled between mosquitoes and birds, but not much is
known about the vertebrate host(s). Thus, in nature,
numerous species are susceptible to VBFVs and might
serve as reservoirs or secondary amplifying hosts. In this
section, we will survey the literature and the three potential
markers for viral persistence: isolation of virus, identification
of viral RNA or protein, and viral serology.
Small mammals, particularly rodents, are the principal

vertebrate hosts and reservoirs for TBFVs (Mansfield et al.,
2009; Dobler et al., 2012). In Europe, the yellow-necked
mouse (Apodemus flavicollis) and bank vole (Myodes
glareolus) are implicated as the most common hosts, and
they develop sufficient viremia to infect ticks that feed on
them (Weidmann et al., 2011; Dobler et al., 2012; Knap
et al., 2012). In various wild rodent species captured in
Brandenburg, Germany, an average TBEV infection rate of
15% was reported (Achazi et al., 2011). In the captured
rodents, TBEV RNA was detected by RT-PCR in the brains
and spleens. In North America, deer mice (Peromyscus),
squirrels, and the striped skunk (Mephitis mephitis) are
important reservoirs of POWV and DTV (Main et al., 1979;
Telford et al., 1997). Based on serological studies, a 6.2%
DTV prevalence in the red-backed voles (Myodes rutilus)
was found in Siberia and Alaska (Deardorff et al., 2013).
DTV in New Mexico was serologically prevalent in Pero-
myscus truei and Peromyscus maniculatus at 22.2% and
6.0%, respectively (Deardorff et al., 2013). Therefore, it
seems likely that persistent infection of these small mam-
mals occurs.
Deer may stabilize and maintain TBFVs at levels that are

important for transmission (Pugliese et al., 2007; Carpi
et al., 2009; McGee et al., 2010; Dobler et al., 2012). While
deer are important sources of blood meals for ticks, they
develop low virus titer and are therefore not competent in

transmission of TBFVs. However, in a broader sense, deer
are important in viral persistence because they help sustain
tick populations (Cagnacci et al., 2012).
The situation for domesticated animals is also less clear

than for rodents. Dogs, horses, and monkeys can be
infected with TBFVs, but case reports in veterinary practice
are relatively infrequent (Jaenson et al., 2012). Large
domesticated animals, such as goats, sheep, and cattle,
become viremic for a short while and develop antibodies
following infection with TBEV, but do not show any specific
clinical signs of illness (Mansfield et al., 2009; Klaus et al.,
2012). However, transmission of TBEV via milk from these
domesticated animals (Fig. 1) has been documented, sug-
gesting that virus may persist following the acute viremia in
at least some instances (Vereta et al., 1991; Caini et al.,
2012; Hudopisk et al., 2013).
Birds and primates are considered to be the primary

reservoirs of MBFVs. Other mammals are generally acci-
dental hosts, but this may not always be the case, and when
viremic, these domestic animals are able to infect
mosquitoes.
For JEV, the major amplifying hosts are birds and pigs,

which attain high levels of viremia. They provide a source of
infection for the mosquito species that subsequently transmit
JEV to humans (Hukkanen et al., 2006; van den Hurk et al.,
2009). JEV control has been achieved through vaccination of
pigs and humans in Korea, Japan, and Taiwan (Igarashi,
2002) while horses are considered dead-end hosts of JEV
infection due to a very low level of viremia.
In geographic regions where pig populations are low,

swine may not be important for zoonotic transmission of
JEV. Herons and egrets are important JEV-amplifying hosts
and source of infection for mosquito species that transmit
JEV to humans (Nemeth et al., 2009). Wild-caught pigeons
were shown to have antibodies that persist for up to
15 months. It is not clear whether the antibody persistence
is associated with viral persistence. Although various bird
species do play a prominent role in JEV infection, evidence
of birds as a source of persistent infection is less certain. In
some instances, birds can acquire JEV viremia and then fail
to develop or lose neutralizing antibodies.
Birds are also excellent amplifying hosts for WNV, and

migratory birds can move the viruses to different areas
because they become viremic for several days. Near 100%
mortality is associated with natural or experimental WNV
infection in birds, such as American crows (Corvus brac-
hyrhynchos), blue jays (Cyanocitta cristata), and greater
sage-grouse (Centrocercus urophasianus; Steele et al.,
2000; Komar et al., 2003; Clark et al., 2006), but some
birds are able to carry the virus for a longer time before they
develop antibodies or succumb to disease (McKenzie &
Goulet, 2010). For instance, a combined 37% of house
sparrows that were either naturally or experimentally
infected with WNV tested positive for WNV RNA by RT-PCR
(Wheeler et al., 2012). In the same study, Wheeler et al.
(2012) showed that 97% and 100% of WNV-infected house
sparrows and finches, respectively, seroconverted following
exposure to WNV. Birds that develop neutralizing anti-WNV
antibodies are protected from reinfection (Nemeth et al.,
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2009), suggesting total virus clearance in seroconverted
birds, and antibodies against WNV have been found in wild
birds, suggesting exposure to WNV.
Early demonstration of WNV persistence was described in

blue-gray pigeons, from which virus was isolated up to
100 days postinfection, and viral antigen could be detected
in liver tissue for up to 180 days (Ruiz et al., 2010).
American robins (Tardus migratorius) are known to be
competent reservoirs of WNV and SLEV (Kilpatrick et al.,
2006). WNV persistence was also demonstrated by the
detection of viral RNA in the presence of antibody for up to
36 weeks in spleens of naturally infected house sparrows
and finches (Wheeler et al., 2012). Taken together, it seems
that there is decent evidence for persistent infection by WNV
in some bird species. However, many details about the
biology of persistence remain to be studied.
Antibodies to various flaviviruses, such as SLEV, POWV,

JEV, and WNV, have been identified in chelonians, snakes,
and crocodiles in different geographic locations (Steinman
et al., 2003; Marschang, 2011), and it is known that
alligators and crocodiles can be infected with WNV. How-
ever, there are no reports suggesting that reptiles host
persistent MBFV infection.
In summary, it is apparent that various animals and birds

can sponsor persistent VBFV infection. Nevertheless, the
precise role that these persistent infections play in larger
scheme of viral maintenance merits additional study.

Experimental models for persistent flavivirus
biology

There are several animal models of persistent mos-
quito-borne flavivirus infection, including WNV and SLEV

(Charlier et al., 2004; Kimura et al., 2010). As shown in
Table 2, mice and hamsters have been the main study
models. In a nonhuman primate study, WNV was isolated
from central nervous system tissues more than 5 months
post-intra-cerebral inoculation (Pogodina et al., 1983),
suggesting that these species might also be relevant
system.
Persistent WNV has also been studied experimentally in

the golden hamster. The clinical outcomes of WNV infection
in hamsters vary and depend on animal age and immune
competence, viral dose, and route of infection. WNV
infection can lead to asymptomatic illness, encephalitis,
severe paralysis, and acute death (Xiao et al., 2001; Morrey
et al., 2004; Tesh et al., 2005). Adult golden hamsters
infected with WNV develop chronic infection, characterized
by shedding of virus in urine for up to 8 months (Xiao et al.,
2001; Ding et al., 2005; Tonry et al., 2005). The chronically
infected animals exhibit antigens in tubular epithelial cells,
interstitial cells, and macrophages of distal renal tubules
(Tesh et al., 2005). Interestingly, na€ıve hamsters inoculated
intraperitoneally with WNV-containing urine from persis-
tently infected hamster do not develop clinical disease, but
the hamsters become viremic and develop antibody
responses (Ding et al., 2005). This suggests possible viral
genetic changes, which may facilitate persistent infection,
although other explanations cannot be totally excluded.
Hamsters have also been used as experimental models to

study the persistence of SLEV and are among the natural
vertebrate hosts of the Banzi flavivirus, a member of the
YFV group of flaviviruses (Grard et al., 2010). Golden
hamsters infected with SLEV did not develop clinical signs
of illness, but they developed viruria and antibodies against
SLEV at 28 days postinfection (Siirin et al., 2007).

Table 2 Experimental animal models developed for various flaviviruses

Vector Flavivirus Experimental models for VBFV persistence

Mosquito WNV C57BL/6 (B6) mice and C3H/HeN (C3H) mice (Appler et al., 2010; Pierson & Diamond, 2012): WNV

RNA persisted in a pantropic manner in 12% of infected mice for up to 6 months. Infectious virus could be

isolated in 12% of mice for up to 4 months. C3H mice survival rate was lower and 22% when compared to the

survival rate of B6 mice, which was 78%

Macaque rhesus (Pogodina et al., 1981): Virus persisted in asymptomatic animals for 5½ months and could

be isolated from cerebellum, cerebral subcortical ganglia, lymph nodes, and kidneys

Golden hamster (Mesocricetus auratus; Tesh et al., 2005; Tonry et al., 2005): Chronic renal infection with

persistent shedding of virus for up to 8 months. Virus could be recovered by culture, and genotypic and

phenotypic changes were identified

House sparrow (Passer domesticus; Nemeth et al., 2009): infectious virus persisted in tissues for up to 43 days,

but was not detectable in sera after 6 days. WNV RNA persisted in tissues for up to 65 days

SLEV Golden hamster (Siirin et al., 2007): Infected animals remained asymptomatic, but virus could be cocultivated in

various organs for up to 185 days

JEV Swiss albino mice (Mathur et al., 1986a, b): Persistence was demonstrated by reactivation in 41% of congenitally

infected pups. In adult mice, viral persistence was shown to last longer (16 weeks) in pregnant mice compared

with 4 weeks in nonpregnant mice

Tick TBEV Macaque rhesus (Pogodina, 1983; Pogodina et al., 1984, 1981): Monkeys recovered from encephalitis and virus

persisted for at least 738 days. In asymptomatic animals, virus persisted for 302 days

LIV* Immunosuppressed guinea pigs (Zlotnik et al., 1971): LIV was lethal in young animals, but older animals acquire a

nonapparent infection with viral replication in the brain and spleen

POWV Deer mouse (Peromyscus leucopus; Telford et al., 1997): not a well-characterized model, but adult mice appear

to survive infection

*Louping ill virus infects sheep.
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Hamsters that become persistently infected with SLEV shed
virus in their urine for up to 185 days postinfection. The
shedding of virus in the urine of infected hamsters also
suggests that the kidneys could be an organ preferred for
viral persistence.
C57BL/6J mice maintained a persistent WNV infection in

the face of robust neutralizing antibody levels for more than
6 months (Appler et al., 2010; Stewart et al., 2011). In this
study, infectious virus was recovered in the skin, and viral
RNA was identified in the skin, as well as the spinal cord and
brain (Appler et al., 2010). In contrast, WNV persistence
was uncommon in kidneys and rare in the heart (Appler
et al., 2010). However, in another study in which C57BL/6J
mice were infected with WNV derived from the urine of
persistently infected hamsters, the kidney was found to be
the preferred organ for viral persistence (Saxena et al.,
2013). The hamster-derived WNV was also found to be
highly attenuated in both neuroinvasiveness and neuroviru-
lence in infected mice (Saxena et al., 2013). These results
also suggest that the virus acquires phenotypic changes to
be able to persist.
While the inbred laboratory mouse models are patently

useful for understanding some aspects of flavivirus persis-
tence, very few natural rodent hosts have been established
as experimental animal models. Evidence of exposure to
WNV has been reported in rodent species, such as rats
(Rattus), bank voles (M. glareolus), and deer mice (Pero-
myscus; Molnar et al., 1976; Root et al., 2005; Docherty
et al., 2006; Gomez et al., 2008). However, infectious virus
was only identified in the bank vole, whereas antibodies
were detected in all of the species (Molnar et al., 1976; Root
et al., 2005).
Although persistence in mammals obviously plays a

significant role in TBFV infections, little attention has been
devoted to experimental studies of this aspect of TBFV
biology. While disease or therapy models have been
established for TBFVs (Kreil et al., 1997; Holbrook et al.,
2005; Hayasaka et al., 2010; Palus et al., 2013), none of
these specifically investigated viral persistence. Experi-
ments to determine the susceptibility of several wild and
domesticated mammals to POWV showed that viremia
lasted for 0–3 days in the goat, pig, skunk, red fox, and gray
fox (Yiang et al., 2013). In another study, adult deer mice
(Peromoyscus leucopus) survived challenge with POWV
without apparent illness, but evidence of viral persistence
was not sought (Telford et al., 1997). Development of
suitable experimental models for persistent TBFV infection
would clearly provide useful information about this aspect of
these important pathogens.

Mechanisms of flavivirus persistence

The previous sections have looked at flavivirus persistence
in humans, animals, and arthropod vectors, as well as some
relevant animal models. In this section, we will survey
information related to the initiation and maintenance of
persistence.
When mammalian cell cultures are acutely infected with

TBFV, a legion of general cellular defense and antiviral

systems are triggered, as are specific factors designed to
limit or restrict virus reproduction. Some of these include
type I interferon (IFN-a/IFN-b), type III interferon (IFN-k),
mitochondrial activated signaling, and the induction of
inflammatory factors, such as interleukins (Tam & Messner,
1999; Madden, 2003; Van Gerpen, 2003). For example, the
IFN-induced tripartite motif protein, TRIM79a, has been
shown to restrict TBEV replication by degrading NS5 (Taylor
et al., 2011). The unimpeded deployment of these antiviral
factors and systems would lead to cell death. Cell death is
thought to be mediated primarily through apoptosis (R�u�zek
et al., 2009), and programmed cell death induced by various
TBFVs has been described in neurons, epithelial cells,
hepatocytes, Kupffer cells, and neuroblastoma cells (Ra-
manathan et al., 2006).
Impeding or evading the antiviral response is one char-

acteristic of VBFVs, which plays an important role in viral
persistence. During flavivirus infection, IFN production is
induced within hours, but viral RNA replication complexes
are enclosed in vesicles, which may offer protection from
recognition by pathogen recognition receptors, thus delay-
ing IFN production (Welsch et al., 2009; Gillespie et al.,
2010; Overby et al., 2010; Offerdahl et al., 2012; Ye et al.,
2013). In addition, some VBFVs can directly affect IFN
secretion by inhibiting IFN gene transcription, suppressing
IFN signaling or impairing the functions of interferon-stim-
ulated genes (Best et al., 2005; Robertson et al., 2009; Ye
et al., 2013). The humoral and cell-mediated immune
responses are also prone to inhibition by VBFVs. Studies
with WNV in C57BL/6 mice suggest that WNV-specific
antibodies correlate with decreased spread to the CNS
(Diamond, 2003). Antibody escape mutants could also
evade the T cell recognition (Diamond, 2003), but a precise
role of these in viral persistence is yet to be defined.
The E protein is thought to be responsible for provoking the

cytopathic effect (Isaevaet al., 1998;Prikhod’koet al., 2001).
However, the NS3 protease and NS2B-NS3 protease pre-
cursor (Table 1) are also known to induce apoptosis by
binding to caspase 8 (Shafee & AbuBakar, 2003; Ramana-
than et al., 2006; Safronetz et al., 2013). In addition, NS2A
has also been implicated in causing IFN-independent
cytopathic effect (Chang et al., 1999; Melian et al., 2013).
Observations in our laboratory (L. Mlera, D. Offerdahl & M.E.
Bloom, unpublished results) and those of others (Lancaster
et al., 1998) indicate that TBFV infection in mammalian cell
culture is characterized by an acute phase, which kills most
infected cells; however, a small number of cells survive the
initial cytolytic phase, and the culture is repopulated with cells
almost all of which are infected. Clearly, VBFV induces an
acutely cytopathic infection in mammalian cells, and thus, the
development of a persistent infection implies that cell death
factors must be evaded or modulated, although the precise
mechanisms are still obscure.
The implication of specific viral proteins, domains, or

sequences that combat cytolytic cell death has been rather
limited, but any viral determinants that limit cell death in
the face of acute infection might also enhance the initiation
of persistent infection. For example, viral NS4A (Table 1)
was shown to induce phosphatidylinositol 3-kinase
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(PI3K)-dependent autophagy and thereby leading to pro-
tection from cell death (McLean et al., 2011). The manip-
ulation of apoptosis by JEV, which activates PI3K in
infected cells, was also reported (Lee et al., 2005). JEV
triggers apoptosis during the late stages of infection, and
the activation of PI3K is thought to provide protection from
early cell death. Limited replication implies a low level of
viral protein expression and may favor viral persistence.
Over the years, significant attention has been focused on

defective interfering (DI) virus particles, which limit replica-
tion of the wild-type virus (Schmaljohn & Blair, 1977;
Debnath et al., 1991; Blitvich et al., 1999). The DI particles
represent truncated genomes that can be replicated and
encapsidated and compete with wild-type viral particles
when they infect cells. In vesicular stomatitis virus (VSV), DI
particles are thought to modulate virulence (Cave et al.,
1985). However, the role of VBFV DI particles in persistence
is not completely certain. For TBEV, the C protein is
reported to tolerate internal deletions ranging from 4 to
21 amino acids, and the deletions seem to favor attenuation
and immunogenicity (Kofler et al., 2002). DI particles of
VBFVs, such as Murray valley encephalitis (MVE), TBEV
Sofjin strain, and WNV, are known to generate truncated
NS1 proteins, following infection at high multiplicity of
infection (Debnath et al., 1991; Poidinger et al., 1991; Chen
et al., 1996; Bugrysheva et al., 2001). Persistent infection of
Vero cells with MVE was associated with a truncated NS1,
whereas this form of NS1 was not noted in the acute
infection (Brinton, 1982; Lancaster et al., 1998). The trun-
cated NS1 in MVE virus was a result of the presence of DI
RNA, which contained a large internal deletion (Lancaster
et al., 1998). In this case, MVE DI particles reduced the
wild-type MVE titer by 75–95% (Poidinger et al., 1991).
However, a causal role for the MVE DI particles in
maintaining persistent infection was not conclusively dem-
onstrated. Studies of the Far Eastern Sofjin strain of the
TBEV complex identified a 39-kDa truncated NS1 in both
acutely and persistently infected human kidney RH cells
(Bugrysheva et al., 2001). For WNV, naturally occurring DI
particles interfere with transmission in mosquitoes and
minimally impact pathogenesis in mice (Pesko et al.,
2012). Furthermore, truncated DENV RNA species, sug-
gesting the presence of DI particles, have been identified in
acute human infections (Li et al., 2011), but have not been
described in other acute VBFV infections in humans.
Similarly, Banzi virus DI particles seem to have been
generated in resistant C3H/RV mice (Smith, 1981). Although
DI particles and the truncated NS1 may be frequently
observed in persistent infections, it is not at all clear that
they are independently sufficient for the establishment and
maintenance of a persistent infection in vitro or in vivo.
Stable expression of truncated NS1 failed to render persis-
tent infection with JEV, suggesting that truncated NS1 is a
consequence rather than a cause for viral persistence (Liao
et al., 1998). The role of DI particles merits further inves-
tigation, but the role of other aspects of virus biology should
also be scrutinized.
Restricted expression of the envelope (E) protein may

also favor development of persistence. In KN73 cells that

were persistently infected with JEV, the E protein was found
to be expressed at markedly low levels compared with
acutely infected cells (Feng et al., 2002). In these studies,
the expression of NS3 was found to be unchanged in the
acute and persistent phases of JEV infection (Feng et al.,
2002). As the E protein is important for pathogenesis and
immunity (CDC, 2009), low-level expression could result in
immune tolerance and contribute toward viral persistence.
In addition to low expression levels, mutations in the E

protein of JEV, YFV, and WNV might also play a role in
VBFV persistence (Ding et al., 2005; Farfan-Ale et al.,
2009). A 138E?K mutation in the E protein of JEV and
WNV was shown to inhibit cell–cell spread of the virus and to
contribute toward the development of a small-plaque phe-
notype (Carson et al., 2006). While this mutation leads to
viral attenuation (Carson et al., 2006) and is key in the
attenuation of JEV SA14-14-2 vaccine (Monath et al.,
2002), further elucidation of mutations that may play a role
in persistence is required.
Observations that hamsters and mice infected with

MBFVs obtained from urine of other MBFV-infected animals
do not suffer severe disease and become persistently
infected indicate that the virus is attenuated (Rosen et al.,
1983; Ding et al., 2005). A number of amino acid-changing
mutations in C, E, NS1, NS2A, NS2B, and NS5 were
reportedly associated with persistence of WNV in serially
passaged hamsters (S�anchez-Vargas et al., 2009). These
mutations are thought to have attenuated the virus
(S�anchez-Vargas et al., 2009). However, the same muta-
tions have not been reported by other groups, suggesting
that the mutations may not be specific to development or
maintenance of viral persistence.
Mechanisms not directly involving viral proteins may also

play a significant role in persistence. For instance, JEV
delays the exposure of dsRNA to innate sensors and inhibits
phosphorylation of IRF3 via noncoding viral short flaviviral
RNA (Espada-Murao & Morita, 2011; Chang et al., 2013).
Similarly, WNV delays recognition by pathogen recognition
receptors by activating IRF3 in a RIG-I-dependent manner
without antagonizing the host IFN response (Fredericksen &
Gale, 2006). The mechanism of evasion is currently not
clear, but membrane-bound vesicles that enclose the
RIG-I-activating dsRNA of TBEV have been described
(Overby et al., 2010). As the delayed recognition of viral
pathogen-associated molecular patterns is only temporary,
these manipulations are probably just among the suite of
mechanisms deployed for the establishment of viral persis-
tence. The specific viral genes and how they manipulate
apoptosis at a cellular level needs further examination.
Specific host genes that may contribute toward the

development of flavivirus persistence in the vertebrate host
have not been defined, but there are some suggestions. For
instance, the overexpression of the proto-oncogene Bcl-2
was reported to prevent apoptosis and promote persistence
in JEV-infected BHK and CHO cells (Liao et al., 1998),
suggesting that the control of apoptosis is likely to be
implicated. In addition, some inbred laboratory mice strains
can carry the 20-50-oligoadenylate synthetase gene, Flvr,
which confers flavivirus resistance (Urosevic et al., 1997).
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The animals are productively infected with flaviviruses, but
produce low virus titer (Brinton & Perelygin, 2003; Barkhash
et al., 2010). Mice that are susceptible to flavivirus infection
carry the Flvs allele. The Flvr-like allele has also been
characterized in wild mice and could be a partial explanation
of flavivirus persistence in rodents in nature (Urosevic et al.,
1997). Additional vertebrate genes, apart from the Flv, could
play a role in varied susceptibilities of different mouse
strains to flavivirus infection. This was suggested from
recent observations that TBEV-infected BALBc mice were
moderately resistant, STS mice are highly resistant,
whereas the BALBc/STS recombinant mice were highly
sensitive to infection (Palus et al., 2013).
Immunosuppression may also be a potentiating factor for

the establishment of flavivirus persistence in animal hosts.
For example, WNV persistence was demonstrated by the
detection of WNV RNA and immunohistochemistry in brain
tissue of an immunosuppressed 57-year-old man 4 months
after the initial diagnosis (Penn et al., 2006). The follicular B
cell lymphoma, from which he had suffered, may have
facilitated, or aggravated, the persistence of WNV. In mice,
transient immunosuppression with cyclophosphamide leads
to WNV recrudescence (Appler et al., 2010), an observation
suggesting that some aspects of the immune system
operate to restrict WNV replication during persistence.
However, the situation is complicated because WNV is able
to persist for up to 16 months in the face of a robust humoral
immune response in C57BL/6 mice (Appler et al., 2010).
Furthermore, WNV persistence was reported in the brains of
CD8+ T cell-deficient rodents (Shrestha & Diamond, 2004),
but the CD8+ T cell deficiency did not affect the antibody
response in this mouse model. Knowledge about specific
immune system components that could facilitate or control
viral persistence remains to be characterized.
Infection by VBFVs of arthropod cells has not received the

same degree of study; however, acute infection is not
accompanied by the same cytopathic response observed in
mammalian cells. In addition, very little is known about how
or in what tissues TBFVs persist in the ticks, but the viruses
likely evolved mechanisms of modulating or evading the tick
immune system over the millenia (Robertson et al., 2009).
Persistent infection of the I. scapularis cell line ISE-6
(Munderloh et al., 1994) was readily established and was
noncytopathic (Offerdahl et al., 2012). Detailed studies of
persistent TBFV infection in arthropod cell lines using
contemporary techniques and methods are certain to yield
useful and interesting information.
The mechanism(s) of how MBFVs persist in mosquitoes

also remains a suitable topic for investigation. SLEV persists
in the midgut of C. pipiens for hours before infecting the
midgut epithelium (Whitfield et al., 1973; Brackney et al.,
2008a), but this is a short time. Interestingly, approximately
two-thirds of flavivirus-related sequences were reportedly
detected as integrated dsDNA form in laboratory-bred and
wild Aedes mosquitoes (Crochu et al., 2004), although
detection of a complete flavivirus genome was not reported.
Furthermore, the finding of partial flavivirus-like sequences
in DNA form is not clear. Clearly, research into the biology of

flavivirus persistence in mosquitoes and ticks has been
limited and is worthy of extensive additional research.
In summary, it should be apparent that both viral and host

factors play a role in the initiation and maintenance of
persistent infection at both the cellular and organismal
levels. In addition, successful persistence in nature almost
certainly depends upon ecological and environmental
forces, but these latter factors are wholly beyond the scope
of this limited review.

Lessons from other viral systems

Multiple RNA and DNA viruses are known to establish
persistence in culture as well as in humans and animals.
Consideration of several may provide insight, if not direct
parallels, useful in the study of biology of persistent VBFV
infections.
The Hepacivirus genus, containing hepatitis C virus

(HCV) species, belongs to the Flaviviridae family, together
with the Flavivirus genus under which VBFVs are classified.
Despite the virus-specific cytotoxic T lymphocytes and
antibodies, persistent HCV infections, which are established
with high efficiency, are known to occur in humans and
animals, such as chimpanzees (Main et al., 1979; Caini
et al., 2012; McNally et al., 2012). HCV persistence is
associated with various strategies, such as the high genetic
variability that facilitates passive immune evasion. In vivo,
HCV fails to activate CD4+ T cells, leading to exhaustion of
CD8+ T cells. At cellular level, HCV can block interferon
induction by blocking RIG-I and mitochondrial antiviral
signaling (MAVS) using its NS3-NS4A protease, which
cleaves the IFN promoter-stimulator 1 (Gould, 2001;
Mu~noz-Jord�an et al., 2005; Baril et al., 2009; Hudopisk
et al., 2013; Perera-Lecoin et al., 2013).
Hantavirus infections are another interesting example of

viral persistence. Hantaviruses are segmented, RNA
viruses that cause lifelong infections in their reservoir
rodent hosts, despite high levels of neutralizing antibodies
(Botten et al., 2000; Meyer & Schmaljohn, 2000; Easter-
brook & Klein, 2008). Pathogen recognition receptors, such
as RIG-I and TLR7, are not elevated in the lungs of
infected rats, suggesting that evasion of viral recognition
may contribute toward the establishment of a persistent
infection. Perhaps, the reason for noninduction of RIG-I is
the fact that hantaviruses do not produce detectable
amounts of dsRNA (Wang et al., 2011). IFNs, such as
IFN-b, IFN-k, MxA, and pro-inflammatory chemokines,
cytokines, and transcription factor genes are elevated
midway in the infection followed by a down-regulation that
favors the expression of TGF-b (Schountz et al., 2012). A
continued up-regulation of the cytokines could be detri-
mental to the cell, and the virus would fail to persist.
Results of a recently established animal model also show
that host-adapted SNV achieves prolonged and dissemi-
nated infection, with no disease in hamsters (Safronetz
et al., 2013). Therefore, hantaviruses may have evolved
mechanisms of manipulating target genes, which estab-
lishes persistence when induced.
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One of the best-studied models of persistent RNA virus
infection is the rodent-borne arenavirus, lymphocytic cho-
riomeningitis virus (LCMV). In LCMV clone 13 (Cl13), a
glutamine at position 1079 in the glycoprotein (lysine in the
ARM 53b strain of LCMV) is important for persistence, but
its precise function is unknown (Salvato et al., 1991;
Moskophidis et al., 1995). The mechanisms of LCMV
persistence are linked to the down-regulation of MHC and
costimulatory molecules, inflammatory cytokines, as well as
virus-induced production of immunosuppressive cytokines
(Ng et al., 2011). The inability of CD134-deficient mice to
control LCMV infection over time was reported to be a result
of CD4 and CD8 responses (Boettler et al., 2012). In
addition, OX40 also has a role in the establishment of
persistent LMCV infection (Boettler et al., 2012). A recent
report showed that IFN blockade of type I IFN signaling
results in a CD4 T cell-dependent clearance of LCMV Cl13
(Teijaro et al., 2013). This is an interesting observation
considering that IFN induction is part of the antiviral
response and that its induction can lead to apoptosis.
However, the precise mechanism of persistence is not
completely clear (Easterbrook & Klein, 2008), but it also
demonstrates ‘clever’ viral manipulation of the host system
to establish persistence.
Coxsackievirus infections are another system from which

lessons might be drawn. Coxsackievirus B3 has been
implicated toward the development of certain chronic
muscle diseases, such as chronic inflammatory myopathy
(Lodge et al., 1987; Tam & Messner, 1999). Coxsackievirus
persistence in cell culture can take two forms: (1) an
incurable steady state characterized by nonlytic virus
infection and (2) an antiviral-curable carrier culture system
(Brinton, 2013; Pierson & Kielian, 2013). While mechanisms
of coxsackievirus persistence are not completely under-
stood, down-regulation of the coxsackievirus receptor (CAR)
has been suggested to play a role in viral persistence
(Varatharaj, 2010). Down-regulation of CAR in coxsackievi-
rus-infected HL-1 cells occurs rapidly from 60% following
three passages to 90% at passage 8 (Varatharaj, 2010).
The importance of CAR down-regulation is emphasized by
the fact that in vitro CAR knockout results in reduced viral
replication as well as virus-induced cell lysis (Tomori, 2004;
Gulati & Maheshwari, 2007).
These selected examples simply highlight the diversity of

possible mechanisms that the VBFV might harness in
initiating and maintaining persistence and provide concepts
that might be useful to investigate.

Avenues for future studies

In the preceding sections, we surveyed a substantial
literature with relevance to various aspects of flavivirus
persistence. Elucidation of how flaviviruses persist in
humans could help toward the development of therapeutic
interventions that could alleviate morbidity and budgetary
burdens associated with neurological sequelae. Despite the
current knowledge, a relative dearth of knowledge still
exists, and additional research is merited on these signifi-
cant human pathogens. For instance, the definition of

specific viral proteins and cellular factors and their interac-
tions in the establishment and maintenance of persistent
infection is very limited. As noted, for flaviviruses to persist
in infected cells in culture or in vivo, specific host defenses
need to be evaded or controlled.
The role of NS5 as an interferon antagonist (especially in

TBFVs) has been established (Best et al., 2005), but its IFN
antagonism in the context of VBFV persistence has not
been fully explored. This is also true for MBFV NS4B, which
impairs IFN-a/b induction via JAK/STAT signaling
(Mu~noz-Jord�an et al., 2005). Furthermore, mutations in
NS2A of Kunjin virus result in increased IFN levels,
suggesting an IFN antagonistic role of NS2A (Liu et al.,
2004). Intriguing is the fact that VBFVs antagonize IFN even
in the cells that will eventually die in the acute phase of
infection. As IFN antagonism seems to be important for
HCV, interrogating the role of these VBFV proteins to
ascertain their role in the establishment of viral persistence
will be critical.
The specific mammalian host immune responses that are

evaded or controlled also need to be identified precisely.
Although overexpression of Bcl-2 in BHK and CHO cells
resulted in the inhibition of apoptosis and JEV persistence, a
direct viral effect on Bcl-2 was not determined (Liao et al.,
1998). It would be useful to understand which, and how,
VBFV proteins interact with the Bcl-2 pathway. Indeed, other
host pathways could be involved and need to be elucidated
further.
The exact correlates of persistent flavivirus infection in the

arachnid or insect vector host also need to be determined.
The biology of ticks and that of mammals is completely
different. For ixodid tick vectors, identifying genetic or
biological targets that could play a role in viral persistence
is imperative. These vector mechanisms might find applica-
tion, when known, in efforts to control natural flavivirus
persistence cycles in ticks. The mechanism(s) could involve
viral genetic changes, such as specific mutations that may
render the virus less detectable in infected cells. An
important question for transmission and viral evolution
dynamics is why arthropod vectors do not appear to be
killed by viral infection.
The down-regulation of the CAR, as a coevolutionary

development that favors persistence, is intriguing (Fechner
et al., 2007; Pinkert et al., 2011). For flaviviruses, various
receptors have been identified as possible virus-entry
mechanisms (Smit et al., 2011; Perera-Lecoin et al.,
2013). Investigations into whether there is a down-regulation
of flavivirus receptors, as in Coxsackievirus persistence,
could be useful in defining flavivirus persistence mechanism
(s).
Finally, the establishment of relevant animal models of

VBFV persistence will also be crucial for understanding the
dynamics of viral persistence and host responses. Animals
that serve as the natural host reservoirs will be key in
developing these models. Some models have been estab-
lished, but may have failed to answer ecologically important
question. Thus, future work will combine studies encom-
passing the biology of VBFVs, molecular cell biology, animal
models, and eventually virus–host ecology.
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