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Background: Considered as one of the major reasons of sudden cardiac death, hypertrophic
cardiomyopathy (HCM) is a common inherited cardiovascular disease. However, effective
treatment for HCM is still lacking. Identification of hub gene may be a powerful tool for
discovering potential therapeutic targets and candidate biomarkers.

Methods: We analysed three gene expression datasets for HCM from the Gene Expression
Omnibus. Two of them were merged by “sva” package. The merged dataset was used for
analysis while the other dataset was used for validation. Following this, a weighted gene
coexpression network analysis (WGCNA) was performed, and the key module most related
to HCM was identified. Based on the intramodular connectivity, we identified the potential
hub genes. Then, a receiver operating characteristic curve analysis was performed to verify
the diagnostic values of hub genes. Finally, we validated changes of hub genes, for genetic
transcription and protein expression levels, in datasets of HCM patients and myocardium of
transverse aortic constriction (TAC) mice.

Results: In the merged dataset, a total of 455 differentially expressed genes (DEGs) were
identified from normal and hypertrophic myocardium. In WGCNA, the blue module was
identified as the key module and the genes in this module showed a high positive correlation
with HCM. Functional enrichment analysis of DEGs and key module revealed that the extra-
cellular matrix, fibrosis, and neurohormone pathways played important roles in HCM. FRZB,
COL14A1, CRISPLD1, LUM, and sFRP4 were identified as hub genes in the key module. These
genes showed a good predictive value for HCM and were significantly up-regulated in HCM
patients and TAC mice. We also found protein expression of LUM and sFRP4 increased in
myocardium of TAC mice.

Conclusion: This study revealed that five hub genes are involved in the occurrence and
development of HCM, and they are potentially to be used as therapeutic targets and
biomarkers for HCM.

Keywords: hypertrophic cardiomyopathy, HCM, weighted gene coexpression network

analysis, WGCNA, hub gene, biomarkers, bioinformatics analysis

Introduction

As a common inherited cardiovascular disease, hypertrophic cardiomyopathy
(HCM) is still an unsolved clinical problem. Previous studies have reported that
HCM is caused by more than 1,440 mutations in 11 or more genes encoding cardiac
sarcomeric proteins.' > Sarcomere mutations in the two most common genes, f-
myosin heavy chain (MYH7) and myosin-binding protein C3, have been found in
approximately 70% of the genotyped patients.* However, genetic defects that cause
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HCM have only be identified in less than 50% of the
clinically diagnosed probands.® Thus, the complex patho-
genesis of HCM has not been elucidated yet. HCM is
a heterogeneous heart disease, and its prevalence is at
least 1 in 500 people (0.2%) in the general population.®
Its symptoms include exercise intolerance, angina, dys-
pnea, syncope, heart failure, atrial fibrillation, embolic
stroke, and sudden death.® The current treatment strategies
for HCM mainly include improving the symptoms and
preventing sudden death, and no specific treatment
exists.””® Discovery of hub genes in the occurrence and
development of HCM may facilitate the discovery of spe-
cific therapeutic targets and candidate biomarkers.

Presently, systems biology has been applied to the
study of multiple diseases.”'' Among them, the weighted
gene coexpression network analysis (WGCNA) identifies
candidate biomarkers and therapeutic targets by finding
gene clusters having a high correlation with the
phenotype.'*'* In this study, we used multiple indepen-
dent gene expression datasets from the Gene Expression
Omnibus (GEO) database to discover potential therapeutic
targets and candidate biomarkers for HCM. First, we
merged two independent datasets and performed differen-
tial expression analysis. Subsequently, we utilized
WGCNA to search the gene coexpression modules highly
related to HCM, and we performed gene annotation to
identify their functions. Finally, we identified five hub
genes, namely FRZB, COL14A1, CRISPLD1, LUM, and
sFRP4, in the key module, and we validated the expression
changes and diagnostic values of hub genes by using
another dataset and animal model.

Materials and Methods

Data Collection

The RNA expression profiles of GSE133054, GSE141910,
and GSE36961 were downloaded from the GEO database
(http://www.ncbi.nlm.nih.gov/geo/). The expression profiling
of GSE133054, which includes 8 normal cardiac tissues and 8
HCM cardiac tissues, was performed using high throughput

sequencing. The expression profiling of GSE141910, which
contains cardiac tissues from health donors and patients with
cardiomyopathies, was performed using high throughput
sequencing. And we downloaded the expression data of 28
normal and 28 HCM cardiac tissues. The expression profiling
of GSE36961, which includes 39 normal cardiac tissues and

106 HCM cardiac tissues, was performed using array.

Preprocessing of Data and Screening of
Differentially Expressed Genes (DEGs)

In this study, we used R version 3.6.1 for analysis. The
GSE133054 dataset is the expression matrix of raw gene
counts, and the voom function in “limma” package was
the dataset.'® The downloaded
GSE141910 dataset was also normalized using the voom

used to normalize

function in limma. The GSE36961 dataset was normalized
by Fastlo normalization and log2 transformation.'’

We merged the GSE133054 and GSE141910 datasets
and used the “sva” package to correct the batch effect.'®
Two-dimensional principal component analysis (PCA)
cluster plots were used to show the sample distribution
before and after correction. The merged dataset was used
for further analysis. DEGs were screened using the
“limma” package,'® the cutoff criteria were set as adjusted
P < 0.05 and [log2-fold change (log2 FC)| > 1. The vol-
cano map and heatmap were used to demonstrate the

differential expression of DEGs.

Enrichment Analyses of the Gene
Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG)
pathways

The “clusterProfiler” package was used to perform func-
tional enrichment analysis.'” Adjusted P < 0.05 was con-
sidered statistically significant, and the enrichment terms
were sorted according to gene counts.

Coexpression Network Construction

The top 25% (3670 genes) of the variance in the merged
dataset were selected for co-expression network analysis.
The “WGCNA” package version 1.68 in R software was

20,21

used to construct the co-expression network

Adjacency coefficient (aij) was calculated as follows:
a; =", S; = |cor(x;x,)|
y s =y v

Where xi and xj are vectors of expression value for genes
i and j; cor represents Pearson’s correlation coefficient of
the two vectors; and aij is adjacency coefficient, which is
acquired via exponential transform of Sij.

The WGCNA method takes topological properties into
consideration in order to identify modules from a gene co-
expression network. Therefore, this method not only con-
siders the relationship between two connected nodes, but
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also takes associated genes into account. Weighting coeffi-
cient (Wij) is calculated from aij as follows:

Wir= (I +ay)/ (mintk;, K} +1-a;), 1;= Yy, K= 2ai

y

Where u represents common genes linked gene i and
gene j together; aiu, the connection coefficient of gene
i and gene u; and auj, the connection coefficient of gene
u and gene j. Wij considers overlapping between neigh-
bor genes of genes i and j. Modules were identified via
hierarchical clustering of weighting coefficient
matrix W.

Sample clustering to detect outliers in the samples.
An appropriate soft threshold was selected to ensure
scale-free topology (R?>0.9). The topological overlap
matrix (TOM) was constructed to measure the network
connectivity of the genes. Genes with similar patterns
were clustered into the same modules (minimum size
=30) using average linkage hierarchical clustering. The
relationships between phenotypes and modules were
calculated to identify highly related modules. Finally,
the highly correlated modules were analysed to explore
their potential roles. In addition, the gene expression
profiles of the highly correlated modules were visualised

using the R software.

Identification of Hub Genes

The intramodular connectivity (IC) represents the connection
strength between genes in the module, and the genes with
higher IC are more important in the module. Therefore, we
identified the genes with high IC as hub genes. Cytoscape
version 3.7.2 was used for visualization.*

Validation of the Hub Genes in Datasets

and Analysis of the Receiver Operating
Characteristic (ROC) Curve

The expression data of hub genes extracted from the merged
dataset and verification dataset GSE36961 were utilized to
validate the differential expression of hub genes in HCM. The
“glmnet” package was used to construct a logistic regression
model for hub genes.*> Additionally, the merged dataset was
used as a training set to construct the model while GSE36961
was used for external validation. Subsequently, we used the
“pROC” package to perform ROC curve analysis.**

Transverse Aortic Constriction (TAC)
A pressure-overloaded cardiac hypertrophy model was con-
structed using TAC. Briefly, 8—10-week-old C57BL/6 mice

were anesthetised with 0.3% intraperitoneal pentobarbital.
A minimally invasive incision was performed at the junction
of sternum and the upper edge of left second rib with the
help of a stereo microscope. After separating the adjacent
tissue around the aortic arch, a 6/0 silk suture was threaded
under the aortic arch, and it was tied over a 27-gauge needle.
When the needle was removed, the model was successfully
made. The sham group underwent the same procedure with-
out the banding of aortic arch. The animal procedures were
performed under a project license (NO.: SRRSH20201215)
granted by institutional ethics committee of Sir Run Run
Shaw Hospital, in compliance with institutional guidelines
for the care and use of animals.

Histology

After 4 weeks of TAC, the hearts were harvested and fixed
in 4% paraformaldehyde. Subsequently, the hearts were
cut into 4 mm slices after dehydration and paraffin embed-
ding. The Masson’s trichrome staining was conducted for
observing the collagen deposition in the heart.

Total RNA Isolation and Quantitative
Real-Time Polymerase Chain Reaction

(qRT-PCR)
Total RNA from the sham and TAC-operated hearts was
extracted using ultrapure RNA kit (CWBio, Beijing,
China). The obtained mRNA was reverse transcribed to
cDNA using the PrimeScriptTM RT Master Mix (Dalian,
China). Following this, each 384-well plate was mixed
with 10 ng cDNA, 5 uL qPCR SYBR Mix (Yeason,
China), 3 pL ddH20, and 1 pL primer. The primer
sequences were provided in Supplementary Table 5.

Western Blot

Proteins were lysed from myocardium of sham and TAC
mice. The lysate was resolved on 8-12% sodium dodecyl
sulfate/polyacrylamide gel electrophoresis (SDS/PAGE),
transferred to nitrocellulose membrane, and immuno-
blotted with the indicated antibodies as following, anti-
FRZB (Bioss, bs-16185R), anti-Lumican (Ablonal,
A11593), anti-Collagen XIV alpha 1 (Affinity, AF0573),
Anti-SFRP4 (Proteintech, 15328-1-ap), Anti-CRISP10
(Bioss, bs-14060R), anti-RCAN (Sigma D6694).

Statistical Analysis
Most bioinformatic analyses were performed using
R with default statistical settings and cutoff values
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method  sections.

Measurement data were expressed as mean + standard

specified in the individual

deviation (Mean = SD) and analyzed by unpaired
Student’s t-test. P < 0.05 was considered statistically

significant.

Results

Preprocessing of Data and ldentification
of DEGs

First, the GSE133054 and GSE141910 expression

matrices were merged. The merged dataset included 36
normal cardiac samples and 36 HCM cardiac samples.
Following this, the inter-batch difference was removed
using the “sva” package. The sample distribution before
and after eliminating the batch effect was shown in the
two-dimensional PCA cluster diagram (Figure 1A, B). The
results indicate an elimination of batch difference.
GSE36961 was used as the validation dataset.

In the differential expression analysis, we identified
455 DEGs, including 302 upregulated genes and 153
downregulated genes [adjusted P value < 0.05, [log2 FC|
> 1, Figure 1C, D]. Hierarchical clustering analysis
showed that the expression levels of DEGs were signifi-
cantly different (Figure 1E).

Functional Enrichment Analysis of DEGs
The functional categories of GO terms include biologi-
cal process (BP), cellular component (CC), and mole-
cular function (MF). The most enriched BP terms were
associated with extracellular structural organization,
extracellular matrix organization, regulation of neuro-
transmitter levels, regulation of blood circulation, and
heart contraction. The most enriched CC terms were
mainly associated with extracellular matrix, collagen-
containing extracellular matrix, and endoplasmic reti-
culum lumen. As for MF, DEGs were mainly asso-
ciated with receptor regulator activity, cation
transmembrane transporter activity, and extracellular
matrix structural constituent (Figure 2A). Detailed
information is listed in Supplementary Table 1.

In KEGG pathway enrichment analysis, the DEGs

were mainly enriched in neuroactive ligand-receptor inter-

action, cytokine-cytokine receptor interaction, phagosome,
protein digestion and absorption, and renin-angiotensin
system (Figure 2B). Detailed information is listed in
Supplementary Table 2.

Construction of Weighted Coexpression
Network and ldentification of Key
Modules

The 72 samples were clustered using the “hclust” function
in the “WGCNA” package to detect outliers (cutHeight =
110, Figure 3A). Therefore, the expression profiles of N14,
N18, N29, H18, H22, H33, H35, and H36 were excluded
from the following analyses. Soft-threshold = 7 was used
to construct a gene coexpression network. (Figure 3B
and C).

Next, we used a one-step method to construct the
coexpression network. Genes with similar expression pat-
terns were clustered into the same module. In this study,
we identified a total of 11 gene modules (Figure 3D).
Subsequently, the correlation between Module eigengenes
(ME) and HCM was calculated, and the blue (r = 0.78; P =
3x107'*) and magenta (r = —0.83; P = 4x10™'7) modules
were identified as significant modules having the highest
correlations with HCM (Figure 4A). To further evaluate
the correlation between HCM and the modules, the mod-
ule membership and gene significance were calculated.
The blue module (cor = 0.74; P = 1.8x10 %?) showed
a high positive correlation with HCM (Figure 4B),
—-0.74;, P =
1.3x107") showed a high negative correlation with
HCM (Figure 4C). Meanwhile, the genes in the blue
module were significantly upregulated (Figure 4D), while

whereas the magenta module (cor =

the genes in the magenta module were significantly down-
regulated in HCM (Figure 4E).

Functional Enrichment Analysis of Key
Modules

Analysis of BP in the blue module revealed that the genes
were enriched in extracellular matrix organization, trans-
membrane receptor protein serine/threonine kinase sig-
naling pathway, cellular response to transforming
growth factor beta (TGF-B) stimulus, TGF-p receptor
signaling pathway, collagen fibril organization, and kera-
tan sulfate catabolic process. As for CC and MF, genes in
the blue module were mainly enriched in extracellular
matrix (CC), endoplasmic reticulum lumen (CC), extra-
cellular matrix structural constituent (MF), and receptor
regulator activity (MF) (Figure 5A). The enriched path-
ways of the blue module were mainly associated with
protein digestion and absorption and the thyroid hormone
signaling pathway (Figure 5B). Detailed information is
listed in Supplementary Tables 3 and 4. Since the genes
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Figure | Merging of datasets and differential expression analysis. (A, B) Two-dimensional principal component analysis cluster plot before and after merging GSEI133054 and
GSE141910. (C) Volcano plot of 455 DEGs. (D) The number of DEGs filtered using limma according to the cutoff criteria [adjusted P value < 0.05, |log2 FC| 2 I]. (E)

Heatmap of all DEGs.

Abbreviations: Normal, normal myocardial tissue; HCM, hypertrophic cardiomyopathy myocardial tissue; DEGs, differentially expressed genes; FC, fold change.
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of the magenta module were not enriched into any GO
terms and KEGG pathway, we did not analyse the module
further.

Identification of Hub Genes

In the blue module, frizzled related protein (FRZB, IC =
27.6), collagen type XIV alpha 1 chain (COL14Al, IC =
24.7), cysteine rich secretory protein LCCL domain con-
taining 1 (CRISPLDI, IC = 23.3), lumican (LUM, IC =
22.8), and secreted frizzled related protein 4 (sFRP4, IC =
21.8) were identified as the hub genes (Figure 5C).
Simultaneously, the hub genes we identified based on
high IC also have high GS and high MM, and the results
are as follows: FRZB (MM cor=0.9378, GS 0.7264),
COL14A1 (MM cor=0.8891, GS 0.7429), CRISPLDI
(MM cor=0.9209, GS 0.6862), LUM (MM cor=0.9049,
GS 0.6621), and sFRP4 (MM cor=0.8462, GS 0.6997).
These hub genes may play key roles in HCM.

ROC Curve Analysis of Hub Genes

In order to verify the diagnostic values of hub genes, we
performed ROC curve analysis. In the merged dataset,
FRZB (AUC 0.949), COL14A1 (AUC 0.953),
CRISPLD1 (AUC 0.917), LUM (AUC 0.902),
sFRP4 (AUC = 0.923), and the logistic regression model
of hub genes (AUC = 0.971) showed an excellent predic-
tive power (Figure 6A). Through the verification of
GSE36961 datasets, we further proved that FRZB (AUC
= 0.954), COL14A1 (AUC = 0.718), CRISPLD1 (AUC =
0.758), LUM (AUC = 0.888), sFRP4 (AUC=0.923), and

the logistic regression model of hub genes (AUC = 0.889)
had an excellent predictive power (Figure 6B).

Validation of Hub Gene Expression

In the merged dataset, FRZB, COL14A1, CRISPLDI,
LUM, and sFRP4 were significantly upregulated in HCM
samples (Figure 7A). Additionally, in the verification data-
set GSE36961, the expression levels of FRZB, COL14Al,
CRISPLDI1, LUM, and sFRP4 were significantly upregu-
lated in HCM samples (Figure 7B).

Myocardial fibrosis was observed in TAC mice
(Figure 7C), and qRT-PCR was performed on the sham
and TAC myocardial samples. The results showed that
ANP, FRZB, COL14A1, CRISPLD1, LUM, and sFRP4
were significantly upregulated in hypertrophic myocar-
dium (Figure 7D).

Furthermore, we also found that protein levels of LUM
and sFRP4 increased in myocardium of TAC mice, which
is consistent with changes of genetic transcription
(Figure 8). However, myocardial protein expression assay
showed no difference of FRZB, Col14A1, and CRISPLD1
between sham and TAC mice.

Discussion
Currently, bioinformatics has become an important tool to
explore the potential pathogenesis of various

diseases.”>® In this study, we combined multiple inde-
pendent datasets for analysis and verification, and we
identified the module and hub genes associated with
HCM by using WGCNA. To the best of our knowledge,

https:

828

Dove!

Pharmacogenomics and Personalized Medicine 2021:14


https://www.dovepress.com
https://www.dovepress.com

Dove

Ma et al

A Sample clustering to detect outliers
e
o
=]
-
58
£8
o
~
o
o
o
v
B Scale independence C Mean connectivity
o
- _891012141618202224 5505 ... 1
o _| 6
o o
N S
< 5 w0
S S =
° - =
— d
oo ¥ 4 O o 2
o C © O ©
S o 4 c 2
o ? 3 &
O = © 3
= =
- _ o _| 3 c 9o _|
O O o 2 S
w® 2 o =
o9 g | = 5
wE T B7g
< |1 o - 910121416 182022242628 30
< T T T T T T I T l I T I
0 5 10 15 20 25 30 0 S§ 10 15 20 25 30
Soft threshold (power) Soft threshold (power)
D Cluster dendrogram
o _
o |
o
-
E o |
2 e
)
T 5
© |
o
© |
o

Module
analysis

Figure 3 Construction of a coexpression network. (A) Sample clustering to detect outliers; N14, N 18, N29, HI8, H22, H33, H35, and H36 were excluded. (B) Analysis of
the scale-free fit index for various soft-threshold powers; the red line was set at 0.90. (C) Analysis of mean connectivity for various soft-threshold powers. (D) Cluster

dendrogram of genes in the coexpression network.
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this is the first study to integrate combined analysis and
WGCNA to explore the pathogenesis and potential hub
genes of HCM.

In the differential expression analysis, we identified
a total of 455 DEGs, including typical molecular markers
of pathological cardiac hypertrophy, such as ANP and

BNP.?” Enrichment analysis of DEGs revealed that the
regulation of extracellular matrix organization, neurotrans-
mitter levels, and renin-angiotensin system play an impor-
tant role in HCM. Additionally, we performed WGCNA,
and we identified the blue module having the highest
correlation with HCM. Enrichment analysis of the blue
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module revealed that the extracellular matrix organization,
collagen fibril organization, TGF- receptor signaling
pathway, transmembrane receptor protein serine/threonine
kinase signaling pathway, and keratan sulfate catabolic
process were highly related to HCM. Previous studies
have shown that the occurrence and development of hyper-
trophic cardiomyopathy is significantly related to the
changes in extracellular matrix and myocardial fibrosis,
and the cardiac muscle-specific TGF-f signal plays an
important role in fibrosis remodeling.**>° Additionally,
neurohormonal pathways, such as the renin-angiotensin-
aldosterone system, are involved in the pathogenesis of
cardiac fibrosis.*'*? Our enrichment results are consistent
with previous conclusions, which further emphasizes the
important roles of extracellular matrix, fibrosis, and neu-
rohormonal pathways in the pathogenesis of HCM.
Based on the ICs, we identified five hub genes, namely
FRZB, COL14A1, CRISPLD1, LUM, and sFRP4, in the
blue module. In order to explore their potential functions,
we analysed the expression levels of these genes. In the
merged dataset, the expression of hub genes was

significantly upregulated in HCM patients. Furthermore,
in the validation dataset GSE36961, the gene expression
increased in HCM. qRT-PCR results revealed that the hub
genes were significantly upregulated in TAC mice. These
results indicate that hub genes are highly expressed in both
human and mice hypertrophic myocardium. These genes
may play an important role in the occurrence and devel-
opment of HCM. FRZB belongs to the secreted glycopro-
teins family, and it modulates Wnt signaling activity.*?
Previously, it has been reported that FRZB can inhibit
Whnt-mediated cell proliferation in cardiac cushions and
regulate mesenchymal cell proliferation.** Additionally,
congenital heart defect is associated with FRZB.*
However, the role of FRZB in HCM needs to be further
verified. COL14A1 is a fibril-associated collagen that reg-
ulates fibrillogenesis.*® It has been reported that COL14A1
affects arterial remodeling, and it may be involved in the
regulation of essential hypertension, acute aortic dissec-
tion, coronary heart disease, and idiopathic pulmonary
hypertension.””>° Importantly, COL14A1 plays a vital

role in collagen fibril organization and ventricular
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Abbreviations: AUC, area under the curve; ROC, receiver operating characteristic.

832 https://doi.org/10.2147/PGPM.S314880 Pharmacogenomics and Personalized Medicine 2021:14
DovePress


https://www.dovepress.com
https://www.dovepress.com

Dove Ma et al
A Merged dataset
o E COL14A1 2 CRISPLD1 g LUM 2
§15 §20 dedekk §20 Jedkkk § 8 ek §15
.5 .515 .515 .55 - .5
10 A A A %10
g g10 g1o g4 g
35 3 3 3 . 35
2 25 25 221 elsene 2
= = = = =
30 30 30 3 30
e & ¢ Normal HCM 2% Normal ¢
B Verification dataset
FRZB COL14A1 CRISPLD1 LUM sFRP4
%6 kK - %20 Fekkk %14 dekkk %5 Fekkk % 8 ek
> - > .t > [TLY > M > [
5, wamegs 515 e, 512 wieime 54 * Se .
a Fabalele 2 °® o @ 23 o A .
o Mt 010 21.0 o . Q4 wan
=% [} =% o a2 * o aQ [
32 . 3 ‘e . 3 " 3 : 3 .
o (1) S o 0. . 008 . 01! Seeliiess o 2 N %
> > - >
20 ﬁ 200 . . o6 , 8o - ) 34 =, :
¢ Normal HCM @ Normal HCM ¢ HCM ¢ Normal HCM ¢ Normal HCM
C D
FRZB COL14A1 CRISPLD1
% 6 dek (;g 4 *k % 6 *%k
5 §3 . s
g2 . g 2 22 °
1 ’—‘la o
2 3o 2 2 RY
© TO &0 = .
2 Sham TAC @ Sham TAC @ Sham TAC
. LUM . SFRP4 o ANP
3 Kk = ** 2 Hkk
S 4 c6 <40
c c - c
23 o 2 4 I 530 T
8 8 . 8
52 . I 520 E
3 ] EE 32 . S0 -
[ ®ee Qo &‘ o
% 0 . . <_% 0 : é 0 ewnt .
& Sham TAC ¢& Sham TAC ¢ Sham TAC

Figure 7 Validation of the expression of hub genes. (A) Expression of hub genes in the merged dataset. (B) Expression of hub genes in the verification dataset GSE36961.
(€) Masson’s trichrome staining of mouse hearts. (D) Expression of hub genes in TAC mice. Error bars indicate mean + standard deviation. *¥P < 0.01; **¥P < 0.00|; *¥*¥*p <

0.0001.
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COL14A1 may play
a regulatory role in fibrosis and vascular remodeling in
HCM. CRISPLDI is likely a protease that can target the
extracellular matrix, and it may play an important role in

morphogenesis.*”  Therefore,

cellular adhesion.*'*** Remarkably, during the develop-
ment of heart failure in patients with aortic stenosis, the
expression of CRISPLDI1 increases progressively, and it
may play a functional role by regulating Ca2+ cycling.*®
LUM, a glycoprotein belonging to the family of small
leucine-rich repeat proteoglycans, is highly expressed in
connective tissues.***° It has been reported that the LUM
levels in tissues may have a significant effect on the
differentiation of monocytes into fibrocytes; thus, modu-
lating LUM signaling may be useful to treat fibrosis.*’
During proteomic analysis of the myocardium in HCM,

LUM increases,”® which is consistent with our results.
Additionally, LUM controls cardiomyocyte growth by reg-
ulating the pericellular extracellular matrix, and it may
coordinate multiple factors of collagen assembly in the
murine heart.*” A moderate lack of LUM attenuates car-
diac fibrosis and improves diastolic dysfunction following
pressure overload in mice.’® Meanwhile, mechanical and
proinflammatory stimulations can induce fibroblasts to
produce a large amount of LUM and participate in cardiac
remodeling in the process of heart failure.”’ These studies
suggest that LUM may be an important profibrotic mole-
cule in the heart that can serve as a potential therapeutic
target. sSFRP4, a member of the sFRP family, functions as
a soluble modulator in Wnt signaling.’*>> Apart from
binding with Wnt sFRP4 with

ligands, interacts
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Abbreviations: FRZB, frizzled related protein; COLI4Al, collagen type XIV alpha | chain; CRISPLDI, cysteine rich secretory protein LCCL domain containing |; LUM,
lumican; sFRP4, secreted frizzled related protein 4; RCAN, calcipressin regulatory protein.

extracellular matrix receptors such as integrin receptors.>®
Additionally, sFRP4 participates in multiple biological
processes such as apoptosis, angiogenesis, and
proliferation.”” > Previously, it has been reported that
sFRP4 inhibits the expression of cardiac genes and cardiac
differentiation via the activated focal adhesion kinase
pathway.®® Particularly, sFRP4 has been proposed in
many cardiovascular diseases, such as dilated cardiomyo-
pathy, atherosclerosis, myocardial ischemia, reperfusion
injury, coronary artery disease, and heart failure.®' ¢
MYH?7 is one of the sFRP4-targeted genes,®’ which is
closely related to HCM, as mentioned before. Therefore,
sFRP4 may play a role in the development of HCM, and it
may be a novel candidate for HCM.

We also explored the diagnostic values of hub genes.
The five hub genes showed a good predictive value in the
merged and validation dataset, indicating the characteris-
tic expressions of these genes, suggesting their potential
usage as biomarkers. Although we combined multiple
independent datasets for analysis, part of the information
in the network may have been obscured due to the
limitation of sample size. Generally speaking, hub genes
may play an important role in the development of HCM.
In our study, we found that the hub genes were signifi-
cantly associated with HCM. However, further experi-
mental validation is needed to verify whether these
genes are the primary drivers of HCM. The protein levels
of FRZB, Col14A1, and CRISPLD1 showed no differ-
ence in myocardium between sham and TAC mice. This

results may partially related to species difference and the

limited sample size of TAC mice. Additionally, we only
focus on the genes in the module with the highest corre-
lation, which may cause some hub genes in other related
modules to be neglected. This is another limitation inher-
ent to our study.

Conclusion

Our results revealed that FRZB, COL14A1, CRISPLDI,
LUM, and sFRP4 are highly expressed in HCM, and these
genes can be potentially used as biomarkers and even
therapeutic targets for HCM. Additionally, the biological
process obtained through an enrichment analysis of DEGs
and key modules may provide a new direction of HCM
research.

Abbreviations

BP, biological process; CC, cellular component;
COL14A1, collagen type XIV alpha 1 chain; CRISPLDI,
cysteine rich secretory protein LCCL domain containing 1;
DEGs, differentially expressed genes; FRZB, frizzled
related protein; GEO, Gene Expression Omnibus; HCM,
hypertrophic cardiomyopathy; IC, intramodular connectiv-
ity; LUM, lumican; MEs, module eigengenes; MF, mole-
cular function; MYH7, B-myosin heavy chain; PCA,
principal component analysis; qRT-PCR, quantitative real-
time polymerase chain reaction; RCAN, calcipressin reg-
ulatory protein; sFRP4, secreted frizzled related protein 4;
TAC, transverse aortic constriction; TGF-B, transforming
growth factor beta; WGCNA, weighted gene coexpression
network analysis.
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