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Genetic epilepsies are a spectrum of disorders characterized by spontaneous

and recurrent seizures that can arise from an array of inherited or de novo

genetic variants and disrupt normal brain development or neuronal connectivity and

function. Genetically determined epilepsies, many of which are due to monogenic

pathogenic variants, can result in early mortality and may present in isolation or be

accompanied by neurodevelopmental disability. Despite the availability of more than 20

antiseizure medications, many patients with epilepsy fail to achieve seizure control with

current therapies. Patients with refractory epilepsy—particularly of childhood onset—

experience increased risk for severe disability and premature death. Further, available

medications inadequately address the comorbid developmental disability. The advent of

next-generation gene sequencing has uncovered genetic etiologies and revolutionized

diagnostic practices for many epilepsies. Advances in the field of gene therapy also

present the opportunity to address the underlying mechanism of monogenic epilepsies,

many of which have only recently been described due to advances in precision

medicine and biology. To bring precision medicine and genetic therapies closer to clinical

applications, experimental animal models are needed that replicate human disease and

reflect the complexities of these disorders. Additionally, identifying and characterizing

clinical phenotypes, natural disease course, and meaningful outcome measures from

epileptic and neurodevelopmental perspectives are necessary to evaluate therapies in

clinical studies. Here, we discuss the range of genetically determined epilepsies, the

existing challenges to effective clinical management, and the potential role gene therapy

may play in transforming treatment options available for these conditions.

Keywords: genetic epilepsy, AAV9, Lafora, SLC13A5, SLC6A1, gene therapy (GT)

INTRODUCTION

While 20–30% of epilepsies are acquired nongenetically, 70–80% are due to 1 or more genetic
factors (1). Developmental and epileptic encephalopathies (DEE) are rare disorders characterized
by early-onset, refractory seizures that occur in the context of developmental regression or
plateauing. DEE are severe and difficult to treat and may result from a single gene mutation
that causes gain-of-function (2) or loss-of-function epilepsy (3, 4). Monogenic epilepsies may
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be autosomal recessive (e.g., EPM2A/B or SLC13A5), autosomal
dominant (e.g., CHRNA4), autosomal haploinsufficiency (e.g.,
SLC6A1), or X-linked (e.g., ARHGEF9) (5–10). Further, different
pathogenic variants in the same gene may result in different
epilepsy phenotypes, as seen in the KCNQ2 gene, where the
R213W variant causes benign familial neonatal seizures, and the
R213Q variant causes neonatal epileptic encephalopathy with
severe pharmacoresistant seizures (11).

Precision medicine describes a rational treatment strategy
that is highly specific and aims to address the underlying
cause of disease (12). One avenue of precision medicine
involves the selection of a therapy that is directed toward
modulating or bypassing the dysfunction caused by the
underlying genetic defect (12). In the era of gene therapy,
avenues that may be applied to epilepsy syndromes include
treatments that aim to restore cellular function such as gene
replacement therapy (GRT) for disorders due to loss-of-function
pathogenic variants (13, 14); genetic substrate reduction therapy
(gSRT) [reviewed in Coutinho et al. (15)] to reduce the
overproduction of substrates; or transcriptional enhancement,
designed to upregulate endogenous expression of a given gene
via the introduction of regulatory elements (16, 17). Monogenic
epilepsies are of particular interest for precision medicine, as
simplifiedGRT, gSRT, and transcriptional enhancement therapies
are promising in ameliorating disease. Here, we will focus
specifically on Lafora disease, SLC13A5 deficiency disorder
(SDD), and SLC6A1-related disorder (SRD).

CLINICAL CARE

Current treatment approaches focus on treating the
epilepsy syndrome via antiseizure medications, diet, and/or
neurostimulation, rather than the underlying genetic basis of
disease (9). Combinations of antiseizure medications may be
necessary to achieve adequate seizure control. Further, patients
may become refractory to antiseizure medications over time
(18) and for some patients, specific antiseizure medications are
contraindicated, as they may exacerbate neurodevelopmental
disability associated with their specific epilepsy syndrome (19).
Ketogenic (high fat/low carbohydrate) diets and vagus nerve
stimulation approaches also have been attempted in patients
with inadequate seizure control, however, with limited success
(20–25). Notably, there are no currently approved treatments
that address the underlying cause of disease for genetic epilepsies,
presenting an urgent need for the community and an opportunity
for novel approaches such as GRT and gSRT.

HISTORICAL CONTEXT

Advances in Genetic Diagnosis
Prior to modern genetic approaches, epilepsies were examined
for their genetic basis in families using gene mapping and
applied linkage analysis. The first discoveries in the 1990s
identified ion channels and led to the “channelopathy” hypothesis
that suggested that ion channel defects were a common
underlying cause of epilepsy (1). Additionally, it is now

recognized that other single-gene pathogenic variants contribute
to seizure disorders.

Starting in the late 2000s, next-generation sequencing
has increasingly led to discovery of pathogenic variants in
specific genes and microdeletions resulting in epilepsies (26).
Commercially available epilepsy panels are available to test for
many genetic epilepsies.

Still, many genetic epilepsies and their natural
histories are not well understood. The prognosis for
genetic epilepsies is often not promising, and there
is a need for innovative solutions to improve patient
outcomes. In addition to the development of novel
pharmaceuticals, genetic epilepsies may be approached via
gene therapy.

Advances in Gene Therapy
The first successful human trial of gene therapy occurred in
1990 (27). The field has rapidly expanded in the twenty-first
century. One approach is GRT, which utilizes a vector such as
adeno-associated virus (AAV) serotype 9 (AAV9), to deliver a
functional copy of a gene to correct loss-of-function pathogenic
variants, including recessive disorders (e.g., SLC13A5) and
haploinsufficiencies (e.g., SLC6A1) (7, 9, 13). One example is the
recent FDA approval of a gene therapy product to treat spinal
muscular atrophy—a rare disease that causes infant mortality—
which was the first gene therapy approval for children >2
years of age (28). There are also AAV9-based gene therapies in
neurodevelopmental disorders in clinical trials (NCT02362438)
following promising preclinical results (13).

The gSRT approachmay utilize an AAV vector to deliver small
interfering RNA that will reduce the overproduction of substrates
(15). For example, the GYS1 gene may be knocked down to
prevent the overproduction of the substrate glycogen, which
accumulates to cause Lafora disease (16, 29). Transcriptional
enhancement approaches may be effective in haploinsufficiencies
such as Dravet syndrome, where 1 allele of the SCN1A gene
possesses loss-of-function pathogenic variants, and the other
normal endogenous allele can be modified to increase its
expression levels (17). These approaches have the potential to
address the underlying cause of disease in inherited epilepsies
that are the result of loss-of-function pathogenic variants and
provide significant seizure relief to patients.

AAV vectors have been extensively studied for treatment of
central nervous system (CNS) diseases (30). AAV9, specifically, is
a vector with great potential for treating neurological disorders,
as it crosses the blood-brain barrier and targets CNS neurons
(31). While other viral vectors transduce neurons, AAV9 is the
most studied AAV vector for CNS disorders, and there is more
clinical evidence of safety, efficacy, and stability of gene transfer
to the CNS with this serotype than with other vectors (32).

Further, to aid in the development of next-generation gene
therapy technologies for diagnosis of genetic epilepsies, a better
understanding of natural history of disease will be required
and is addressed in the next section. These studies inform
clinical development and help identify outcome measures for
clinical investigation.
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TABLE 1 | Potential monogenic epilepsy candidates for gene therapy.

Disorder Gene Protein Protein function Most common

seizure type

Mouse model

Dravet syndrome SCN1A# Nav1.1 Voltage-gated sodium

channel (34, 35)

GTCS (36) Scn1a +/– (35)

EIEE (8) SLC13A5 NaCT Plasma membrane

sodium-dependent citrate

transporter (37–39)

Clonic or Tonic (40) Slc13a5 KO (41)

ARHGEF9* Collybistin GABA receptor clustering at inhibitory

synapses (42)

GTCS (5) Arhgef9 KO (5)

WWOX WWOX Development and function of

CNS (43)

GTCS (44) Wwox KO (43)

Familial infantile

myoclonic epilepsy or

EIEE

TBC1D24 TBC1D24 Vesicle trafficking for neuronal signal

transmission (45)

Myoclonic or

clonic seizures (46)

S324Tfs*3 (45)

Lafora—PME EPM2A Laforin Glycogen phosphatase (47) GTCS (48) Epm2a KO (47)

EPM2B Malin Ubiquitin E3 ligase (47) Epm2b KO (47)

Pyridoxine dependent

epilepsy

ALDH7A1 ALDH7A1 Lysine catabolism (49) Focal Seizures (50) Aldh7a1 KO (49)

SLC6A1-related

disorder

SLC6A1# GAT-1 Sodium- and chloride-dependent

GABA transporter (51)

Absence seizures

(52)

Slc6a1 KO (51)

*X-linked.
#Haploinsufficiency.

All others are autosomal recessive.

CNS, central nervous system; EIEE, early infantile epileptic encephalopathy; GABA, gamma-aminobutyric acid; GAT, GABA transporter; GTCS, generalized tonic-clonic seizures; KO,

knockout; PME, progressive myoclonus epilepsy.

CLINICAL TRIAL READINESS

Studies into the natural history of disease are essential to
understanding how diseases progress and to inform drug
development so that researchers and clinicians can have strong
metrics available to evaluate how best to demonstrate efficacy
and, ultimately, improve patients’ quality of life. Regulatory
agencies are increasingly acknowledging the importance of
natural history data in the context of rare disease and gene
therapy drug development, having released draft guidance on
the topics in recent years (33). Natural history studies, although
informative, may not accurately represent disease populations
due to factors such as study design, variability of supportive
care practices, changes in medical care or terminology over
time, selection bias, etc. In monogenic epilepsies, due to the
relatively recent identification of genetic causes, may particularly
be lacking in a detailed and longitudinal understanding of the
disease course. Animal models, therefore, also have an important
role to play in understanding disease progression. Animal
models currently exist for some, but not all, of the recessive
and haploinsufficient epilepsies (see Table 1 for examples of
available models) but may not fully replicate the clinical
phenotype, which represents a challenge to characterizing the
outcomes of potentially disease-modifying investigational drugs.
While electroencephalography findings in animal models are
comparable to those in humans, neurologic and motor deficits
do not always correspond well with the human disease. GRT
and gSRT approaches utilizing AAV vector technology may
address diseases resulting from pathogenic variants in single
genes (13, 15). In particular, AAV9 has shown promise for

treating neurological disorders as it crosses into the brain and
infects neurons (31). In the following sections, this review will
highlight 3 monogenic inherited diseases, areas of active research
by our groups: Lafora disease, SDD, and SRD, as well as their
clinical picture, mouse models, and approaches to gene therapy
for each condition.

Lafora Disease
Lafora disease is a severe, fatal, autosomal recessive progressive
myoclonus epilepsy (PME) that results from accumulation of
Lafora bodies, abnormal glycogen aggregates (6). Two genes are
now known to be involved in Lafora disease: EPM2A and EPM2B
(48, 53–56). Loss-of-function pathogenic variants in EPM2A or
EPM2B lead to an accumulation of Lafora bodies (an abnormal
form of glycogen that cannot be metabolized) and subsequent
Lafora disease (47).

Presentation and Progression
The mean age of Lafora disease onset is 13.4 years (57). Patients
with classical Lafora disease develop normally until adolescence,
when they present with action and stimulus-sensitive myoclonus,
in addition to tonic-clonic and absence seizures (48). At
presentation, it is challenging to distinguish Lafora disease from
idiopathic generalized epilepsies (48). Thus genetic testing is
critical, as it reveals pathogenic variants in the EPM2A and
EPM2B genes (58).

Patients most often receive antiseizure medications, namely
valproic acid, which is typically effective at suppressing seizure
activity, however the treatment is palliative (59). Lafora patients
quickly develop symptoms of dementia and intractable seizures
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(57). Patients tend to lose autonomy by 6 years after disease onset
and die from status epilepticus, aspiration pneumonitis, or other
complications of neurodegenerative disease within 10 years of
disease onset (57).

To date, only one large-scale natural history study for Lafora
disease exists, suggesting more studies are needed to describe
the heterogenous disease and inform clinical investigation more
fully (57).

Gene Therapy Development
It has been shown that Epm2a knockout (KO) and Epm2b KO
mouse models replicate essential features of Lafora disease, such
as neuronal degeneration and accumulation of Lafora bodies
in muscle, liver, and brain (47, 60, 61). Recently, a proof-of-
concept paper demonstrated that a viral vector carrying clustered
regularly interspaced short palindromic repeats (CRISPR)/Cas9
with a guide RNA could be used to target and cut the Gys1 gene
responsible for producing brain glycogen that leads to Lafora
bodies and Lafora disease. In this study, neonatal Epm2a KO and
Epm2b KO mice were injected intracerebroventricularly with an
AAV9 vector targeting Gys1 that led to an editing rate of 17%
of Gys1 alleles. The effect of this editing was a 50% reduction in
GYS1 protein, decreased glycogen accumulation, and decreased
neuroinflammatory markers (47). This approach addresses the
underlying cause of disease using a gene editing strategy, but
alternative approaches such as a simpler gene delivery system
without CRISPR/Cas9may have a better safety profile and greater
clinical potential.

SLC13A5 Deficiency Disorder
Pathogenic variants in the gene SLC13A5 impair the
sodium/citrate cotransporter, NaCT, with subsequent elevation
in plasma and CSF citrate levels (62). These variants result
in an autosomal recessive epileptic encephalopathy known as
SLC13A5 deficiency disorder as SDD. SLC13A5 pathogenic
variants were first identified in 2014 when whole-exome
sequencing was performed in 3 individuals with similar clinical
presentation of epileptic encephalopathy from 2 families
(7). Whole-exome sequencing is one approach now used to
detect SDD (63). Additionally, SLC13A5 is included in some
commercially available epilepsy panels.

Presentation and Progression
Beginning within the first week of life most patients present
with seizures and later often have status epilepticus (7, 64).
However, there is phenotypic variability, and some patients
have onset of seizures later in infancy. Patients with SDD may
progress to lifelong drug-resistant epilepsy, with most seizures
being convulsive (65). Seizure severity may decrease with age and
some patients may even reach seizure freedom (40, 65). Broad-
spectrum antiseizuremedications often reduce seizure frequency,
but targeted treatments are lacking and further innovation
is needed.

Affected individuals show global developmental delay with
intellectual disability and poor speech and communication
(23). Patients often develop significant motor impairments and
deficits in cognitive and expressive language (65). Patients

typically have persistent neurological symptoms including ataxia,
abnormal muscle tone, and abnormal involuntary movements
(65). Additionally, patients with SDD may later develop dental
enamel hypoplasia (65). It is possible for patients to live well into
adulthood (65).

To date, there have been no published natural history studies
for SDD. However, one natural history study of SDD is underway
(NCT04681781), suggesting more studies may be needed to
describe the disease state and inform clinical investigation
more fully.

Gene Therapy Development
An Slc13a5 KO model has been utilized to investigate
SLC13A5 disease pathology. It has demonstrated myoclonic and
nonconvulsive focal seizures as seen in patients, but with no
obvious behavior or pathological abnormalities (66). Recently, a
self-complementary AAV9 vector carrying a SLC13A5 gene was
developed (37). Preliminary data showed that delivery of this
gene therapy to cerebrospinal fluid in young adult Slc13a5 KO
mice resulted in rescue of epileptic activity. Additionally, treated
KO mice had lower plasma citrate levels compared with KO
mice that did not receive GRT (37). This approach addresses
the underlying cause of the disease, and the clinical potential is
under investigation.

SLC6A1-Related Disorder
SLC6A1 pathogenic variants were first identified in 2015 when
2 truncations and 4 missense pathogenic variants were found
in patients with epileptic encephalopathies with myoclonic-
atonic seizures (67). SLC6A1 is included in some commercially
available epilepsy panels. SLC6A1 pathogenic variants cause a
haploinsufficiency of sodium- and chloride-dependent gamma-
aminobutyric acid transporter type-1 (GAT-1), resulting in
SRD (65).

Presentation and Progression
The mean age of seizure onset is ∼2.5 years of age in patients
with SRD (9). Sixty percent of patients had developmental
delay before seizure onset (9). The most prevalent epilepsy
syndromes associated with SRD are myoclonic-atonic seizures
(24%), genetic generalized epilepsy (23%), and non-acquired
focal epilepsy (10%) (9). Further, it was found that absence
seizures were the most common type of seizures in SRD (9).
Common clinical features are epilepsy, developmental delay or
cognitive impairment, and autistic traits (9). In addition patients
may develop hypotonia, language disorder, and sleep issues.

Most patients require a care team consisting of neurologists,
developmental pediatricians, genetic counselors, and speech and
occupational therapists (9). Due to limited clinical data for SRD,
treatment is determined based on the presenting clinical epilepsy
syndrome and typically includes broad-spectrum antiseizure
medications (9).

To date, there have been few natural history studies for SRD
(52, 67, 68), indicating more studies are needed to describe the
disease state and inform clinical investigation more fully.
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Gene Therapy Development
Slc6a1 KO mice have been used to model seizure activity
(51). These mice partially recapitulate human SRD as they
have tremors, abnormal gait, reduced strength, absence seizures,
anxious behavior, and cognitive impairment (9). SLC6A1 is
a potential candidate for gene therapy because it results
from pathogenic variants that cause haploinsufficiency, thereby
allowing for gene replacement or transcriptional enhancement
strategies to potentially alleviate the burden of disease. However,
no gene therapy studies have been published on SRD.

Opportunity for Gene Therapy in
Monogenic Epilepsies
GRT for CNS disorders has led to promising preliminary safety
and efficacy data in clinical trials (31). gSRT has shown promising
results preclinically, but additional work is needed in the clinic
(16). Single-injection approaches of viral vectors may lead to
a safe and effective strategy in the clinic (31). Importantly,
these strategies address the underlying cause of disease and
have the potential to stabilize the progression of the disease.
However, there is still a need for preclinical proof-of-concept
research for gene therapy applications for monogenic epilepsies
in animal models. Important endpoints to track patient progress
and measure success for gene therapy for genetic epilepsies are
survival, seizure susceptibility, the number of recurrent seizures,
biomarkers such as citrate levels in SDD, and adverse events
(37). The development and application of appropriate outcome
measures is vital to lead to the next generation of medicines for
persons with monogenic epilepsies.

In contrast to targeting the gene underlying the monogenetic
epilepsy, an alternative approach may be used, such as gene
therapy delivering an AAV vector for an engineered voltage-
gated potassium channel to drive down neuronal excitability
and thereby reduce seizure (69). Another approach is to virally
overexpress neuropeptide Y, which has been shown to suppress
seizures in animal models (70). These approaches are not
precision medicine addressing the underlying cause of disease,
and their clinical applicability must be tested.

REMAINING CHALLENGES IN THE
CLINICAL DEVELOPMENT PATH
FORWARD FOR GENE THERAPIES

Seizure
By addressing the underlying cause of disease, gene therapy has
the potential to impact disease course more than treating seizures
alone. Seizure reduction will remain an important clinical goal
for patients with epilepsy, yet clinicians rely upon patient and
caregiver reports of seizure activity, which are known to have
limited reliability (71). Furthermore, nocturnal seizure frequency
is inherently difficult to capture through self- or parent-reporting.
Reporting and monitoring of seizure activity is therefore often
inadequate. Seizures themselves may not be the best target for
genetic epilepsies, as they can vary in frequency and severity
depending in part on the patient subpopulation. In some genetic
epilepsies such as SDD, there may be a reduction in seizures, but

continued morbidity due to developmental disabilities, including
impairments in motor and cognitive abilities (65). Cognitive
dysfunction may result from the underlying disease process itself,
which gene therapies may address (72).

Developmental Concerns
In monogenic epilepsies, patients with DEE may miss or have
delayed developmental milestones (7) that can negatively impact
quality of life and capacity for achieving independent living.
These motor and cognitive delays may affect functioning (7)
and merit a means of systematic measurement and ongoing
monitoring to inform the evaluation of treatment response. Early
initiation of gene therapy for genetic epilepsies may mitigate or
prevent the development of motor and cognitive manifestations
of the diseases. For example, there is a growing body of
evidence that patients with a degenerative motor neuron disease,
spinal muscular atrophy, treated pre-symptomatically with GRT
achieve improved motor outcomes compared to patients treated
later in the disease course presumably by preventing or slowing
neuronal loss (73).

Motor dysfunction such as hypotonia, stereotypies, and ataxia
impair mobility and purposeful use of movement (7, 9). Motor
impairment and global developmental delay may be apparent in
infancy, such as in EIEE, or maymanifest with severe, progressive
deterioration following normal development, as experienced
by children with Lafora disease (62, 74). It is therefore
important to expand our understanding of the spectrum of
motor impairments affecting patients with monogenic epilepsy
and establish endpoints related to motor ability. Such endpoints
would indicate clinical meaningful changes and be applicable
across multiple monogenic epilepsy syndromes with early
childhood onset.

Cognitive dysfunction, which can result from both recurrent
seizure activity and the underlying disease process itself (72),
has substantial impact on patient quality of life. It requires
that clinicians consider metrics for improving not only seizure
frequency and severity but also cognitive function. To this end,
more research is needed to understand progressive cognitive
decline in epilepsy, especially as the disease course in some
genetic epilepsies shows a reduction in seizures, but a continued
progression of cognitive decline.

Autism spectrum disorder may also accompany intellectual
disability in patients with genetic epilepsies such as Dravet
syndrome, and has a substantial impact on a patient’s potential
to achieve independence (75). There is a need for clearer
neurodevelopmental/neurophysiological endpoints to track a
patient’s developmental abilities both accurately and efficiently
over time. It will be important to identify endpoints that can
characterize developmental trajectories associated with specific
conditions. Such endpoints could subsequently provide an early
indication of treatment response when patients’ trajectories shift
following intervention.

DISCUSSION

Advances in genetic technologies have identified a growing
number of monogenic genetic epilepsies potentially amenable
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to gene therapies. The state of AAV-based gene therapy has
advanced a great deal with extensive study of AAV9 in preclinical
models and in the clinic. Loss-of-function pathogenic variants
may be highly amenable to gene therapy, namely by GRT and
gSRT, which address the underlying cause of disease without
the need for gene editing. However, there is still need for
translational research to advance new therapeutics to the clinic.
Understanding of disease progression through natural history
studies may be an important precursor to interventional studies
as meaningful clinical endpoints are highly dependent upon the

severity and rapidity of clinical decline. Preclinical animal models

may also be important to inform optimal timing of dosing relative
to disease progression, as rapidly lethal diseases like Lafora

disease may have a narrow therapeutic window. While SDD and
SRD have different underlying pathology and less severe epilepsy
outcomes than Lafora disease, early intervention may be critical
in intervention strategies to improve cognitive, behavioral, and
functional measures and the chance for good quality of life
and greater independence from caregivers. Study design, clinical

endpoints, dose selection, inclusion/exclusion criteria, and safety

all need to be carefully considered in order to best serve patients.
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