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In this Letter, the field programmable gate array (FPGA) implementation of a foetal heart rate (FHR) monitoring system is presented. The
system comprises a preprocessing unit to remove various types of noise, followed by a foetal electrocardiogram (FECG) extraction unit
and an FHR detection unit. To improve the precision and accuracy of the arithmetic operations, a floating-point unit is developed. A least
mean squares algorithm-based adaptive filter (LMS-AF) is used for FECG extraction. Two different architectures, namely series and
parallel, are proposed for the LMS-AF, with the series architecture targeting lower utilisation of hardware resources, and the parallel
architecture enabling less convergence time and lower power consumption. The results show that it effectively detects the R peaks in the
extracted FECG with a sensitivity of 95.74–100% and a specificity of 100%. The parallel architecture shows up to an 85.88% reduction in
the convergence time for non-invasive FECG databases while the series architecture shows a 27.41% reduction in the number of flip flops
used when compared with the existing FPGA implementations of various FECG extraction methods. It also shows an increase of 2–7.51%
in accuracy when compared to previous works.
1. Introduction: Over the past few decades, analysis of foetal
electrocardiogram (FECG) has proven to be a tool of great
importance when it comes to monitoring the well-being of the
foetus during pregnancy and labour, unearthing vital information
such as foetal heart rate (FHR), heart rate variability etc. Any
abnormalities in these parameters indicate that the foetus is in
distress, possibly due to asphyxia, which is a major cause of
neonatal deaths. Regular FHR monitoring can enable a clinician
to intervene in due time to prevent such cases.
Various methods [1] used to obtain FHR are auscultation

(Doppler ultrasound, fetoscope), foetal phonocardiography, foetal
magnetocardiography, and other invasive methods where electrodes
have direct contact with foetal skin. These methods are not suitable
for mobile, regular, low-cost, real-time monitoring of the foetus. An
alternative method to obtain FHR is to calculate it from FECG,
which can be extracted from the non-invasive abdominal electro-
cardiogram (ECG) recordings acquired from a pregnant subject.
This ECG signal contains FECG contaminated with maternal
ECG (MECG), power line interference, motion artefacts etc.
Various techniques [1] involving statistical and time-domain
analysis have been exploited to extract the FECG. Adaptive filtering
[2], non-linear decomposition [3], blind source separation [4]
(independent component analysis (ICA)-based methods), wavelet
transform (WT)-based techniques [5–7], neural network-based
approaches [8] are widely used.
Although the methods based on ICA perform better than those

which use single-channel recordings, they require the acquisition
of multi-channel abdominal signals which may be uncomfortable
for the subject. Such methods also require visual inspection of
the signals, and an appropriate number of data segments have to
be selected manually for a representative template [1]. The real-time
implementation of such methods is not suitable unless block
delayed analysis is considered [9]. Among the methods using
single-channel recordings, Kalman filter-based approaches offer
high performance, but their implementation complexity is quite
high and they require the R peaks of the signal to have a consistent
morphological shape [9]. WT-based methods can also prove to be
computationally intensive, can have drawbacks such as increased
hardware area, complex routing etc., and require the selection of
an appropriate wavelet, to achieve the required performance level.
As foetal signals and other interferences are not always linearly
separable, non-linear decomposition-based methods can be used
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for extracting FECG in such cases. However, such methods
require some prior information about the desired and undesired
parts of the signal and have a high-computational complexity [9].
As the adaptive filter is an accurate method for FECG extraction
and its computational complexity is relatively low [1], a least
mean squares algorithm-based adaptive filter (LMS-AF) is chosen
for this study.

The signal strength of the FECG is low as compared to the
MECG [9]. In rural areas, where cellular connectivity is low,
the transmission of these signals for processing in the cloud is
not suitable. The FPGA can eliminate the need for an extra
standby computing device that would be required for computational
purposes. Also, it is a better prototyping platform for hardware
implementation compared to traditional digital signal processors
(DSPs). The FPGA implementation can also serve as a step
towards the development of a low-cost FHR monitoring system
as a system on chip.

Previous hardware implementations of LMS-AF focusing on
FECG extraction are discussed below. The work presented by
Hatai et al. [10] was tested on synthetic data, with up to 88%
accuracy. As synthetic data has significantly better morphology of
the PQRST complex and lower noise than real signals, no pre-
processing was performed. Dynamic thresholding was used for
peak detection. Morales et al. [11] used a field-programmable
analogue array for analogue signal preprocessing and an FPGA
for FECG extraction with accuracy in the range of 87–93%.
LabVIEW FPGA module was used to generate the hardware
design. Arias-Ortega et al. [12] implemented the LMS-AF on a
digital signal controller, used a low-noise analogue front end to
achieve 93.1% accuracy and 87.1% sensitivity. In [13], the
authors implemented an LMS-AF-based FECG extraction system
on an FPGA. However, FHR calculation is done manually and an
algorithm to automate this process is not presented. Some other
methods for FECG extraction [14–18] have also been implemented
on hardware. Some of the aforementioned works [11, 15, 16]
reportedly use fixed-point arithmetic, which leads to lower
precision than floating-point (FP) arithmetic. Furthermore, FP
addition utilises much fewer resources than the logarithmic
number system (LNS). As the main advantage of the LNS is its
efficient division operation, which is not required in LMS-AF, we
have opted for LMS with FP operations. It has also been reported
that FP operations are difficult to implement on FPGA as the
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algorithm is very complex and leads to excessive consumption of
logic elements [19].

The main contributions of this Letter are as follows:

† For the foetal R peak detection, a norm for the determination of
the threshold is proposed to avoid the detection of false positives.
† A FP unit (FPU) is developed for the FPGA implementation
to support FP calculations, and hence improve the precision and
accuracy of the system. Although Xilinx has a core for FP operations,
it is not an open-source internet protocol, and thus cannot be used for
application-specific integrated circuit designing, which is why the
FPU is developed. The system is tested on both real and synthetic
ECG signals, and the results validate the robustness of the system.
† For the implementation of the LMS-AF module, two different
architectures, namely series and parallel, are proposed. While the
former is developed for lower hardware utilisation, the latter is
better in terms of lower latency and power consumption. FPGA
implementation and simulation results validate the same.
2. Methodology
2.1. Preprocessing: The information that needs to be extracted from
the thoracic and abdominal signals is masked by various types of
noise [9], such as power line interference at 50 Hz, low-frequency
baseline wander, broadband muscle noise, motion artefact etc. To
retain the MECG and FECG components [9] and attenuate the
sources of noise, the signals are preprocessed.

To remove the high frequencies, a fourth-order low-pass
Butterworth filter is used. The cut-off of the filter is kept at 45 Hz
so that the ECG components in the signal are retained [9]. For
the low-pass filter, the Bessel, Butterworth, Chebyshev, and RC
filters [20] were considered. Among these, the Bessel filter offers
a slower transition from pass-band to stop-band as compared to
the other filters of the same order. The Chebyshev filters have
ripple in the pass-band, while Butterworth and Bessel filters do
not. Moreover, Butterworth filters have a significantly better
frequency response (flat in the pass-band) than a simple RC filter
of the same order. Therefore, a Butterworth filter is used in this
work. As the cut-off of the filter is not sharp, the frequencies
above 35 Hz and below 55 Hz lie in the transition band of the filter.

The peak at 50 Hz due to the power line interference is not
sufficiently attenuated by the low-pass filter. Therefore, a notch
filter [20] centred at 50 Hz (quality factor 25) is used.

Another source of noise is the baseline wander, which is a low-
frequency noise is resulting from the respiration or movement of the
subject or electrodes during recording. Since only the components
corresponding to the baseline wander need to be removed, a high-
pass filter is not used for this application. Three techniques,
namely polynomial fitting using polynomial regression, two-stage
median filtering, and two-stage moving average filtering [21], are
considered to obtain an approximation of the baseline wander
present in the signal. The complexity of these methods is
O(mN2), O(Nn log (n)), and O(N ), respectively, where N is the
total number of samples, m is the order of the polynomial, and n
is the window size. A two-stage moving average filter is used in
this work as it is the most efficient of all and gives a smooth ap-
proximation of the baseline wander. The operations performed are
summarised in the following equations:

M1[n] =
1

N1

∑N1−1

i=0

x[n+ i− N1 + 1] (1)

M2[n] =
1

N2

∑N2−1

j=0

M1[n+ j − N2 + 1] (2)

where x is the input signal, M1 is the first stage mean with window
size N1, M2 is the second stage mean with window size N2, and n is
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the sample index. N1 and N2 are kept as 200 in this work as a larger
value yields an extremely smooth estimate, due to which some of
the changes in the baseline are not captured properly, whereas a
smaller value yields an erratic estimate. To remove the baseline
wander, the output of the two-stage moving average filter is
subsequently subtracted from the input signal.

2.2. LMS algorithm: To separate the FECG from the preprocessed
thoracic and abdominal ECG signals, LMS-AF [22] is used. Let
x[n] = [x[n], x[n− 1], . . . , x[n− m+ 1]]T, represent the input to
the filter, where x[n] is the sample value at instant n, m is the
order of the filter, and (.)T denotes the transpose operator.
w[n] = [wm−1[n], wm−2[n], . . . , w0[n]], is the weight vector,
where wm−k [n] is the kth weight at sample instant n. The output
of the filter at the nth sampling instant is given by (3). The error
signal is calculated using (4), where d[n] is the desired signal.
The weight updation is carried out using (5), where m is the step
size, ∇ is the gradient operator, and k = 0, 1, . . . , m− 1.

y[n] = xT[n]w[n] (3)

e[n] = d[n]− y[n] (4)

wk [n+ 1] = wk [n]− m∇(e2[n])
= wk [n]+ 2me[n]x[n− m+ k + 1]

(5)

For this work, the thoracic signal is considered as the desired signal
d[n], and the abdominal signal is the input x[n]. The criteria for
convergence of the filter weights are satisfied in around 12,000
samples. m and m are set to 19 and 7× 10−5, respectively.

The MECG components in thoracic and abdominal signals are
not exactly the same [1], which leads to some residual maternal R
peaks in the resulting error signal e[n] [22]. After the convergence
of weights of the filter, the FECG is enhanced and the MECG is
attenuated in e[n] (the output of LMS-AF).

2.3. FHR detection: The Pan and Tompkins algorithm (PTA) [23] is
well-known for detecting R peaks in the ECG signals of a single
subject. A modified version of PTA is used to detect the foetal R
peaks from a mixture of foetal R peaks and residual maternal R
peaks. The output of the LMS-AF is differentiated, squared, and
then passed through a mean filter of length 40. Since the
extracted FECG contains residual maternal R peaks as well as
sharper foetal R peaks, these operations, which are also a part of
PTA, enhance the foetal R peaks. Hence, the resultant signal sdm
has higher amplitude for foetal R peaks as compared to the
maternal R peaks. To determine the threshold value th which can
be used to distinguish between the foetal and maternal R peaks, a
new norm is proposed. Unlike PTA where adaptive thresholding
is used, the proposed method uses a single value of ‘th’ for a data
set. m1 denotes the mean of the signal ‘sdm’. The procedure for
calculation of ‘th’, which is repeated N times, is summarised below:

(1) If (in . m1 and in . R1) then R3 = in, R4 = R2
(2) else if (in , m1) then pv = R3, pl = R4, m2 = m2 +

pv

N(3) end if
(4) R1 = in
(5) R2 = R2 + 1
(6) If (R2 = N − 1) then th = (m1 + m2)/2
(7) end if

Here, in denotes the current input, N is the number of inputs,
R1 R2

( )
is used to store the input value (location) for the next

cycle, and R3 R4

( )
is used to conditionally store the input value

(location). The locations and values of local maxima are denoted
by pl and pv, respectively. m1, m2, R1, and R2 are initialised to zero.
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The detection of foetal R peaks is based on two criteria: their
amplitude should be above ‘th’, and if two local maxima occur
within 200 samples of each other, the one with the larger amplitude
denotes the foetal R peak. The maximum FHR can be 200 beats per
minute (bpm) [24] (300 samples at 1 kHz sampling frequency).
Therefore, maxima separated by at least 200 samples (300 bpm)
are considered for the detection of foetal R peaks. The procedure
for the above is listed below:

(1) if (pv . th) then
(2) if (pl − R1 . 200) then out = R1, R1 = pl, R2 = pv
(3) else
(4) if (pv . R2) then out = pl, R1 = pl, R2 = pv
(5) else out = R1
(6) end if
(7) end if
(8) end if

Here, out denotes the locations of the foetal R peaks detected. R1
and R2 are initialised with pl and pv, respectively.
The difference between the consecutive R peaks, as detected

in the previous stage, is the RR interval. As the weights of the
LMS-AF converge around 12,000 samples, only the RR intervals
for peaks occurring after 12,000 samples are considered. The
average of these RR intervals is taken and divided by the sampling
frequency to get the average RR interval length in seconds. The
FHR is calculated as follows:

FHR(bpm) = 60

RR interval length (s)
(6)

3. Implementation of FPGA: For the FPGA implementation, the
proposed system is divided into four units as shown in Fig. 1.

3.1. FP unit: Since the input values to the system are FP numbers,
logic cannot be defined directly on such numbers in Verilog.
Therefore, an FPU is developed for performing basic arithmetic
operations (addition, subtraction, and multiplication) and
comparison. The FP numbers are converted to their 32-bit binary
representation as per the IEEE 754 standard [25], in which the
first bit is the sign bit s, followed by 8 bits for exponent e, and
23 bits for fraction f. The value of the number is given by
(− 1)s1 · f 2(e−bias), where 1 · f is the mantissa m and bias is
27 − 1. The inputs to the FPU module include a 2-bit sequence to
select one of the four available operations and two 32-bit FP
numbers (A and B). When the numbers enter the module, they are
split into three parts, i.e. sign, exponent and mantissa denoted by
sa, ea, ma and sb, eb, mb for A and B, respectively. m is stored in
the form of 24 bits with 1 concatenated to 23 bits of f. sout, eout,
and mout denote the sign, exponent and mantissa of the output.
The procedure followed for the FP adder is listed below:

(1) if (ea = eb) then eout = ea
(2) else if (ea . eb) then eout = ea, d = ea − eb, mb = mb ≫ d
Fig. 1 Block diagram of the FPGA implementation of the system
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(3) else eout = eb, d = eb − ea, ma = ma ≫ d
(4) end if
(5) if (sa = sb) then mout = ma + mb, sout = sa
(6) else
(7) if (ma . mb) then sout = sa, mout = ma − mb
(8) else sout = sb, mout = mb − ma
(9) end if
(10) end if

Here,≫ denotes the right shift operation. A similar procedure is
followed for the FP subtractor, except that when the sign bits are
same, subtraction is performed after comparing the mantissas and
when they are opposite, addition is performed. The outputs of the
FP multiplier are given by sout = sa ⊕ sb, eout = ea + eb − bias,
and mout = ma × mb, where⊕ denotes the bit-wise XOR operation.
For all the three operations, the next stage is to normalise the output.
When mout is not of the form 1 · fout, a repetitive process of shifting
mout left by one place and subtracting 1 from eout is followed till the
first bit of mout becomes 1. sout, eout, and fout are concatenated to get
the 32-bit output of the operation.

For FP comparison, let cout denote a 2-bit sequence to denote
the three cases, i.e. A . B (cout = 01), A = B (cout = 00), and
A , B (cout = 10). The procedure is listed below:

(1) If (sa . sb) then cout = [10]
(2) else if (sb . sa) then cout = [01]
(3) else
(4) if (ea . eb) then cout = [01]
(5) else if (eb . ea) then cout = [10]
(6) else
(7) if (fa . fb) then cout = [01]
(8) else if (fb . fa) then cout = [10]
(9) else cout = [00]
(10) end if
(11) end if
(12) end if

As the output should be a 32-bit number for uniformity, 30 0s are
concatenated to cout to get the output.

3.2. Preprocessing: The following three modules are implemented
3.2.1 Butterworth filter: In this module, one input value is used in
every clock cycle to get the output as follows [20]:

O[k] = aI[k]+ bO[k − 1]+ gO[k − 2]+ dO[k − 3]

+ eO[k − 4]

where I[k] is the sample value at instant k and O[k] is the output
value. The values of the constants are obtained from the transfer
function of the filter, as per the cut-off and order of the filter.
In this work, a = 0.00308, b = 3.28391, g = −4.08689,
d = 2.28117, and e = −0.48140.

3.2.2 Notch filter: This module works similarly to the previous
module, following the equation [20]:

O[k] = aI[k]+ bI[k − 1]+ gI[k − 2]+ dO[k − 1]+ eO[k − 2]

In this case, a = 0.99405, b = −1.31278, g = 0.99405,
d = 1.31272, and e = −0.98804.

3.2.3 Baseline wander removal: Fig. 2 shows the structure of the
two-stage moving average filter. As in (1), the first stage mean
M1 is the average of N1 values. In every clock cycle, the input is
added to M1 and x[N1 − 1] is subtracted from M1, both after
getting multiplied by 1/N1

( )
. For the moving average operation,

all the values in memory 1 are shifted by one position, so that
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Fig. 2 Structure of the two-stage moving average filter
x[N1 − 1] is discarded and a new value is stored in x[0]. A similar
procedure is followed for calculating the second stage mean M2 as
per (2). M1 is multiplied by 1/N1

( )
, stored in memory 2 and also

added to M2. The last value of memory 2 can then be directly sub-
tracted from M2 to obtain the second stage mean. The values of M2
represent the baseline wander approximation. The output of the
two-stage moving average filter is used to remove the baseline
wander from the input by performing one subtraction operation in
every clock cycle. The latency of each of these modules is 1
clock cycle.
3.3. FECG extraction: This stage comprises the LMS-AF, for which
two different architectures are proposed. Figs. 3a and b illustrate the
proposed series and parallel architectures of the LMS-AF module,
respectively. In both the figures, b = 2m. As the magnitude of
abdominal and thoracic signals may not be of the same order,
they have to be scaled appropriately (denoted by scaling in the
figures) before being used in the algorithm.
Fig. 3 Illustration of proposed series and parallel architecture of LMS-AF
a Series architecture
b Parallel architecture
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3.3.1 Series architecture: In Fig. 3a, memory 1 stores the vector
xT[n] and an extra element, and memory 2 contains the weights of
the filter. In every clock cycle, one element of xT[n] is scaled, multi-
plied by one element of w[n] and added to y[n]. The same element of
xT[n] is also copied to the immediate next position in xT[n]. Thus,
after m clock cycles, y[n] has been obtained as in (3), and xT[n]
has shifted by one index. In the following clock cycle, error is calcu-
lated using (4), and the updated value of the first weight of the filter is
also obtained. This updated weight value is stored in its position in
the next clock cycle. This sequential process is repeated until all
the weights are updated, which corresponds to m+ 1 clock cycles.
After a total of 2m+ 1 clock cycles, a new input value is stored in
x[0] so that xT[n] is updated. The register containing d[n] also gets
updated. As the required output for a particular pair of xT[n] and
d[n] is obtained after 2m+ 1 clock cycles, the latency of this
module is 2m+ 1 clock cycles.

3.3.2 Parallel architecture: In Fig. 3b, the memory 1 (vector xT[n])
gets updated with the next input value in every clock cycle. Each
element of xT[n] is scaled, and then multiplied with the elements
from the memory 2 (vector w[n]). These are added to obtain y[n],
as in (3). The register containing d[n] is updated in every clock
cycle and is used to calculate the error, using (4). Since 2me[n] is
used in every weight updation, it is calculated first, and subsequent-
ly multiplied with the values from memory 1 to update the weights,
using (5). The updated weights are stored in memory 2. Thus, all the
operations involving the error calculation and weight updation are
performed in a single clock cycle and the latency of this module
is 1 clock cycle.

3.4. FHR detection: The four modules of this stage are
3.4.1 Peak enhancement: In this module, the input is differentiated,
squared, and passed through a mean filter of length P. The mean m1
of sdm, which is required in the next module, is also determined
in this module. The operations executed in every clock cycle are
summarised below:

1. pval = cval
2. cval = input
3. sdiff = (cval − pval)× (cval − pval)

4. M [0] = sdiff × 1

P
5. sdm = sdm+M [0]−M [P − 1]

6. m1 = m1 + sdm× 1

N
7. Shift the elements of M by one position

Here, cval and pval denote the current and previous input values,
respectively. sdiff denotes the differentiated and squared signal,
which is stored in the memory M (size P) after multiplication by
1/P. N denotes the number of input samples.

3.4.2 Detection of local maxima: In this module, the local maxima
are determined, using m1 as the threshold. The operations executed
in every clock cycle are listed in Section 2.3.

3.4.3 Foetal R peak detection: The operations executed in every
clock cycle for this module are also listed in Section 2.3.

3.4.4 FHR calculation: The RR intervals are estimated using the
differences between consecutive peak locations (out). Two registers
are used for storing the current input and the previous input. The
estimated RR intervals are accumulated and averaged out, after
which FHR is obtained using (6).

4. Results and discussion: To test the system for real signals, the
non-invasive FECG (NiFECG) database [26] and database for
Healthcare Technology Letters, 2020, Vol. 7, Iss. 5, pp. 125–131
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Fig. 5 Results of
a Preprocessing
b LMS-AF
c Peak detection for real signals
d Preprocessing
e LMS-AF
f Peak detection for synthetic signals. All values are normalised between 0
and 1

Table 1 Results obtained for different datasets using the proposed
approach

Dataset FHR,
bpm

Sensitivity,
%

Specificity,
%

Accuracy,
%

ecgca444 [26] 152 95.74 100 97.37
identification of systems (DaISy) [27] are used. In the NiFECG
database, the signals have been sampled at 1 kHz with 16-bit
resolution. From the data set to be tested, one thoracic and one
abdominal signal are chosen as inputs to the system. These are
shown in Figs. 4a and b, respectively. DaISy consists of eight
channels, 10 s recordings sampled at 250 Hz, where three
channels are thoracic signals and the rest are abdominal signals.
The synthetic signals were simulated using the FECGSYN
toolbox [28] in MATLAB, at a sampling rate of 1 kHz. Figs. 4c
and d show the thoracic and abdominal input signals. It is
observed that the synthetic signals are less noisy than the real
signals. In the thoracic signals, all the peaks are maternal R
peaks. In the abdominal signals, the higher peaks are maternal,
and those annotated as fpk are foetal R peaks.
Figs. 5a and d show the time series for real and synthetic signals

after preprocessing. The output of the LMS-AF stage, where FECG
is enhanced and MECG is attenuated, is shown in Figs. 5b and e.
The signal obtained after peak enhancement (labelled sdm) and
the detected foetal R peaks (denoted by fpk), are shown in
Figs. 5c and f. Table 1 lists the results obtained for sensitivity,
specificity, accuracy, and FHR for the tested datasets. It is observed
that the proposed norm for the determination of the threshold,
which is used for foetal R peak detection, results in no false posi-
tives. The application of PTA [23] on ecga444 [26] data set gives
a sensitivity of 78.72%, specificity of 48.28%, and accuracy of
67.11%, as this method was developed for detecting R peaks in
ECG signals of a single subject, whereas the output of LMS-AF
has enhanced FECG as well as residual MECG.
In Table 2, the performance of the proposed work is compared

with various FECG extraction methods. The proposed work
shows an increase of 1.34% in the sensitivity and 2% in the
accuracy for DaISy. The proposed method also shows an increase
of 1.02% in the sensitivity and 7.51% in accuracy when compared
to works that have tested their systems on both NiFECG and DaISy.
The system is implemented on the Xilinx Artix-7 FPGA

(XC7A100TCSG324-1), equipped with 63,400 look-up tables
(LUTs), 126,800 flip flops (FFs), 240 DSPs, and 210 input/output
ports. Except for the baseline wander removal, the detection of
local maxima, and the LMS-AF module, all the modules have
minimal resource (∼0 LUTs and FFs) and power utilisation
(0.068 W). The baseline wander removal module consumes
2.691 W power, and utilises 820 LUTs and 94 FFs. The power
per cycle is 89.683 mW. The detection of the local maxima
module consumes 0.167 W power, and utilises 45 LUTs and 34
FFs. The power per cycle is 9.278 mW.
For the LMS-AF module, the resource utilisation and power

consumption depend on the architecture and the order of the
Fig. 4 Waveforms representing various ECG signals
a Real thoracic signal
b Real abdominal signal
c Synthetic thoracic signal
d Synthetic abdominal signal. Synthetic data set has no units (nu)
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filter. There is a trade-off between the series and parallel architec-
tures in terms of convergence time and resource utilisation. For
the parallel design, the number of operations in every clock cycle
is more than the series design, and hence the resource utilisation
is greater. On the other hand, the series architecture distributes
ecgca840 [26] 161 96 100 97.37
ecgca746 [26] 147 97.78 100 98.53
ecgca771 [26] 153 100 100 100
DaISy Channel 2 [27] 143 100 100 100
DaISy Channel 3 [27] 143 100 100 100
synthetic [28] 115 100 100 100

Table 2 Comparison of performance of the proposed method with various
FECG extraction methods

Method Dataset Sensitivity,% Accuracy,%

Le et al. [29] DaISy 98.68% 98.04
Gini et al. [30] DaISy 91% 87.30
Lima-Herrera et al. [31] DaISy and NiFECG 97.50% 92.10
Morales et al. [11] DaISy and NiFECG — 89
proposed method DaISy 100% 100
proposed method DaISy and NiFECG 98.5% 99.04

–, Not reported.
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Table 3 Comparison of hardware implementations of the proposed method and various FECG extraction methods

Method Device Convergence time, ms Consumption of power, W LUTs FFs

LMS [10] XC6SLX45-3-CSG394 — — 1042 440
LMS [11] Spartan3E XC3S500E 600 — — —

LMS [12] dsPIC30F6014A 0.33 1.67a — —

OL-JADE [14] OMAP L137 948 — — —

infomax [15] Stratix-V 5SGXEA7N2F45C2 3.4-54 0.55 — —

neural network [16] Stratix-II EP2S15F484C3 — — 9726 4324
BSS [17] Spartan-3 — — 3002 405
proposed series Artix-7 18.72 6.478 2368 294
proposed parallel XC7A100TCSG324-1 0.48 1.954 22 407 640

−, Not reported.
aThe system proposed by Ortega et al. [12] consumes 1 W, for the current absorption of 200 mA and supply of 5 V, at 30 MHz operating frequency.
the same number of operations across more clock cycles, and hence
needs more time for convergence, and consumes more power. Also,
an increase in the filter order results in an increase in the number of
operations as well as resource utilisation.

In Table 3, the existing implementations of various FECG
extraction methods on different hardware platforms are compared
with the proposed architectures of LMS-AF after mapping the
power consumption and convergence time to 50 MHz operating
frequency. As the number of cycles is different for the two
architectures, there is a large difference in the values of power
consumption. The power per cycle is 7.823 mW for series and
65.133 mW for parallel architecture (30,000 input samples). The
series architecture uses nine instances of the FPU module, and
shows 27.41% reduction in the number of FFs, whereas the
number of LUTs is comparable to the other methods. The parallel
architecture uses 98 instances of the FPU module, and shows up
to 85.88% reduction in the convergence time when compared
with the methods [11, 15, 17] using NiFECG database. The
convergence time for series is 39 times m = 19( ) more than that
of parallel architecture, as the latency is 2m+ 1 and 1 clock
cycles, respectively.

The use of FP operations in the implementation of the proposed
architectures greatly enhanced the precision and accuracy of the
system. Many of the methods listed in Table 3 have reportedly
used fixed-point numbers. The use of fixed-point numbers would
have resulted in a lower resource utilisation and power consumption
as the operations involving FP numbers are computationally
intensive [10, 17, 19]. However, the use of fixed-point numbers
compromises with the accuracy of the system.
5. Conclusion: In this Letter, the FPGA implementation of a
complete system for preprocessing ECG signals, extracting
FECG, and subsequently calculating FHR is presented. For the
removal of high-frequency components, power line interference,
and baseline wander, Butterworth, Notch, and two-stage moving
average filters are used, respectively. For FECG extraction, an
LMS-AF is used, and series and parallel architectures are
designed for its implementation. The precision and accuracy of
the complete system are significantly enhanced by the use of FP
arithmetic, for which an FPU is developed. Comparisons with
previous work show that the proposed parallel architecture
requires the least time for convergence of filter weights, while the
proposed series architecture has low resource utilisation.
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