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A B S T R A C T   

Betacoronaviruses are in one genera of coronaviruses including severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome- 
related coronavirus (MERS-CoV), etc. These viruses threaten public health and cause dramatic economic los-
ses. The nucleocapsid (N) protein is a structural protein of betacoronaviruses with multiple functions such as 
forming viral capsids with viral RNA, interacting with viral membrane protein to form the virus core with RNA, 
binding to several cellular kinases for signal transductions, etc. In this review, we highlighted the potential of the 
N protein as a suitable antiviral target from different perspectives, including structure, functions, and antiviral 
strategies for combatting betacoronaviruses.   

1. Introduction 

There are four genera of coronaviruses (CoVs) in the subfamily 
Orthocoronavirinae of Coronaviridae family: alphacoronaviruses 
(α-CoVs), betacoronaviruses (β-CoVs), gammacoronaviruses (γ-CoVs), 
and deltacoronaviruses (δ-CoVs) [1]. CoVs have been identified in 
different mammals and fowl such as dogs, cats, horses, bats, cattle, 
swine, mice, whales, monkeys, ferrets, camels, turkeys, and chickens 
[2]. In humans, zoonotic-origin β-CoVs are of the greatest importance. 
The human coronaviruses (HCoVs), including HCoV-HKU1 and HCoV- 
OC43, are responsible for 10%–20% of common colds [2]. SARS-CoV 
caused the 2002–2003 severe acute respiratory syndrome (SARS) 
pandemic; Middle East respiratory syndrome (MERS)-CoV led to the 
2012 MERS epidemic in the Middle East; and SARS-CoV-2 resulted in the 
coronavirus disease 2019 (COVID-19) pandemic. Diseases related to 
β-CoVs in humans range from asymptomatic to respiratory infections, 
enteric infections, encephalitis, and the worst outcome, death [3–8]. 
Currently, there are four lineages within the genus Betacoronavirus: 
lineage A (HCoV-OC43, HCoV-HKU1, etc.), lineage B (SARS-CoV, SARS- 
CoV-2, etc.), lineage C (MERS-CoV, Tylonycteris bat coronavirus HKU4 
(BtCoV-HKU4), etc.), and lineage D (Rousettus bat coronavirus HKU9 
(BtCoV-HKU9), etc.) [9]. In this review, we will mainly focus on the 
antiviral aspects of the N protein in zoonotic β-CoVs. 

CoVs infect host cells primarily by receptor binding via the viral 

spike (S) protein, which mediates viral and host cell membrane fusion 
triggered by conformational changes of the S protein. After entering the 
cytoplasm and uncoating, the virus releases the nucleocapsid and the 
viral genome, followed by initiation of viral replication and transcrip-
tion in cytoplasm. As the largest known RNA virus, CoVs have a positive- 
sense, single-stranded RNA with a genome size ranging from 26 to 32 kb 
packaged in the enveloped virion [10]. Two-thirds of the genome is the 
5′. 

Non-structural protein (NSP) coding regions encoding two over-
lapping viral replicase proteins, polyproteins 1a (pp1a) and pp1ab [11]. 
The polyproteins are cleaved into mature NSPs that are related to RNA 
synthesis by virally encoded papain-like (PL) and 3 chymotrypsin-like 
(3CL) proteases [12–14]. The last third of the genome encodes struc-
tural (SP), envelope (E), membrane (M), and nucleocapsid (N) proteins 
and nonessential accessory proteins by means of producing subgenomic 
(sg) mRNAs [11,15]. The replicated RNA genome forms a nucleocapsid 
with the N protein and is packaged into an unmatured virion. The virion 
is maturated in the Golgi and transported in exocytic vesicles. After 
plasma membrane fusion, the mature virus is released from the infected 
cell [16]. 

2. Structure of the β-CoV N protein 

The N protein structure is conserved within different members of 
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β-CoVs. Amino acid (aa) sequence comparisons revealed three distinct 
and highly conserved domains: a hand-shaped N terminal domain (NTD) 
(Fig. 1C); a dimerization-related C-terminal domain (CTD) (Fig. 1B); and 
the disordered central linker region (RNA-binding domain, CLR) 
(Fig. 1A) [10,14,17]. All three domains are related to RNA binding 

[18,19]. Because of the characteristics of the N protein, such as poor 
stability and dynamic behavior, no crystal structures were solved for 
full-length N proteins of coronaviruses. In solution, the full-length SARS- 
CoV N protein predominantly exists as a CTD dimer that is considered to 
be the basic building blocks of the nucleocapsid (Fig. 1D) [20–22]. A 

Fig. 1. Structure of the β-CoV N protein. (A) C-I-TASSER 
structure model. The ribbon representations of the struc-
tures of NTD (N-terminal RNA-binding domain, red box) 
and CTD (C-terminal dimerization domain, yellow box) 
are generated with PyMOL from coordinates in the pro-
tein data bank (PDB IDs: NTD, 6M3M; CTD, 6WJI). The 
relative orientation of NTD, CTD, and CLK are drawn 
randomly to reflect the dynamic nature of the N protein. 
(B) CTD. (C) NTD. (D) CTD dimer. (E) Electrostatic sur-
face of the NTD. Blue denotes positive charge potential. 
Red denotes negative charge potential. Pocket in the 
square indicates the RNA binding site of NTD; this pocket 
is various among β-CoVs. (F) The domain organization of 
the β-CoV N protein. (G) The crystal packing of the CTD 
24-mer. Yellow and orange ribbons represent β-CoV viral 
RNA strands wrapping around the helical oligomer 
structure. (H) Schematic of the docking of NTD onto the 
CTD 24–mer complex. The NTD domains are represented 
by red ellipsoids. Structures were generated using PyMOL 
(The PyMOL Molecular Graphics System, Version 1.5.0.4 
Schrödinger, LLC). (For interpretation of the references to 
color in this figure legend, the reader is referred to the 
web version of this article.)   
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structural model for a di-domain (DD) has been proposed by fitting small 
angle X-ray scattering data for the SARS-CoV N protein [23]. The CTD 
dimer forms as a core with NTDs branching out as two arms connecting 
to the core via CLR (Fig. 1F). As NTD and CTD are independently folded 
structural regions, research groups usually study them separately. 

Although NTDs are divergent in both sequence and length within 
Coronaviridae [24], they are relatively conserved within Betacoronavirus 
genera. As shown in Fig. 2, NTD has been mapped for HCoV-OC43 (aa 
58–195) [25], SARS-CoV-2 (aa 46–174) [26], SARS-CoV (aa 45–181) 
[27], and MERS-CoV (aa 39–165) [28]. NTD within zoonotic β-CoVs 
displays a right-handed (loops)-(β-sheet core)-(loops) sandwiched 
structure which is conserved among all NTD in CoVs (Fig. 2) [26,29]. 
The hand-shaped NTD is represented by basic fingers, a hydrophobic 
basic palm, and an acidic wrist (Fig. 1E) [26,30]. The hand-shaped NTD 
residues in the middle part are more conserved than residues located in 
the basic fingers and acidic wrist [26]. Based on the crystal structures of 
β-CoVs-NTD [26,28,31,32], critical residues have been identified related 
to RNA binding in β-CoVs-NTD. The pockets of NTDs of SARS-CoV-2 and 
SARS-CoV are distinct from those of HCoV-OC43 NTD. For HCoV-OC43, 
the co-crystal structure of HCoV-OC43 NTD with adenosine mono-
phosphate (AMP) revealed the AMP binding site composed of residues 
Ser 64, Gly 68, Arg 122, Tyr 124, Tyr 126, and Arg 164 [33]. 

The NTD and CTD are linked by CLR, which is rich in serine and 
arginine residues. The CLR also contains abundant of phosphorylation 
sites which facilitate the N protein to become involved in cell signaling 
[34–38]. The flexibility of CLR facilitates its direct interactions between 
the N protein and RNAs [23,27,39–41]. However, because there is no 
structural information for the CLR, and protein phosphorylation is 
reversible, opposing hypotheses on the function of CLR in N protein 
oligomerization have been proposed based on different facts. Because 
phosphorylation can stabilize the N protein by reducing the total posi-
tive charge, hyperphosphorylation of CLR could enhance and regulate 

oligomerization of DD [42]. In another study, it was reported that 
oligomerization might be impaired when the CLR is phosphorylated 
[43,44]. These results suggest that phosphorylation may act as a key to 
lock or unlock N protein oligomerization. 

Similar to that of NTD, sequence and length of the CTD are relatively 
conserved within the β-CoV genera, indicating similar structural and 
functional roles for the CTD [45]. The monomer of the SARS-CoV N 
protein is unstable because the CTD folds into an extended conformation 
with a topology of α1-α2-α3-α4-α5-α6-β1-β2-α7-α8, leading to a large 
cavity in its center [45,46]. The CTD can be stabilized through domain- 
swapped dimerization by inserting a β-hairpin of one subunit into the 
center cavity of the opposite subunit [21,22,45,46,47,48]. Exploration 
of the crystal structure of SARS CTD revealed a CTD octamer formed by 
two butterfly-shaped tetramers responsible for RNA-binding activity in 
the CTD [46]. The dimerization core has been identified at aa 281–365. 
A positively charged groove related to RNA binding has been mapped to 
aa 248–280 that contained eight positively charged lysine and arginine 
residues [46,48]. Based on the crystal structure, a helical supercomplex 
structure is formed by these octamers and is characterized by a contin-
uous positively charged surface [46]. Through electrostatic interactions 
between the continuous positively charged surface of the CTD super-
complex and negatively charged RNA strands, the viral RNA strands can 
bind and wrap around the CTD supercomplex by non-specific charge 
interactions (Fig. 1G, H) [46,49]. Similar to human CoV 229E (hCoV- 
229E), all zoonotic β-CoV NPs have C-terminal tail peptides. In hCoV- 
229E, the disordered C-terminal tail is responsible for dimer–dimer as-
sociation. It has been reported that peptide N377–389 from the C-ter-
minus of hCoV-229E has an inhibitory effect on viral titer of HCoV-229E 
[47]. Understanding the mechanism of how the C-terminal tail peptide 
in the β-CoV N protein is involved in oligomerization may shed light on 
identifying antiviral targets for drug discovery to combat β-CoVs by 
means of disrupting the N protein self-association. 

Fig. 2. Domain architectures of β-CoVs N protein. NTD: N-terminal RNA-binding domain; CTD: C-terminal dimerization domain. Multiple sequence alignment of 
SARS-CoV-2 N-NTD (GenBank: NC_045512.2) with SARS-CoV N-NTD (GenBank: NC_004718.3), MERS-CoV N-NTD (GenBank: NC_019843.3), HCoV-OC43 N-NTD 
(GenBank: NC_006213.1), HCoV-HKU1 (GenBank: NC_006577.2), Tylonycteris bat coronavirus HKU4 (GenBank: MH002339.1). Red arrows indicate conserved 
residues for ribonucleotide binding sites, dash-bordered boxes indicate variability of residues in the structural comparisons. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 
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3. Functions of the β-CoV N protein 

The primary function of the β-CoV N protein is to package the viral 
genomic RNA into nucleocapsids. This structure not only protects the 
genome, but also further guarantees that the replication and trans-
mission can be done in a timely and reliable manner. Therefore, a cor-
rect and stable structure is important for nucleocapsid function. The 
β-CoV N protein uses its dimer form as a basic building block for 
nucleocapsid formation [30]. Based on the crystal structure of SARS- 
CoV CTD, the dimerization core has been identified at aa 281–365 [46]. 

The N protein, M protein, and gRNA form the internal spherical/ 
icosahedral core of CoVs [50,51]. Although the M protein can form 
virus-like particle (VLP) alone via self-assembly, both particle densities 
and uniformity are lower than VLPs formed by M protein + N protein 
[50] This suggests that the incorporation of N into M vesicles stabilizes 
the formation of VLPs. For SARS-CoV, aa 168–208 in the N protein and a 
highly polar and hydrophilic region (aa 194–205) in the M protein are 
responsible for the interaction via an ionic interaction [52–54]. He et al. 
demonstrated that serine/arginine-rich motif (SSRSSSRSRGNSR) in CLR 
at aa 184–196 is also critical for multimerization of the N protein [55]. 
Because the same motif is involved in both N-N and N-M interactions, 
this region may be critical for maintaining correct conformation of the N 
protein. Because the sequence homology of N and M proteins among 
zoonotic β-CoVs is relatively conserved, N-M and N-N protein in-
teractions of SARS-CoV can be representative [56]. Similar N-M inter-
action has been observed in mouse hepatitis virus (MHV) and 
transmissible gastroenteritis virus (TGEV) [51,57,58], suggesting that 
the CoVs employ the same method to facilitate N-M protein interaction, 
although the sequence homology of N and M proteins among them is low 
[59,60]. 

During the early stage of virus replication cycle, the N protein ac-
cumulates in cytoplasm with viral gRNA and nonstructural protein 3 
(nsp3), suggesting the N protein might play a critical role in viral tran-
scription and translation [61–63]. In MHV, a commonly used model of 
β-CoVs, both CLR and NTD are involved, interacting directly with nsp3 
as part of the replication-transcription complexes (RTCs) related to CoV 
RNA synthesis [64,65]. The binding between nsp3 and CLR in MHV may 
induce a conformational change at the CLR of the N protein, subse-
quently regulating the intracellular localization of the N protein [66] 
and/or other RNA binding functions. In addition, the reverse genetics to 
rescue SARS-CoV indicates the N protein might play a critical role in 
enhancing the translation of viral mRNAs or enhancing subgenomic 
transcription [67]. 

The N protein can be detected in both cytoplasm and nucleolus for 
different CoVs, suggesting nucleolar localization of the N protein is a 
shared feature within the coronavirus family and is possibly of func-
tional significance [35,68–71]. For the SARS-CoV N protein, the nuclear 
export signal motif identified at aa 324-EVTPSGTWLT-334 (CTD) is the 
dominant signal in determining N protein localization [72]. Phosphor-
ylated N protein can be translocated to the cytoplasm from the nucleus 
by binding to the 14-3-3 protein [43,73], although the phosphorylation 
of the N protein happens in both sites [20]. Moreover, the absence of SR- 
rich domain at the CLR of the SARS-CoV N protein can dramatically 
change localization of the N protein [55]. The functions of the N protein 
in nucleolus still remain elusive. 

Through interaction with host components, the N protein can inhibit 
protein translation via EF1α-mediated action [70], modulate the host 
cell cycle via cyclin-CDK activity regulation [73], induce apoptosis [74], 
cause lung inflammation in SARS-CoV infected patients via activation of 
cyclooxygenase-2 (COX-2) [75], and inhibit the synthesis of interferons 
[76,77]. 

4. Antiviral strategies for β-CoVs 

Since the 1960s, antivirals targeting many different viral diseases 
have been identified based on different mechanisms [78–80]. 

Approximately 90 compounds have been formally licensed to use as 
clinical antiviral therapies; half of these are used for the treatment of 
human immunodeficiency virus (HIV) infection [81,82]. Other 
approved antiviral drugs are designed for hepadnavirus, hepacivirus, 
herpes simplex virus, influenza viruses, human cytomegalovirus, 
varicella-zoster virus, respiratory syncytial virus, and human papillo-
mavirus [82]. However, because of specific licensing, antiviral therapies 
are still unavailable for many critical emerging viral diseases. 

Ribavirin, a nucleoside analogue similar to remdesivir, can inhibit a 
broad spectrum of viruses in vitro and in vivo with pleiotropic mecha-
nisms including inhibition of viral capping enzymes, lethal mutagenesis 
of viral RNA genomes, and inhibition of viral RNA synthesis [83,84]. 
However, a single aa change in the viral RdRp can result in resistance in 
poliovirus; although a 99.3% loss in infectivity was observed after 
ribavirin treatment, it caused a 9.7-fold increase in mutagenesis [85,86]. 
The mutant RdRp has a greater fidelity compared with that of the 
parental strain. 

Neuraminidase inhibitors (NAIs) are a group of antiviral therapeutics 
to treat infection caused by influenza A and B viruses. The primary 
function of NA, a surface protein of influenza viruses, is to cleave sialic 
acids from the infected cell surface and subsequently release the newly 
formed mature viruses. After identifying of the mechanism of viral 
release of influenza, scientists developed NAIs that mimic the structure 
of sialic acids. After NAI treatment, the mature influenza viruses cannot 
be released to spread further because of inhibition of NA by NAI [87]. 
Unfortunately, due to the chronic use of NAIs, several NAI-resistant 
mutations have been identified in different strains all over the world 
[88–91]. Although β-CoVs have a relatively low mutation rate due to 
their proofreading machinery [92], they can still gain resistance to a 
specific antiviral treatment by mutating over time, which could be a 
potential risk to public health. To avoid generating directed resistant 
mutations caused by a single type of treatment, a combination of anti-
viral therapeutics with different mechanisms should be employed to 
treat the viral infection. As more than nine million life-years were saved 
from HIV infection by combination antiretroviral therapy, we should 
identify multiple antivirals to create a similar therapeutic method to 
control other important pathogens such as zoonotic β-CoVs [93]. 

Currently, there is no licensed antiviral drug approved for treatment 
of zoonotic β-CoV infections in the U.S., although the investigational 
nucleotide analogue remdesivir, an inhibitor of RNA-dependent RNA 
polymerase (RdRp) in SARS-CoV-2, is in clinical trial program [94]. 
However, we need to carefully consider putting these drugs into human 
clinical trials. In addition to potential side effects, antiviral drugs may 
worsen the situation if drug-resistant strains emerge. Also, unlike most 
antibiotics, specific antivirals are designed to target specific viral pro-
teins that may be involved in normal human functions instead of simply 
inactivating the pathogen [95]. 

As shown in Table 1, there are two main perspectives for therapy 
development against β-CoVs based on previous experience: 1, virus- 
directed; 2, host-directed [96]. Because of the pandemic, numerous 
studies using have been carrying out worldwide and clinical trials are 

Table 1 
β-CoV antiviral strategies.   

Targets Example inhibitors 

Virus-directed 
strategies 

Viral structural 
proteins 

Chloroquine, nafamostat, 
griffithsin 

Viral helicase Bananins, adamantanes 
Viral protease 3C-like protease inhibitors: 

cinanserin 
Papain-like protease inhibitors: 
disulfiram 

RdRp Ribavirin, remdesivir, favipiravir 
Host-directed 

strategies 
ACE2 Human recombinant soluble ACE2 
Interferons Interferon α, interferon β, 

interferon γ  

Y. Lang et al.                                                                                                                                                                                                                                    



Life Sciences 282 (2021) 118754

5

updating on ClinicalTrials.gov almost every day. Numerous strategies 
have been explored and reviewed previously [96]. In this review, we 
focus on antiviral strategies targeting the viral N protein. 

Since the N protein of β-CoVs is a multifunctional structural protein 
with conserved structure, it is an attractive target for discovery of 
antiviral drugs. Several groups are developing antiviral drugs targeting 
N protein. Roh, Changhyun found (− )-catechin gallate and (− )-gallo-
catechin gallate have a remarkable inhibition activity on SARS-CoV N 
protein by quantum dots-conjugated RNA oligonucleotide on a biochip 
platform [97]. 

The compound N-(6-oxo-5,6-dihydrophenanthridin-2-yl)(N,N-dime-
thylamino)acetamide hydrochloride (PJ34) was identified as an N pro-
tein inhibitor which can reduce the N protein's RNA-binding affinity, 

leading to inhibition of viral replication at 10 μM (Table 2) [33]. Sub-
sequently, they found that 6-chloro-7-(2-morpholin-4-yl-ethylamino) 
quinoxaline-5,8-dione (small-compound H3) worked as an RNA bind-
ing inhibitor against HCoV-OC43 by targeting NTD, which can signifi-
cantly reduce the RNA-binding capacity of N protein [98]. For SARS- 
CoV, nuclear magnetic resonance (NMR) was employed to screen 
small molecules that bind to the NTD of SARS CoV with low affinity (1 
mM) [99]. A compound 6-amino-4-hydroxy-naphthalene-2-sulfonic 
acid was identified as a potent candidate to bind to the same pocket 
site of NTD as RNA. For SARS-CoV-2, Kang et al. identified a hydro-
phobic pocket consisting of Phe 57, Pro 61, Tyr 63, Tyr 102, Tyr 124, 
and Tyr 126 for SARS-CoV-2 [26]. Therefore, this pocket might be a 
potential drug targeting site for drug screening, and the same group is 

Table 2 
β-CoV inhibitors target N proteins.  

Full name Compound 
abbreviations 

Structure Target 
site 

Mechanism Reference 

N-(6-oxo-5,6-dihydrophenanthridin-2-yl)(N,N-dimethylamino) 
acetamide hydrochloride 

PJ34 

N
H

O

NH

O
N

NTD Inhibit RNA binding [33] 

(− )-Catechin gallate  

O

O

O

OH

OH

OH

OH

OH
OH

OH

NTD Inhibit RNA binding [97] 

(− )-Gallocatechin gallate  

O

O

O

OH

OH

OH

OH

OH
OH

OH

OH NTD Inhibit RNA binding [97] 

6-Chloro-7-(2-morpholin-4-yl-ethylamino) quinoxaline-5,8-dione H3 

N
O

NH

N

O

O

Cl

NTD Inhibit RNA binding [98] 

5-Benzyloxygramine P3 
O

N
H

N
NTD Induced abnormal 

dimerization 
[100]  

Fig. 3. Schematic describing the rationale used in designing the allosteric stabilizer of this study. An orthosteric stabilizer is used to bind to the non-native interaction 
interface of the NTD and stabilize the abnormal interaction between proteins. Then the CTD cannot be packed correctly. 
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doing further research to confirm their hypothesis. 
In recent research on the MERS-CoV N protein, an antiviral drug 

design yielded structure-based stabilization of non-native protein-pro-
tein interactions at NTD, leading to an abnormal N protein oligomeri-
zation (Fig. 3) [100]. The structure of NTD revealed a conserved 
hydrophobic pocket consisting of W43, N66, N68, Y102, and F135 of 
one monomer at the dimerization interface, which accommodates the 
side chain of M38 of the second monomer. Subsequently, virtual 
screening by targeting the hydrophobic pocket of the NTD dimeric 
interface identified 5-benzyloxygramine (P3) as a candidate binder. In 
cell culture, P3 can significantly suppress N protein expression at 100 
μM [100]. Although discovery of antiviral drugs usually involves native 
protein–protein interactions (PPIs), identification and stabilization of 
non-native PPIs could also be taken into consideration for drug discov-
ery to counter CoV infections. 

In addition, because only high-biosafety-level labs can handle the 
virulent strains of zoonotic β-CoVs, hindering the speed of antiviral 
discovery, it is crucial to find suitable models to study the antivirals in 
lower-biosafety-level labs to initiate the primary screening of antiviral 
candidates. VLPs without infectious properties should be functional and 
safe models for this purpose [50]. For example, based on N protein 
functions, we know it mainly serves as a structural protein. So, if the 
conformation of the N protein changes, VLPs might not be able to pro-
cess successfully [101,102]. Thus, we can use VLPs to screen antiviral 
candidates at the cell base level. 

5. Conclusions 

Currently, we have an urgent unmet medical need for antiviral drugs 
with different mechanisms to combat β-CoV pandemics or epidemics. 
The N protein of β-CoVs is an attractive and suitable therapeutic target 
for the following reasons: first, the N protein has many conserved sites 
related to its structural characteristics; second, the N protein has mul-
tiple functions, some of which are critical for virus replication; and third, 
we can use VLPs as a tool to initiate the primary screening of antiviral 
candidates in lower-biosafety-level labs. 
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