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Background: NOS3 (endothelial NOS, eNOS) is a member of the nitric oxide synthase

(NOS) enzyme family, mainly participating in nitric oxide (NO) generation. NOS3 has been

reported to inhibit apoptosis and promote angiogenesis, proliferation, and invasiveness.

However, the expression pattern of NOS3 and its diagnostic and prognostic potential

has not been investigated in a pan-cancer perspective.

Methods: Data from the Genotype-Tissue Expression (GTEx), the Cancer Genome

Atlas (TCGA), the Cancer Cell Line Encyclopedia (CCLE), and the Cancer Therapeutics

Response Portal (CTRP) were employed and NOS3 expression was comprehensively

analyzed in normal tissues, cancer tissues, and cell lines. Immunohistochemical staining

of tissue sections were used to validate the prognostic role of NOS3 in gastric cancer

patients. GSVA and GSEA analyses were performed to investigate signaling pathways

related to NOS3 expression.

Results: In normal tissues, NOS3 was expressed highest in the spleen and lowest in

the blood. NOS3 expression was increased in stomach adenocarcinoma (STAD) and

significantly associated with poor prognosis of patients. Immunohistochemical staining

validated that NOS3 was an independent prognostic factor of gastric cancer. Several

canonical cancer-related pathways were found to be correlated with NOS3 expression

in STAD. The expression of NOS3 was related to the response to QS-11 and brivinib

in STAD.

Conclusions: NOS3 was an independent prognostic factor for patients with STAD.

Increased expression of NOS3 influenced occurrence and development of STAD through

several canonical cancer-related pathways. Drug response analysis reported drugs to

suppress NOS3. NOS3 might be a novel target for gastric cancer treatment.
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INTRODUCTION

NOS3 (endothelial NOS, eNOS) is a member of the nitric oxide
synthase (NOS) enzyme family, which is a cluster of catalytic
enzymes that mainly participate in nitric oxide (NO) generation
(1). The NOS3 protein is encoded by the NOS3 gene, located
on chromosome 7q36.1. Usually, NOS3 protein is constitutively
expressed in cells in an inactive state. Following the increase
in calcium (Ca2+) concentration in cells, it can be activated
by combining with the CaM protein. In addition, the direct
combination of NOS3 with caveolin-1 (CAV-1) and heat shock
protein 90 (HSP90) and the phosphorylation (Ser-1177) of
NOS3 by PI3K/Akt signaling can modulate the activity of NOS3
protein (2–4).

NOS3 protein was initially found to participate in NO
generation, mainly in endothelial cells, and is associated with
cardiovascular diseases such as hypertension, atherosclerosis,
and diabetes mellitus (5). In recent years, NOS3 has been
found to play various roles in malignant tumors, such as
inhibiting apoptosis and promoting angiogenesis, proliferation,
invasiveness, and immunosuppression (6–8). Circulating NOS3
levels were inversely correlated with progression-free survival
and overall survival (OS) of metastatic colorectal cancer
patients (9). Another research in mesenchymal colorectal cancer
patients reported that NOS3 upregulation occurs after Apc
loss, which was associated with poor prognosis (10). In breast
cancer, the increasing expression of NOS3 was reported to
be a pro-angiogenic factor (11). It was found to promote
angiogenesis via PI3K/Akt/mTOR pathway, and enhance the
migration and invasion via NOS3-NO-sGC-cGMP signaling
in breast cancer cells (12, 13). In pancreatic cancer, NOS3
promoted tumor maintenance through the PI3K-Akt-NOS3-
RAS (wild type) pathway (14). NOS3 inhibition by the
inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) could
suppress pancreatic ductal adenocarcinoma cancer (PDAC)
tumor growth (15). NOS3 activation was reported to promote
the antiandrogen-resistant growth through NO-mediated AR
suppression in prostate cancer (PCa) (16). And NOS3 was
found to participate in promoting aggressive phenotype of PCa,
resulting in poor prognosis in PCa patients (17). In addition,
Trachootham et al. found that non-tumorigenic epithelial cells
from oral and ovarian tissue could be induced to become
invasive in stroma containing p53-deficient fibroblasts, through
NOS3/RNS/ICAM1 signaling (18). NOS3 was also found to
participate in oncogenic inflammation and immunosuppression
of tumors through NOTCH1-PI3K/AKT-NOS3 axis (19). NOS3
expression inhibition was involved in cervical cancer cell
sensitivity to radiotherapy (20). Additionally, many studies
have reported that NOS3 gene polymorphisms are associated
with risk for cancer progression, cancer susceptibility and drug
response (21–23). However, research by Smeda et al. reported
that NOS3 activity and phosphorylation reduction was an early
event in the lung metastasis of breast cancer, preceding the
onset of the mesenchymal phenotype (EndMT) (24). NOS3
participated in the enhancement of Taxol chemosensitivity with
astragaloside IV treatment in breast cancer as a downstream
target of caveolin-1 (25). These studies suggest that NOS3 may

perform multiple functions depending on different tumor types,
and genetic background. Studies on NOS3 expression in tumors
are still scarce, and the functions ofNOS3 in tumor pathogenesis,
especially in gastric cancer, are not comprehensively understood.

By applying data from the Genotype-Tissue Expression
(GTEx; https://www.gtexportal.org/home/), the Cancer Genome
Atlas (TCGA; https://portal.gdc.cancer.gov/) and the Cancer
Cell Line Encyclopedia (CCLE; https://portals.broadinstitute.
org/ccle/), the expression level of NOS3 in 30 different normal
human tissues and 33 different tumors types, as well as
the corresponding normal tissues and 1,457 cancer cell lines
was systematically analyzed. We investigated the relationship
between NOS3 expression and the clinical phenotypes of
patients for all cancers and then separately for each cancer
type. Subsequently, GSVA and GSEA analyses were performed
to investigate signaling pathways related to NOS3 expression.
Subsequently, NOS3 protein level was individually assessed in
gastric cancer tissues. Ultimately, the correlation between NOS3
expression level in 664 cancer cells and cell response to 544
drugs was analyzed to explore the potential of NOS3 as a
therapeutic target.

MATERIALS AND METHODS

Download of TCGA and GTEx Datasets
TOIL GTEx and TCGA (primary tumor and normal
tissues) gene expression RNA-seq data (IlluminaHiSeq: log2-
normalized_count+ 1) and TCGA phenotype data, containing
9359 TCGA tumor tissues, 727 TCGA normal tissues and
7792 GTEx normal tissues, were obtained from UCSC Xena
(https://xena.ucsc.edu/). TOIL reprocesses raw GTEx and TCGA
RNA-seq data to correct for batch effects and to allow for
the merging of samples across GTEx and TCGA datasets for
pan-analyses (26).

Analyses of NOS3 Differential Expression
in Tumor and Normal Tissues
To analyze the differential expression of NOS3 between TCGA
tumors and normal tissues, t-test was applied for tumor types
with at least two normal tissues. The median gene expression
level was employed to calculate the fold change. Then, the log2-
fold change (cancer vs. normal) was employed as the x-axis and
-log10 p-value was employed as the y-axis to produce a Volcano
plot for each tumor type. The expression profiles NOS3 mRNA
within and between tumor types were graphed using GraphPad
Prism (version 7) (San Diego, CA, USA).

Analyses of NOS3 Expression and Clinical
Phenotypes
NOS3 expression levels among different tumor stages (TNM
stage) were assessed by t-test (for two groups) and ANOVA
analyses (for three and more groups). To assess the relationship
of NOS3 expression to overall survival (diagnosis to death), the
median of NOS3 expression in each tumor was used as cutoff
value to divide patients into two groups, and Cox proportional
hazards models were employed. OS time was defined as the
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time from the day at diagnosis to the date of death (dead
patients) or the date of the last follow-up. Cox proportional
hazards model was used to generate hazard ratio (HR) and 95%
confidence interval (CI) for each cancer types. Kaplan-Meier
survival analysis and the log-rank test was applied to calculate
p-value. A forest plot was constructed to visually display the
hazard ratio (HR) and 95% CI for each tumor type. p < 0.05 was
considered a significant correlation. The survival curve and forest
plot were generated by GraphPad Prism.

GSEA and GSVA Analyses
Gene Set Enrichment Analyses (GSEA) was performed by GSEA
v4.1.0 (www.broadinstitute.org/gsea) to detect discrepantly
enriched signaling pathways between NOS3 higher and
lower group. The gene set “c2.cp.kegg.v7.1.symbols.gmt”
from MSigDB gene set was selected as reference gene
set. Signaling pathways with normalized p < 0.05,
normalized enrichment score (NES) >1.5 and false
discovery rate (FDR) q < 0.25 was considered as
statistically significant.

We utilized the R package “GSVA” to perform Gene Set
Variation Analysis (GSVA) analyses of NOS3 expression to
find the pathways most associated with NOS3 expression. P
< 0.05 was regarded as statistically significant. The gene set
“c2.cp.kegg.v7.1.symbols.gmt,” was selected as the reference gene
set. Signaling pathways commonly enriched by GSEA and GSVA
analysis were considered to be potential pathways related to
NOS3 expression.

Cell Lines NOS3 Expression
NOS3 mRNA expression, promoter DNA methylation, and
copy number data were downloaded from the Cancer Cell
Line Encyclopedia (CCLE, https://portals.broadinstitute.org/
ccle/), which contained RNA-seq data, DNA methylation data
from the matching reduced representation bisulfite sequencing
(RRBS) and copy number data of 1,457 human cancer cell lines.
NOS3 expression levels among different cell lines of different
cancer types were investigated. Box plots and scatter plots were
downloaded from the CCLE website. The relation of NOS3
mRNA to promoter DNA methylation and copy number was
evaluated by Spearman correlation analysis.

Drug Responses
The drug response data were obtained from the Cancer
Therapeutics Response Portal (CTRP, https://portals.
broadinstitute.org/ctrp.v2.1/), which contained the responses of
664 cell lines to 482 drugs. Spearman correlation analyses was
also performed to evaluate the association of NOS3 expression
with drug responses (area under the curve, AUC) first for all cell
lines together and then individually in STAD. Then, correlation
r-value was employed as the x-axis and -log10 p-value was
employed as the y-axis to produce a Volcano plot. NOS3 mRNA
was used as x-axis and AUC was used as y-axis to generate a
scatter plot. The volcano and scatter plots were plotted using
GraphPad Prism.

Immunohistochemical Staining and Result
Analysis of Patients
In total, 90 clinical samples from gastric cancer patients were
collected from the First Affiliated Hospital of China Medical
University (Shenyang, China) from January 2013 to December
2014. Demographic and clinical characteristics such as age at
initial diagnosis, gender, initial diagnosis date, and tumor stage
were also collected. All the patients provided informed consent.
And this study was approved by the ethics committee of the First
Affiliated Hospital of China Medical University.

Formalin-fixed tissues were embedded in paraffin and cut into
5-µm thick sections for H&E staining and immunohistochemical
staining. The expression level of NOS3 was detected by
streptavidin-peroxidase method. Antigen of de-waxed sections
were exposed to 3% H2O2 for 10min at room temperature to
quench the endogenous peroxidase activity. Then the tissues
were blocked with goat serum for 30min at room temperature.
After incubation with NOS3 primary antibody (Abcam, 1:100)
overnight at 4◦C, tissues were incubated with the secondary
antibody (10min) and biotin-labeled horseradish peroxidase
(10min). Next, 3,30-diaminobenzidine tetrahydrochloride
(DAB) kit (Maixin, China) was used to visualize the antibody
binding. Eventually, immunohistochemical staining was
observed under an inverted phase contrast microscope.

Immunoreactivity was dependently evaluated using semi-
quantitatively method by two investigators. Five representative
regions were randomly selected from the 400-fold field of view of
the microscope. The immunoreactive score was determined by
the proportion of positive cells and the staining intensity. The
proportion of positive cells was scored as follows: <9%, 0; 10–
25%, 1; 26–50%, 2; 51–75%, 3; 76–100%, 4. The staining intensity
was scored as follows: 0 for no staining, 1 for light yellow, 2 for
yellow, and 3 for brown. The final immunoreactive score was the
product of the two scores.

Statistical Analyses
For all statistical analyses, a p < 0.05 was considered
statistically significant. All statistical analyses and visualization
were accomplished by using GraphPad Prism 7 and R software
(R version 3.6.0).

RESULTS

NOS3 mRNA Expression in Various Normal
Tissues and Tumors
To comprehensively analyze NOS3 expression and distribution
in human normal tissues and tumor tissues, we first analyzed
NOS3 mRNA expression level in 30 different normal tissues
from GTEx and 33 different tumor tissues from Xena (https://
xenabrowser.net/). The expression of NOS3 was highly variable
across different normal tissues and tumor tissues (Figure 1,
Supplementary Figure 1). In normal tissues, the median NOS3
expression levels varied from 5.624 (blood) to 12.8 (spleen).
Tissues with the highest NOS3 expression were spleen (12.8 ±

1.391), heart (10.64 ± 1.099), testis (10.59 ± 0.532). Tissues with
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FIGURE 1 | NOS3 mRNA expression in various normal tissues and tumors. NOS3 is differentially expressed between tumor and normal tissues in some cancers from

TCGA and GTEx databases. Each boxplot represents NOS3 expression [RNA-seq RSEM, log2(normalized count +1)] across different cancers. Red is for tumors and

blue is for normal tissues. The bar represents median expression of tumors or normal tissues and lower and upper box ends represent the 25th and 75th percentile

expression. ns, without statistical significance, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, based on Student’s t-test.

the lowest NOS3 expression were blood (5.624 ± 1.325), skin
(7.904± 1.753), pancreas (8.363± 1.159).

In tumor tissues, NOS3 expression levels varied from 9.85
(stomach adenocarcinoma, STAD) to 5.071 (acute myeloid
leukemia, LAML). Tumor tissues with the highest NOS3
expression were STAD (9.85 ± 1.018), kidney renal clear cell
carcinoma (KIRC, 9.848 ± 0.9791), pancreatic adenocarcinoma
(PAAD, 9.297 ± 0.8167). Tumor tissues with the lowest NOS3
expression were LAML (5.071 ± 1.591), kidney renal papillary
cell carcinoma (KIRP, 7.173 ± 1.14), uveal melanoma (UVM,
7.278± 0.9764).

NOS3 mRNA Expression in Tumor Cell
Lines
Considering that tissue-based RNA expression detection might
be complicated by the non-tumor tissues that are adjacent to
tumor cells, we analyzed NOS3 mRNA expression in 1457 cell
lines derived from 26 tumor types in the CCLE database. Initially,
NOS3 expression in different cell lines was checked and the
results showed that cell lines from STAD and COAD were
the top two cell lines expressing the highest levels of NOS3
mRNA, and cell lines from nerve system tissues (e.g., GBM
and neuroblastoma) and bone tissues (e.g., chondrosarcoma
and osteosarcoma) expressed relatively lower NOS3 mRNA
(Figure 2A). Interestingly, NOS3 in STAD was expressed at
the highest level both in stomach tissues from TCGA and in
stomach cell lines from CCLE. Further analysis of the association
between NOS3 mRNA and promoter DNA methylation level
showed a weak correlation (Spearman correlation coefficient =
0.1282, p = 0.0002, Figure 2B). Spearman correlation analysis
between NOS3 mRNA and copy number did not show statistical
significance (p= 0.1193, Figure 2C). These results indicated that

promoter DNA methylation and copy number variants of the
NOS3 gene might not be the main determinant of NOS3 mRNA
levels. Tumor necrosis factor (TNF)-α was reported to decrease
functional activity of NOS3 mRNA 3′-untranslated region (3′-
UTR), regulating the translation process (27). In this research,
we further determined the correlation between TNF-α mRNA
and NOS3 mRNA to verity if TNF-α affect transcription process
of NOS3. However, there was only a weak correlation between
them (spearman r = 0.1119, p = 0.003), suggesting that TNF-
α might affect expression to a certain extent, but not a decisive
factor (Supplementary Figure 2).

NOS3 Is Differentially Expressed in Various
Tumors and Their Corresponding Normal
Tissues
We analyzed NOS3 mRNA expression levels across tumors and
their corresponding normal tissues in 28 tumor types that had
three or more normal tissues data based on TCGA and GTEx
database (Figure 1). NOS3 mRNA expression in 6 of 28 tumor
types, rectum adenocarcinoma (READ), STAD, PAAD, ovarian
serous cystadenocarcinoma (OV), skin cutaneous melanoma
(SKCM), head and neck squamous cell carcinoma (HNSC), was
much higher than that in corresponding normal tissues, with
statistical significance. Furthermore, we analyzed fold change
(FC) of NOS3mRNA between tumor and corresponding normal
tissues (Figures 3A,B). The FC in READ, STAD, PAAD, OV,
SKCM, and HNSC ranged from 1.276 to 2.180. In cancer tissues
and cancer cell lines, NOS3 mRNA expressed highest in STAD.
The differential analysis results showed that expression of NOS3
in cancer tissues is 1.765-fold higher than that of corresponding
normal tissues (p < 0.0001).
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FIGURE 2 | NOS3 mRNA expression in tumor cell lines. (A) NOS3 mRNA expression across different cell lines from CCLE. (B) A scatter plot of promoter DNA

methylation and mRNA levels of NOS3 across different cell lines is shown. (C) A scatter plot of copy number variation and mRNA level of NOS3 across different cell

lines. The correlation between two variables is analyzed by Spearman analysis.

FIGURE 3 | NOS3 is differentially expressed in various tumors and their corresponding normal tissues. (A) Scatter plot of log2 FC and minus log10(p-value) across

different cancers. The horizontal line on the Y-axis represents a p-value of 0.05. Points above the horizontal line have statistical significance. The vertical line on the

X-axis represents log2 FC was−1 or 1, respectively. (B) The log2 FC and p-value in the six tumor types, which expressed higher NOS3 mRNA level.

Association Between NOS3 mRNA
Expression and Clinical Phenotypes
We analyzed the association between NOS3 expression and
tumor stage in 6 tumor types that had stage information
in TCGA. Stages I and II were combined as early stage,

and stages III and IV were combined as advanced stage.
The result of t-test showed that in SKCM, patients with
advanced tumor stage expressed higher NOS3 mRNA levels,
indicating that NOS3 mRNA might positively related to later
tumor stage (Figure 4A). However, NOS3 expression in STAD
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FIGURE 4 | Association between NOS3 mRNA expression and clinical phenotypes. (A) NOS3 expression between the early and advanced stages in SKCM. T-test

was applied to analyses in the early stage and advanced stage. *p < 0.05. (B) The NOS3 expression level is related to overall survival in STAD. In the survival curves,

the red line represents high NOS3 expression levels and the blue line represents low NOS3 expression levels. (C) A forest plot for survival association of each cancer is

shown. The X-axis is the HR, the small points are the estimate of HR for each tumor and the bar represents the 95% confidence interval. Cox proportional hazards

models were used to evaluate the association of NOS3 expression levels on overall survival.

patients did not show difference in early and advanced
tumor stage (early stage: mean of NOS3 expression = 9.888
± 0.9934; advanced stage: mean = 9.872 ± 1.025, p =

0.6653) (Supplementary Figure 3). NOS3 mRNA in READ,
PAAD, OV, and HNSC also showed no correlation with
tumor stage.

To analyze the relationship between NOS3 expression and
overall survival of tumor patients, log-rank test was performed
in six tumor types. We found that among the six tumor types
expressed higherNOS3 level,NOS3mRNAwas related to a worse
prognosis in patients with STAD (median survival: 1,686 vs. 801,
p= 0.0133385, HR= 1.394) (Figure 4B). However,NOS3mRNA
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did not show correlation with OS in READ, PAAD, OV, SKCM,
HNSC (Figure 4C).

Increased Expression Level of NOS3 Was
Related to Poor Prognoses of Gastric
Cancer Patients
Through the above pan-cancer analysis, we found that NOS3
has a higher expression level in gastric cancer tissues, and
it is significantly related to the poor prognosis of gastric
cancer patients. Furthermore, the expression pattern of NOS3
protein was explored in clinical tissue samples to validate
the role of NOS3 in gastric cancer. Based on NOS3 protein
expression levels, gastric cancer patients (N = 90) were divided
into NOS3 positive (N = 45) and NOS3 negative (N = 45)
group. The relationship of demographic and clinicopathological
parameters with NOS3 expression was analyzed using Chi
square analysis. The results showed that NOS3 expression was
related to survival state (p = 0.049), but other parameters
(gender, age, tumor stage, and grade) showed no correlation
with NOS3 expression (Table 1). Kaplan-Meier curves and
log-rank test analyses confirmed that patients with positive
NOS3 expression had significantly shorter overall survival (OS)
than patients with negative NOS3 expression (p = 0.0278,
Figures 5A,B). Furthermore, cox proportional-hazards model
was used to validate the potential of NOS3 as a prognostic factor
in gastric cancer. Univariate cox regression suggested that NOS3
expression (HR = 2.166, 95% CI: 1.065–4.405, p = 0.033) and
tumor stage (HR= 4.775, 95% CI: 2.213–10.302, p< 0.001), were
related to OS. Multivariate cox regression indicated that NOS3
expression (HR = 2.416, 95% CI: 1.181–4.941, p = 0.016) and
tumor stage (HR= 5.101, 95% CI: 2.353–11.058, p < 0.001) were
independent prognostic factors for OS (Figure 5C). In summary,
NOS3 was an independent prognostic factor for patients with
gastric cancer.

Mechanism of NOS3 Influencing the
Clinical Outcome in STAD
In order to explore the mechanism underlying NOS3
affecting clinical outcome of patients with STAD, GSEA
and GSVA analyses were performed. Under the conditions
of p < 0.05, FDR q < 0.25 and NES more than 1.5,
GSVA and GSEA analyses commonly enriched 27 KEGG
signaling pathways (Figures 6A–H, Table 2). Several
canonical signaling pathways generally acknowledged
to promote pathological behavior of malignant tumors
were involved, such as “KEGG_ABC_TRANSPORTERS,”
“KEGG_CALCIUM_SIGNALING_PATHWAY,” “KEGG_ECM_
RECEPTOR_INTERACTION,” “KEGG_CYTOKINE_
CYTOKINE_RECEPTOR_INTERACTION,” “KEGG_
CHEMOKINE_SIGNALING_PATHWAY” and “KEGG_MAPK_
SIGNALING_PATHWAY.” These results indicated that NOS3
might participate in multiple canonical cancer-related signaling
pathways to facilitate STAD.

TABLE 1 | Demographic and clinicopathological parameters of patients with

gastric cancer.

N = 90 NOS3 positive NOS3 negative p-value

Gender Male 60 32 28 0.3711

Female 30 13 17

Age <60 40 19 21 0.6714

≥60 50 26 24

T stage T1-2 38 18 20 0.6695

T3-4 52 27 25

N stage N0-1 62 27 35 0.0685

N2-3 28 18 10

pStage I-II 50 23 27 0.3961

III-IV 40 22 18

Grade 1 6 3 3 1

2-3 84 42 42

Status Alive 57 24 33 0.049

Dead 33 21 12

The meaning of bold value is p < 0.05.

Association Between NOS3 Expression
and Drug Sensitivity
To investigate the correlation between NOS3 mRNA expression
and drug sensitivity, NOS3 expression in 664 cell lines and
drug response to 482 drugs were analyzed. Spearman correlation
analysis revealed that, “SR8278” was considered to moderately
correlate with NOS3 mRNA expression, with a correlation
coefficient >0.3 (Figure 7A). A negative correlation indicated
that a better response (smaller response AUC value) was
correlated with increased expression of NOS3. “SR8278” is an
antagonist of the transcription factor REV-ERBα, affecting its
circadian and metabolic functions. Two other drugs, “GSK.J4”
and “CIL55A” had a correlation coefficient >0.2 and were
also negatively correlated. Subsequently, Spearman analysis were
performed to investigate the correlation ofNOS3 expression with
drug response individually in STAD. The results showed that
response of cells to QS-11 (correlation coefficient r = −0.8986,
p = 0.0278) and brivanib (correlation coefficient r = −0.7182,
p = 0.0162) was significantly correlated with NOS3 mRNA level
(Figures 7B,C).

DISCUSSION

NOS3 has been found to inhibit apoptosis and
promote angiogenesis, proliferation, invasiveness, and
immunosuppression of malignant tumors. However, because of
the limited number of studies on NOS3 expression in malignant
tumors,NOS3 functions in tumor pathogenesis and development
are still not fully understood. And the expression pattern of
NOS3 and its diagnostic and prognostic potential has not
been investigated in a pan-cancer perspective. In this study,
the expression level of NOS3 (mainly mRNA) in 30 different
normal human tissues, 33 different tumors types as well as their
corresponding normal tissues, and 1,457 cancer cell lines was
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FIGURE 5 | NOS3 was independent prognostic factor of patients with gastric cancer. (A) Representative images of positive and negative NOS3 protein expression in

gastric cancer tissues. NOS3 was expressed in cytoplasm (yellow arrow) and nucleus (red arrow) of tumor cells. There were 45 patients stained positive and 45

patients stained negative. The scales bars indicate 20µm. (B) Kaplan-Meier analysis of NOS3 protein in gastric cancer patients. Patients with higher NOS3 expression

had shorter OS compared with patients with lower NOS3 expression (p = 0.0278, HR = 2.162). (C) Univariate and multivariate cox regression showed that higher

NOS3 protein expression and advanced pathological stage were independent prognostic factor in gastric cancer patients.

systematically analyzed, to determine the expression level of
NOS3 in tumor and normal tissues and its role in malignant
tumors. We also explored its potential association with clinical
characteristics (pathological stage, OS and drug response).

Pan-cancer analysis focused on whole genome can reveal
genes that are associated with the occurrence and development
of cancer, providing insights into cancer diagnosis, monitoring
and treatment (28–30). By analyzing NOS3 mRNA levels in
normal tissues from GTEx, we found that NOS3 was expressed
at the highest level in the spleen and was expressed at the
lowest level in the blood. According to the Human Protein
Atlas (www.proteinatlas.org) database, the NOS3 protein level
in the spleen was also the highest, which was consisted with
our results. And research has reported that NOS3 is mainly
upregulated in endothelial progenitor cells (EPCs) of the spleen,
exerting beneficial functions on atherosclerosis, angiogenesis,
and vascular repair (31, 32). And in 33 tumor types involved
in this study, NOS3 mRNA was expressed highest in STAD.
Analyses in cancer cell lines showed that NOS3 was expressed

at quite high levels in COAD and STAD cell lines. Previous
research showed that NOS3 promoter DNA methylation could
reduce NOS3mRNA level (33). Copy number variations (CNVs)
could also modify gene mRNA expression (34). However,
further analyses about promoter DNA methylation and CNVs of
NOS3 gene suggested that neither of the two factors showed a
strong statistical correlation with NOS3 mRNA, indicating that
promoter DNA methylation and CNVs of the NOS3 gene might
not be the main determinant of NOS3mRNA levels in tumors.

Analyses of TCGA data showed that NOS3 expression
increased in six tumor tissues compared with their corresponding
normal tissues. Among the six tumor types, NOS3 related to
advanced tumor stage in SKCM. Previous research reported by
Panich et al. suggested that NOS3 inhibition could effectively
protect against UVA-dependent melanogenesis (35). In addition,
patients with higher NOS3 levels were diagnosed with a
later tumor stage in COAD (Supplementary Figure 4A). This
was consistent with the observation that L-NIO (a NOS3
inhibitor) inhibited cell growth and angiogenesis in colorectal
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FIGURE 6 | GSEA and GSVA analyses in STAD. (A) Top 15 differentially enriched KEGG signaling pathways in higher and lower NOS3 expression groups analyzed by

GSVA in STAD. (B) Seven signaling pathways commonly enriched by GSEA and GSVA in STAD. (C–H) Signaling pathways enriched by GSEA analyses in STAD.

cancer (36, 37). In BRCA, we also found that the higher
expression of NOS3 mRNA was related to advanced tumor
stage (Supplementary Figure 4B). These results were consistent

with previous researches, which reported that NOS3 promoted
angiogenesis and enhance the migration and invasion in breast
cancer cells (11–13).
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TABLE 2 | GSVA and GSEA analyses revealed mechanism of NOS3 participant in occurrence and development of STAD.

Signaling pathways GSVA GSEA

p-value NES p-value

KEGG_GLYCOSAMINOGLYCAN_BIOSYNTHESIS_CHONDROITIN_SULFATE <0.0001 1.48 0.044

KEGG_ECM_RECEPTOR_INTERACTION <0.0001 1.81 <0.0001

KEGG_DILATED_CARDIOMYOPATHY <0.0001 1.69 <0.0001

KEGG_VASCULAR_SMOOTH_MUSCLE_CONTRACTION <0.0001 1.90 <0.0001

KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION <0.0001 1.65 <0.0001

KEGG_CALCIUM_SIGNALING_PATHWAY <0.0001 1.79 <0.0001

KEGG_FOCAL_ADHESION <0.0001 2.01 <0.0001

KEGG_HYPERTROPHIC_CARDIOMYOPATHY_HCM <0.0001 1.73 <0.0001

KEGG_CELL_ADHESION_MOLECULES_CAMS <0.0001 1.71 0.006

KEGG_ARRHYTHMOGENIC_RIGHT_VENTRICULAR_CARDIOMYOPATHY_ARVC <0.0001 1.63 0.004

KEGG_LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION <0.0001 1.99 0.002

KEGG_HEMATOPOIETIC_CELL_LINEAGE <0.0001 1.60 0.033

KEGG_COMPLEMENT_AND_COAGULATION_CASCADES <0.0001 1.58 0.012

KEGG_RENIN_ANGIOTENSIN_SYSTEM <0.0001 1.54 0.025

KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION <0.0001 1.60 0.011

KEGG_AXON_GUIDANCE <0.0001 1.88 <0.0001

KEGG_CHEMOKINE_SIGNALING_PATHWAY <0.0001 1.74 0.010

KEGG_PRION_DISEASES <0.0001 1.51 0.037

KEGG_REGULATION_OF_ACTIN_CYTOSKELETON <0.0001 1.87 <0.0001

KEGG_VIRAL_MYOCARDITIS <0.0001 1.55 0.046

KEGG_DORSO_VENTRAL_AXIS_FORMATION <0.0001 1.77 0.002

KEGG_MAPK_SIGNALING_PATHWAY <0.0001 1.85 <0.0001

KEGG_ALDOSTERONE_REGULATED_SODIUM_REABSORPTION <0.0001 1.50 0.035

KEGG_TYPE_II_DIABETES_MELLITUS <0.0001 1.59 0.012

KEGG_GAP_JUNCTION <0.0001 1.65 0.004

KEGG_ABC_TRANSPORTERS <0.0001 1.50 0.027

KEGG_ADIPOCYTOKINE_SIGNALING_PATHWAY <0.0001 1.62 0.019

FIGURE 7 | Association between NOS3 expression and drug sensitivity. (A) Volcano plot of the correlation coefficient and minus log10(p-value) between NOS3

expression in all cell lines and 482 drugs. Most of correlations are not significant and in negative direction. The correlation coefficient of “SR8278” is >0.3 (negative,

higher expression is correlated with better response represented by smaller AUC). Blue dots are the drugs with correlation coefficients >0.2. (B,C) Spearman analysis

performed individually in STAD. Volcano plot of the correlation coefficient and minus log10(p-value) between NOS3 expression in STAD cell lines was shown in B

(including 23132-87, NCI-N87, MKN-45, MKN-1, HS746T, NUGC-3, MKN-7, IM-95, HGC-27, OCUM-1, FU-97, and AGS cells). The response of cells to QS-11

(correlation coefficient r = −0.8986, p = 0.0278) and brivanib (correlation coefficient r = −0.7182, p = 0.0162) was significantly correlated with NOS3 mRNA level.

The scatter plots of QS-11 and brivanib were shown in (C).
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There are few researches have reported NOS3 in STAD. Doi
et al. reported in 1999 that the quantity of NOS3 in gastric
cancer tissues was negatively correlated with serosal invasion
(38). And NOS3 has been reported to promote the angiogenic
phenotype and predict poor prognosis in STAD (39). In our
research, expression level of NOS3 was significantly increased
in STAD tumor tissues, and its expression level was the highest
among the tumor types and cancer cell lines involved in this
study. Analyses of clinical parameters also showed that NOS3
predicted poor prognosis, consistent with previous research.
These results confirmed the important role of NOS3 in the
development of STAD. Furthermore, experiments and analyses
in our gastric cancer tissues also indicated that higher NOS3
protein level was closely related to shorter OS of gastric cancer
patients.NOS3was an independent prognostic factor for patients
with gastric cancer. However, NOS3 showed no correlation
with tumor stage in mRNA and protein level. It may be due
to the limitation of sample size. The sample size needs to
be increased for further verification in future research. At
present, the mechanism of NOS3 promoting STAD progression
was not clear. Therefore, we further analyzed the potential
signaling pathways participating in NOS3 promoting gastric
cancer. The results of GSEA and GSVA analyses suggested
that in STAD, several canonical cancer-related pathways were
enriched in higher NOS3 expression group. As key members of
“KEGG_ABC_TRANSPORTERS,” ATP binding cassette (ABC)
transporters were identified to mediate multidrug-resistance
(MDR) in acute myeloid leukemia (AML), OV, BRCA, and lung
cancer (40, 41). And researches also reported that ATP-binding
cassette transporter G1 (ABCG1), a member of ABC transporter
family, could modulate the interaction of Cav-1 and NOS3
protein in endothelial cells (ECs), and increase cell migration
through Lyn/Akt/NOS3 in endothelial progenitor cells (EPCs).
“KEGG_CALCIUM_SIGNALING_PATHWAY” contributes to
many crucial tumor pathology processes, including proliferation,
invasion, cell death, and autophagy in many tumors (42–45).
As described above, the increased concentration of Ca2+ could
induce the combination of CaM protein and NOS3 protein, and
subsequently stimulate the activity of NOS3 protein (2, 46). We
also enriched “KEGG_ECM_RECEPTOR_INTERACTION.”
Specific interactions between the extracellular matrix (ECM)
and cells are mediated by transmembrane molecules, including
integrins, proteoglycans, and other cell-surface-associated
components. These interactions can lead to malignant
biological behavior of tumor cells, such as adhesion, migration,
proliferation, and apoptosis (47, 48). A study by Njah et al. found
that Agrin interacted with Lrp4-Integrin β1-FAK axis in ECs.
This interaction could sustain the VEGFR2 pathway as well as
stimulate NOS3 signaling, and ultimately promote angiogenesis
in tumor (49). In addition, “KEGG_CYTOKINE_CYTOKIN
E_RECEPTOR_INTERACTION,” “KEGG_CHEMOKINE_SI
GNALING_PATHWAY,’’and‘‘KEGG_MAPK_SIGNALING_
PATHWAY” were also generally recognized as cancer-related
signaling pathway. These pathways were widely involved in
tumor occurrence and development. The mechanism of these
signaling pathways involved in NOS3 regulation of gastric cancer
needs further study.

Currently, research on NOS3-targeted medicine is mainly
concentrating on cardiovascular and cerebrovascular disease.
Many inhibitors and agonists have been found to have
satisfactory therapeutic effects. For example, ursolic acid,
which has an anti-tumor effect, has been proven to promote
NOS3 phosphorylation and inhibit NOS3 uncoupling, thereby
preventing doxorubicin-induced cardiac toxicity (50). However,
the research on and application of NOS3-targeted medicine
in malignant tumors are still extremely limited. The NOS3
inhibitor L-NIO was reported to inhibit COAD cell growth and
angiogenesis. Another NOS3 inhibitor, N(G)-nitro-L-arginine
methyl ester (L-NAME) was also reported to inhibit PAAD
tumor growth (15). In addition, L-NIO could promote the
anti-tumor effect of lenvatinib (36, 37). The NOS3 level was
significantly correlated with outcomes of bevacizumab-based
chemotherapy in COAD (9, 51). Unfortunately, bevacizumab,
L-NIO, and L-NAME were not included in the CTRP
database. Our research showed that “SR8278,” an antagonist
of Rev-ErbAα was negatively correlated with NOS3 expression,
indicating that NOS3 was the potential target of “SR8278.”
“SR8278” targeted NR1D1, a nuclear hormone receptor (52),
reiterating the potential relationship between NOS3 and NR1D1.
Further analyses in STAD showed that response of STAD
cancer cells to QS-11 and brivanib were strongly correlated
with NOS3 expression. QS-11 is an inhibitor of GTPase
activating protein of ARF (ARFGAP), increasing ARF1-GTP
and ARF6-GTP levels (53). Currently, studies on QS-11
in malignant tumor are very few. Only one research by
Zhang et al. reported that the combination of QS-11 and
ARFGAP1 protein could stimulate Wnt/β-catenin signaling
pathway, resulting in the regulation of cell differentiation,
proliferation, and apoptosis (54). Our research suggested that
QS-11 may play an important role in STAD by inhibiting
NOS3, which requires further research in the future. Brivanib
is a dual tyrosine kinase inhibitor used to treat solid tumor in
advanced stages. It can selectively target vascular endothelial
growth factor receptor (VEGFR) and fibroblast growth factor
receptor (FGFR) (55, 56). However, the response of NOS3
expressed cell to brivanib has not been reported. NOS3 was
a downstream molecular of VEGFR signaling pathway. Thus,
we guessed that brivanib might regulate NOS3 through VEGFR
signaling pathway. These results about drug response warrant
further investigation.

In conclusion, this research showed that the expression level
and clinical significance of NOS3 was highly cancer-dependent.
Analyses in public data sets gastric cancer tissues demonstrated
that higher NOS3 expression was related to poor prognosis
of patients with STAD. NOS3 was an independent prognostic
factor for patients with STAD. Increased expression of NOS3
might influence occurrence and development of STAD through
several canonical cancer-related pathways. In addition, NOS3
expression was related to some therapeutic drugs, such as
“SR8278” and “brivanib,” which warrant further investigation.
These results reported thatNOS3might participate in occurrence
and development of gastric cancer by canonical signaling
pathways, suggesting that NOS3 might a novel target for gastric
cancer treatment.
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