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SUMMARY

Onboard measuring the electrochemical impedance spectroscopy (EIS) for
lithium-ion batteries is a long-standing issue that limits the technologies such as
portable electronics and electric vehicles. Challenges arise from not only the
high sampling rate required by the Shannon Sampling Theorem but also the so-
phisticated real-life battery-using profiles. We here propose a fast and accurate
EIS predicting system by combining the fractional-order electric circuit model—
a highly nonlinear model with clear physical meanings—with a median-filtered
neural network machine learning. Over 1000 load profiles collected under
different state-of-charge and state-of-health are utilized for verification, and
the root-mean-squared-error of our predictions could be bounded by 1.1 mU

and 2.1 mU when using dynamic profiles last for 3 min and 10 s, respectively.
Our method allows using size-varying input data sampled at a rate down to
10 Hz and unlocks opportunities to detect the battery’s internal electrochemical
characteristics onboard via low-cost embedded sensors.

INTRODUCTION

Nowadays, lithium-ion batteries (LIBs) have revolutionized today’s mobile and fast-paced society by

powering portable electronics and electric vehicles. However, as with many new electrochemical devices,

LIBs exhibit strong frequency-dependent characteristics, which are commonly depicted by electrochemical

impedance spectroscopy (EIS).1–3 As a non-destructive approach, EIS is very useful at all stages of LIB

development in both academia and industry, from initial evaluation of electrode reaction mechanisms

and kinetics,4 to quality monitoring of packed LIBs.5 Basically, it can be used for detecting the abnormal

capacity fades2,6 and determining the battery life span.7,8 In addition, it provides an alternative solution

for discovering the internal short circuit,9,10 predicting the internal temperature,11,12 and mitigating the

thermal runaway.13 Therefore, EIS has been used in a broad range of applications, especially in the lab.

However, in real-life applications, onboard measuring the EIS for LIBs is still a long-standing issue until

today, which is mainly due to the challenges in acquiring the specified data onboard for EIS calculation,

as discussed in the following. After all, the battery load profiles are highly complicated, while the fre-

quencies of interest between the commercial battery sensors (�10 Hz) and the impedance spectroscopy

(up to 10 kHz) are always unmatched.

Normally, there are several methods to obtain EIS. Among these, the most straightforward one, which has

been widely adopted in impedance testers, contains three steps. First, alternating current profiles (also

known as sinusoidal current profiles or AC profiles) with different frequencies are exerted on the battery

of interest. Then, both the applied current and the voltage responses are measured simultaneously. Finally,

the amplitude and phase of the impedance could be readily calculated by dividing the voltage over the

current in the frequency domain.14,15 Though accurate and reliable, the device to implement the above

procedure is highly expensive, which significantly limits its onboard applications. On the other hand, since

the frequency-sweeping AC current required in the first step is difficult to obtain onboard, an alternative

method to obtain EIS is to use pulse current profiles, which also contain information on the full frequency

spectrum. After measuring the current and voltage in the second step, advanced domain transferring tech-

niques, such as wavelet transforms16 and Fourier transforms,17 are applied to convert the measurements

into the frequency domain for capturing the impedance spectrum. However, according to the Shannon

Sampling Theorem,18 the minimum signal sampling frequency should be 20 kHz when we need to calculate
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the impedance at 10 kHz frequency. To further guarantee the noise-rejecting performance in real-life sce-

narios, we tend to use a sampling rate 4x to 6x higher than the frequency of interest in the industry.19 Such a

high-frequency measurement is usually unavailable in commercial battery management systems (BMSs).

When using only low-frequency measurement provided by the BMS to calculate the EIS, we have to neglect

large parts of cell impedance spectra usually measured up to kHz, as discussed in ref. 20

Considering the EIS acquisition depends extremely on the specified current profile (e.g., frequency-sweep-

ing AC current profiles or carefully designed pulse profiles) and the signal sampling rate, it is highly desir-

able to develop a facial and practical method that can obtain the EIS data onboard, using more general

current profiles (such as those in Figure S2, where the current may change arbitrarily from case to case)

and a lower sampling rate. Very recently, advances in machine learning provide us with alternative solutions

to obtain EIS from the widely used constant current profiles via a deep network.21 However, similar to most

data-driven algorithms, this approach has a strict limitation on the input data – the duration of the profile

(therefore, the size of the input data) has to be fixed, and the amplitude of the current is also pre-deter-

mined. Profiles that meet these requirements may not always be accessible. Furthermore, the lack of phys-

ical explanations in this kind of machine learning algorithm reduces its adaptivity to the complicated real-

life battery using scenarios where the current may change from case to case. In the departure from the

previous study, here, in this work, we show that by combining machine learning tools with fractional-order

models that have clear physical meanings for their elements, the battery EIS can be readily predicted using

size-varying datasets collected from arbitrary dynamic load profiles with a low sampling rate.We usedmore

than 1,000 groups of dynamic load profiles generated from different batteries with different aging degrees

to verify our algorithm, and our best model achieves 1.1 mU root-mean-squared-error (RMSE) when using

3-min dynamic profiles. Further, when using data collected within only 10 s, we can still generate reliable

predictions with RMSE bounded by 2.1 mU, indicating that the proposed method can be easily imple-

mented onboard. This makes the EIS more accessible to onboard applications and promotes the advanced

monitoring of the batteries.

RESULTS

Predicting EIS from 3-min pulse tests

The prediction of impedance spectra using the 3-min dynamic load profiles is first evaluated. Here, the data

is collected from 16 batteries with different state-of-charge and state-of-health (see Figures S1–S3 for more

details). To provide an intuitive understanding, we show a typical dynamic load profile in Figure 1A; in other

words, trajectories similar to the ones in Figure 1A are used to predict the battery EIS. The predicted real

andminus imaginary parts against the frequency are shown in Figures 1B and 1C, respectively. The RMSE of

the prediction is given in Figure 1D. As it can be seen, the maximum RMSE is bounded by 1.1 mU. Noting

that the best accuracy that can be expected with our experimental platform (see Section S1 for details) is

1.5 mU, such a low error indicates that our prediction is reliable and accurate.22 When the sampling rate is

reduced to 1Hz, the accuracy could still be bounded within 2 mU (See Section S2, Figures S7 and S8). To

better illustrate the prediction performance, we plot eight groups of results with the minimum RMSE

and another eight with the largest RMSE in Figure 2 (The prediction errors of the best and worst case

can be found in Table S1). It can be noted that the shapes of the EIS vary significantly with the testing cases

(Full details can be found in Figures S4–S6). For instance, only one arc in the frequencies of interest can be

observed when a new battery is tested in the middle SoC range (e.g., Figure 2A), but two arcs for aged bat-

teries in the middle SoC range (e.g., Figure 2B). When aged batteries are tested in the low SoC range (e.g.,

Figure 2K), one arc with a long ‘‘tail’’ can be seen. In all these cases, the predicted results match well with the

referenced values, implying the effectiveness of the proposed method (with details shown in Figures 3

and 4).

Extraction of ohmic and charge transfer resistance

The EIS contains rich battery impedance information at different frequencies, but we still tend to use the

simple resistance as an indicator of battery states (e.g., state-of-health and state-of-power) in a wide range

of engineering applications for simplicity. Here, the ohmic resistance is defined as the absolute value of the

impedance at such a frequency that the imaginary part is equal to zero, while the charge transfer resistance

is Rp in the fractional order model (FOM) (See STAR Methods section for details).

When predicting the ohmic resistance, understanding that the impedance spectra aremeasured in discrete

frequency values, a high-order polynomial interpolating algorithm is employed to calculate the ohmic
2 iScience 26, 106821, June 16, 2023
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Figure 1. EIS prediction results

(A): A typical group of current and voltage data, (B): Real part, (C): Minus Imaginary part, and (D): RMSE distribution of EIS

predictions. Only one group of data is shown in inset (A) for clarity, and the full dataset description can be found in

supplemental information, Figure S2. In subfigures (B) and (C), different colors indicate different impedance spectra.
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resistance in this work, and the results are shown in Figure 5. From Figure 5A, the predicted value matches

closely with the referenced values, and most of the errors are close to zero. The RMSE of the prediction is

only 0.327 mU, while the range of the ohmic resistance in this work is approximately 14–17 mU. The R2 (co-

efficient of determination) is 0.7937. As illustrated in Figure 5B, all errors are bounded within G1 mU,

competitive with the accuracy of our testing platform. With these results, we can conclude that the ohmic

resistance can be reflected by the predicted EIS accurately.

For the charge transfer resistance, the results are shown in Figure 6. Although the RMSE of the prediction

goes to 1.211 mU, it is worth pointing out that the range of the charge transfer resistance in this work is

approximately 3–20 mU, much wider than the case of ohmic resistance. Here, all errors are bounded

within G3 mU, and the R2 is 0.8821, implying a high prediction accuracy.
Predicting EIS from dynamic profiles with different durations

The capability of predicting EIS from dynamic profiles with different durations is critical to meet sophisti-

cated real-life battery-using scenarios. To scrutinize the predicting performance, we tested the proposed

algorithmwith nine different cases. In the first case, the dynamic profiles are truncated at the 10th second so

that a 100*2 vector is used as the algorithm’s input when the sampling rate is 10 Hz (a 100*1 current vector

and a 100*1 voltage vector). In the second to seventh cases, the duration of the dynamic load profiles are

set to be 20s, 30s, 60s, 90s, 120s, and 150s, respectively. In the eighth case, the duration of the dynamic load

profile is set to 10s again, but the dimensional reduction algorithm is optimized for the case with a smaller

data size. To be specific, the original (100*2) vector is reduced to a (6*1) vector rather than the original (12*1)

vector by changing the initialM = 5 toM = 2 in Equation 1. In this way, better noise-rejecting performance

can be obtained at the cost of slightly scarifying the prediction accuracy. In the last test, a fused dataset
iScience 26, 106821, June 16, 2023 3
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Figure 2. Nyquist plot of the EIS predictions

(A–H): eight best predictions; and (I–P): eight worst predictions. The RMSEs of the corresponding predictions are given respectively in each inset.
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containing dynamic load profiles of 20s, 40s, 60s, 80s, and 100s is utilized. The distribution of the RMSE can

be found respectively in Figures 7A–7I.

When the duration of the profile is longer than 20 s, all RMSE could be bounded within 3 mU. If the dimen-

sional reduction algorithm is tuned for the 10-s scenario, the maximum RMSE of the prediction becomes

2.01 mU. When the duration of the test is longer than 60 s, the error can be generally bounded within

2 mU and 95% of the RMSE can be bounded within 1.5 mU. These results imply that fast yet accurate

EIS predictions could be readily obtained from the proposed method, and a 1-min dynamic load profile

could provide satisfactory predictions in most cases. Understanding the real-life battery using profiles

may vary from case to case; we also test our method with the fused dataset, in which the duration of the
4 iScience 26, 106821, June 16, 2023



Figure 3. The framework of the proposed algorithm
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profiles could change up to 500%. The RMSE of the predictions here could still be bounded within 2.2 mU,

and 96% of the errors are lower than 1.5 mU. Such a low error implies the effectiveness of combining data-

driven algorithms with equivalent circuit models that have clear physical meanings for each element. It also

offers an effective solution to using size-varying datasets to implement data-driven-based predictions.
DISCUSSIONS

EIS is powerful for battery characterization but difficult to obtain onboard due to not only the complicated

real-life battery-using scenarios but also the relatively low sampling frequency of the commercial BMSs. In

this paper, we combined the machine learning tools with the fractional-order battery analysis to predict the

EIS of the batteries from dynamic load profiles.

The proposed method is verified on a dataset containing more than 1,000 dynamic load profiles with

different durations, patterns, state-of-charge, and state-of-health. Under a sampling rate of only 10 Hz,

the EIS of up to 11.5 kHz can be accurately predicted from a dynamic load profile no longer than 3 min,

and the maximum root-mean-squared error (RMSE) can be well-bounded within 1.1 mU. The RMSE of

the ohmic resistance identified from the spectra is only 0.33 mU, which is close to the minimum resolution

of the mainstream impedance testers (0.1 mU). When the length of the dynamic load profile is reduced to
Figure 4. The employed fractional-order battery model

iScience 26, 106821, June 16, 2023 5
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Figure 5. Prediction results of ohmic resistance

(A): Predicted values and (B): The distribution of the prediction error.
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10 s, the predicted spectra could still have an RMSE lower than 2.1 mU, significantly improving the flexibility

of the proposed method. The proposed method offers a quick and cheap approach to calculating the bat-

tery EIS onboard, which is very suitable for applications such as electric vehicles or renewable energy gen-

eration, where EIS is commonly inaccessible. It also provides an effective solution to using size-varying da-

tasets to implement data-driven-based algorithms. This work highlights the potential of equipping

machine learning tools with physical models to predict battery states under complicated conditions.
Limitations of the study

Some future works are proposed in this section to handle the limitations of the study. The temperature will

be added to our model to improve the algorithm’s adaptiveness to different scenarios. Approaches such as

increasing the size of the dataset and widening the testing frequency can also improve the performance of

our algorithm. Noise-canceling techniques will also be investigated to improve the robustness of the pro-

posed method.
STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
A B

Figure 6. Prediction results of charge transfer resistance

(A): Predicted values and (B): The distribution of the prediction error.
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Figure 7. The distribution of the prediction errors with different testing durations

(A): Duration = 10 s, (B): Duration = 20 s, (C): Duration = 30 s, (D): Duration = 60 s, (E): Duration = 90 s, (F): Duration = 120 s,

(G): Duration = 150 s, (H): Duration = 10 s (In this scenario, the original data (100*2) are reduced to the (6*1) vector, rather

than the original (12*1) vector to acquire better noise rejection performance, in other words, the initialM = 5 is replaced by

M = 2 in Equation 1.), and (I): Fused case, the duration includes 20, 40, 60, 80, and 100 s.
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d The code is available online at https://github.com/xtangai/iSCIENCE-D-23-00535. In addition, the code

will be shared by the lead contact upon request.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

METHOD DETAILS

Data acquisition

The procedure of data acquisition can be found in the supplemental information.

Algorithm details

The overall workflow of the proposed algorithm is shown in the following Figure 3, which basically contains

two parts, offline training, and online prediction. The following discussions start with the offline

training part.

In the training phase, the proposed method has basically four steps: 1) Feature extraction; 2) Neural

network mapping; 3) EIS reconstruction; and 4) Result enhancement.

In the first step, the key features should be extracted from the dynamic current/voltage data to reduce the

cost of network training. Here, the feature extraction is implemented by identifying an integer-order elec-

tric circuit model. Denoting the obtained N-step voltage trajectory as [V1, V2, ., VN], the corresponding

current trajectory can be denoted as [I1, I2, ., IN]. Then, the battery can be modeled by the following

M-order battery model (M�N, k>M+1):

Dk = ½Dk� 1;Dk� 2;/;Dk�M; Ik ; Ik� 1;/; Ik�M�$½q1; q2;/; q2M+1�T (Equation 1)

where Dk = Vk � UOCV ;k , and UOCV stands for the open-circuit voltage, which can be approximated as a

constant number during the short-term pulse test. By denoting

G =

2
664

DM DM� 1 / D1 IM+1 IM / I1
DM+1 DM / D2 IM+2 IM+1 / I2
« « « « « « « «

DN� 1 DN� 2 / DN�M IN IN� 1 / IN�M

3
775 (Equation 2)
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the battery model can be identified by the total least square algorithm

bQ = ½bq1; bq2;/; bq2M+1�T =
�
GT $G � s2I

�
$GT$DT

ðM+1Þ:N (Equation 3)

where s is the smallest singular value of ½GDT
ðM+1Þ:N�. Now, the original N*2 vector is reduced to a (2M + 1)*1

vector. In this work,M= 5 is recommended for the integer-order model, and the value ofMmay be reduced

if N is small or G is close to ill-conditioned.

In the second step, we train a four-layer neural network that can convert the parameters in the integer-order

model into the parameters of a fractional-order battery model. As illustrated in Figure 3, a neural network

with ½Q;UOCV �T as input and the vector P = ðLH;RH;Ro;Rp;Cp;Rb;Cb;Cs;a; b;gÞ as output can be readily

trained, provided that sufficient training data can be acquired.

In the third step, the parameters of the FOM are readily obtained, and the impedance value (complex num-

ber) at a given frequency f can be readily calculated from Gðf Þ following Equation 4 based on the FOM

described in Figure 4:

Gðf Þ =
LH$RH$ðj$2pf Þ
RH+LH$ðj$2pf Þ+Ro +

Rp

1+Rp$Cp$ðj$2pf Þa +
Rb

1+Rb$Cb$ðj$2pf Þb
+

1

Cs$ðj$2pf Þg (Equation 4)

In this way, the high-frequency response of the batteries can be calculated even if the accurate modeling

parameters are obtained with low-frequency measurements.

Finally, the proposed method is tested for H times, and the median value of these H groups of results is

selected as the final result to minimize the influence of noise/random network initialization.

In this paper, the identification for FOM is implemented with an enhanced Particle Swarm Optimisation al-

gorithm offline, and the neural network is trained with a Bayesian regularisation backpropagation algo-

rithm using more than 1000 groups of dynamic pulse profiles.

When predicting the EIS online, we first use Equation 3 to obtain the input vector for the network. Then, the

input is fed into overall H parallel-connected feedforward neural networks to generate H FOMs with

different parameters.

Assuming a predicted EIS trajectory contains the data sampled at L different frequencies (f1; f2; :::; fL). The

root-mean-squared-error of the prediction can be calculated by:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPi = L

i = 1

�
GðfiÞ � rrefi

�2
L

vuuut
(Equation 5)

where rrefi stands for the referenced impedance values sampled at these L frequency points.
10 iScience 26, 106821, June 16, 2023
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