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Abstract

Heterogeneity is a key feature of malignancy associated with adverse tumour biology. Quantifying heterogeneity could
provide a useful non-invasive imaging biomarker. Heterogeneity on computed tomography (CT) can be quantified
using texture analysis which extracts spatial information from CT images (unenhanced, contrast-enhanced and
derived images such as CT perfusion) that may not be perceptible to the naked eye. The main components of texture
analysis can be categorized into image transformation and quantification. Image transformation filters the
conventional image into its basic components (spatial, frequency, etc.) to produce derived subimages. Texture quan-
tification techniques include structural-, model- (fractal dimensions), statistical- and frequency-based methods. The
underlying tumour biology that CT texture analysis may reflect includes (but is not limited to) tumour hypoxia and
angiogenesis. Emerging studies show that CT texture analysis has the potential to be a useful adjunct in clinical
oncologic imaging, providing important information about tumour characterization, prognosis and treatment predic-
tion and response.

Keywords: Quantitative; imaging biomarker; tumour; computed tomography; heterogeneity; texture analysis; biology; prognosis; char-
acterization; treatment response and prediction.

Tumour heterogeneity

Heterogeneity is a well-recognized feature of malignancy
that is associated with adverse tumour biology.
Heterogeneity can be associated with variations in geno-
mic subtypes, expression of growth and angiogenic
factors and the tumoral microenvironment, which also
result in regional variations within individual tumours
in proliferation, cell death, metabolic activity, vascularity,
etc.[1]. Vascular heterogeneity may cause localized reduc-
tions in blood flow leading to areas of hypoxia, which has
been shown to be associated with an adverse tumour
microenvironment, increased risk of invasion and metas-
tasis, impaired delivery of chemotherapeutic agents,
increased cellular resistance to chemotherapy and radio-
therapy and inhibition of immune responses[2].

Tumour heterogeneity can be assessed using histologic
or imaging data. However, until recently, imaging evalu-
ation of heterogeneity has been limited to qualitative
rather than quantitative assessments. Reasons could
include lack of agreement on an objective quantitative

methodology and uncertain links to the underlying
tumour biology.

Histologic assessment offers direct evaluation and high
spatial resolution of the tissue sample obtained from
biopsy. Besides being invasive and difficult to obtain in
certain situations, biopsy is subject to sampling errors. A
recent study has highlighted the inaccuracies in determin-
ing tumour genomics from a single tumour biopsy result-
ing from intratumour heterogeneity[1]. This represents a
major constraint to genomic-based personalized medicine
and biomarker development.

Imaging can provide good spatial resolution and cap-
ture information that assesses whole tumour heterogene-
ity. Imaging is also minimally invasive or non-invasive,
can be repeated and can cover multiple tumour sites. This
article reviews the various published techniques and
approaches for assessing tumour heterogeneity with CT
along with their putative biological correlates and poten-
tial clinical roles as an imaging biomarker in cancer care.
Current limitations, further developments and antici-
pated future directions are briefly discussed.
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Advantages and limitations of CT as a
tool for assessing tumour

heterogeneity

CT is an excellent non-invasive imaging tool and because
of its general availability and ease of use, it is the initial
radiologic modality of choice in a number of oncologic
assessments. CT is also routinely performed as part of
positron emission tomography (PET)/CT examinations
and the combination of CT heterogeneity and PET-
based molecular markers provides a great opportunity
for multi-parametric imaging assessment[4]. CT is a
robust imaging technique in terms of reproducibility
and standardized image acquisition protocols in both
research and clinical settings, which are major criteria
for any quantitative imaging technique as the measures
need to be objective and reflect changes only due to biol-
ogy. In addition to having good spatial resolution, the
individual pixel intensity value within a CT image directly
reflects the physical property (density) of the organs
attenuating the X-ray beam. This makes the CT numbers
reproducible and comparable, making it suitable for
objective quantification of intra- and inter-patient varia-
tion, respectively. Use of CT for assessing tumour heter-
ogeneity can be seen as an addition to existing CT-based
imaging biomarkers, which to date have focused on mea-
suring tumour size, attenuation and perfusion. To a large
extent, the above advantages offset the main limitations
of CT, most notably limited spatial resolution and
reduced tissue contrast relative to techniques such as
magnetic resonance imaging.

Heterogeneity on CT can be quantified using texture
analysis (TA), which reflects the coarseness and regular-
ity that results from local spatial variations in image
brightness (an extension from measuring attenuation).
CTTA can quantify image patterns perceived to be het-
erogeneous by radiologists. The utilization of CTTA in
radiologic assessment has recently attracted a lot of atten-
tion. However, the use of CTTA as a heterogeneity mea-
sure for tumour characterization, prognosis and response
evaluation is more demanding but, until recently, has
received little attention. Linking heterogeneity measures
from CTTA to plausible tumour biology is crucial. This
has been a major constraint in the acceptance of CTTA
techniques in clinical practice.

Technical considerations

Impact of image quality

Quantification of heterogeneity must take into account
the potential impact of variation in CT image acquisition
parameters (which will vary the image photon noise)
including tube voltage, tube current, slice thickness, con-
volution kernel and pixel resolution. The use of noise
reduction (denoising) techniques (e.g. Laplacian of
Gaussian (LoG) filter using an edge detecting filter

with Gaussian smoothing to get rid of high-frequency
image photon noise) before quantification can improve
the utility of the heterogeneity measures[3]. Some heter-
ogeneity metrics may be more sensitive to variation in
these image acquisition parameters, particularly when
evaluating finer image features comparable with the res-
olution of CT (submillimetre voxel)[4]. Other factors that
can affect quantification of heterogeneity include image
artefacts, co-registration for longitudinal and histologic
studies, the anatomic level at which tumour is delineated
(whole tumour volume, largest cross-section or size of the
subregions), the extent of which depends on the segmen-
tation approach (manual, semi-automated or automated).
All these factors influence heterogeneity metrics and
some (more than others) are sensitive to tumour
delineation.

Choice of images

There are 3 types of CT image that can be quantified for
heterogeneity; unenhanced, contrast-enhanced and
derived images (e.g. perfusion CT). Generally the
choice of image depends on what is available in routine
clinical practice. For example, if the clinical indication is
for a PET/CT, then unenhanced low-dose CT (used for
attenuation correction part of PET/CT) could be used to
quantify heterogeneity. If the clinical indication is for a
diagnostic CT, then these images could be used.
An important consideration is that heterogeneity within
unenhanced and contrast-enhanced images may provide
different information as each indicates different
components of the tissue (vascularity or lack of it)
being imaged. Furthermore, perfusion CT acquisitions
can provide an opportunity to quantify heterogeneity
(e.g. blood flow, blood volume, permeability, mean tran-
sit time).

TA approaches for quantifying
heterogeneity

TA evaluates the distribution of grey levels, coarseness
and regularity. In some cases, tumour heterogeneity can
be appreciated on routine visual assessment of medical
images but if seen, standard CT software cannot effec-
tively quantify this appearance. There are two important
aspects to TA that can be used independently or in com-
bination for the quantification of heterogeneity within
medical images:

(1) Image transformation. Feature extraction: to high-
light the texture properties within a digital image

(2) Quantification. Texture characterization: to deter-
mine to which category (normal vs abnormal, less
vs more aggressive disease morphology) the texture
region belongs
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Image transformation

Much of the heterogeneity visible on CT represents
photon noise, which can mask any underlying biological
heterogeneity. By using filters that select for image fea-
tures at larger scales (image transformation), TA can
reduce the effect of photon noise and so improve the
ability to assess and quantify tissue heterogeneity.
Fourier and wavelet transforms are frequently used for
TA. A full description of these methods can be found
elsewhere[5�9]. Fourier methods describe an image in
terms of frequencies that are determined by the sizes
and shapes of features within the image. Wavelet meth-
ods have the added advantage of encapsulating informa-
tion about the spatial location of image features in
addition to their frequency characteristics. A wide
range of wavelet transforms are available that have the
advantage of representing textures at the most suitable
scale (multi-resolution). Some wavelet methods are ortho-
gonal (where the signal is decomposed in octaves) and
therefore offer limited ability to selectively tune the filter
to highlight image features of a particular size. This draw-
back can be avoided by choosing a non-orthogonal wave-
let filter (e.g. LoG spatial filter)[10]. Fig. 1 provides an
illustration of an image transformation approach using a
LoG band-pass filter to extract features of fine, medium
and coarse texture features.

Quantification

There are several approaches to the derivation of para-
meters that quantify image texture, which are usually
categorized as structural, model-based, statistical and fre-
quency methods[11�14]. Structural approaches are useful
when there is an idea of the definite shape of the object
boundary under consideration and the probability of the
chosen boundary to be placed at a particular loca-
tion[15,16]. Functional or pathologic characteristics,
which form the basis for most variations in medical
images, do not have a constant shape. Model-based
approaches represent texture using mathematical
models such as fractal and stochastic models, and inter-
pret texture by using images generated by models[17�20].
Besides being computationally complex and non-intuitive,
model-based approaches lack orientation selectivity (non-
directional) and are not suitable for describing local
image structures[12]. There has been some interest in
measuring the fractal dimension as an indicator of sur-
face-texture complexity within medical images. The
fractal dimension of a surface gives an indication of the
resemblance between shapes seen at different
scales[21�27]. Lacunarity (a measure of lumpiness) of
the computed fractal dimension values in the image
could be used to differentiate between two textures
with similar/identical fractal dimension values.

Statistical approaches are based on representations of
texture using the properties governing the distribution
and relationships of grey-level values in the image.

Frequency domain-based image power spectral analysis
(analysing different bands of frequencies) has shown
potential in assessing mechanical properties and mineral
density within bone radiographs[28]. However, in medical
image quantification, generally statistical methods have
proved to be better than frequency domain power spec-
trum analysis, showing higher discrimination rates than
transform-based and structural methods[29�31]. There are
different order statistics (first-, second- and higher-order
statistics) that basically differ in their approach to
describing the image grey-level distribution, often dis-
played as a histogram. An image of the histogram of a
filtered image (after image transformation) is given in
Fig. 2. Numerous statistical and probabilistic parameters
can be quantified from an image histogram. First-order
statistics are based on the probability distributions of
individual grey-level pixel values (mean, entro-
py�irregularity, uniformity�inhomogeneity), whereas
second-order is based on the joint probability distribu-
tions of pairs of pixels (e.g. variance or standard devia-
tion of the histogram, correlation, grey-level run length or
co-occurrence matrices) and so on for higher-order sta-
tistics (e.g. third-order: skewness�asymmetry of the his-
togram, Fig. 3; fourth-order: kurtosis�peakedness or
pointiness of the histogram, Fig. 4).

First- and second-order measures are more commonly
used in medical image TA. A co-occurrence matrix con-
tains the probabilities for pairwise occurrences of grey
values within the original image. In addition to being
directionally dependent, a co-occurrence matrix has the
disadvantage of being computationally more expensive. A
number of metrics from the co-occurrence matrix are
often derived to get a more useful set of features (e.g.
Haralick features, which include entropy, contrast, vari-
ance, angular moment, correlation, mean and their deri-
vatives)[32]. First- and second-order statistics are more
useful when the histogram resembles a Gaussian
(normal) distribution. When the image histogram is not
Gaussian, higher-order statistics are needed to fully
describe the distribution. In addition, higher-order statis-
tics (such as skewness and kurtosis) are inherently nor-
malized to the standard deviation of the overall image
histogram making it less sensitive to the image noise in
comparison with first- and second-order statistics. The
different statistical parameters convey different image
characteristics and may be useful in quantifying different
aspects of heterogeneity in medical imaging.

Possible biological correlates for CTTA

An important step in establishing a biological rationale
for radiologic features of heterogeneity (CTTA) is to
determine potential histopathologic correlates of clinical
significance with regard to prognosis or treatment selec-
tion. These include tumour grade, hypoxia, angiogenesis
and specific genetic/molecular features. An area where
heterogeneity is visually perceptible on CT imaging and
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used to assess disease severity is in cerebral glioma,
where high-grade gliomas are noticeably more heteroge-
neous than low-grade tumours. A recent study high-
lighted the ability of TA to quantify this visually
appreciable heterogeneity on CT, thereby distinguishing
high-grade (more heterogeneous) from low-grade gliomas
(less heterogeneous)[33]. This study suggested that CTTA

may be particularly useful for identifying high-grade glio-
mas that appear radiologically as low grade or indetermi-
nate. Similarly, radiologic texture measures of small
adenocarcinomas of the lung on CT correlated with his-
tologic tumour classification defined by Noguchi; solid-
density texture appearance was associated with histologic
type C, D and F and opaque ground-glass texture appear-
ance was associated with histologic type A and B[34].
A preliminary study in patients with early breast cancer
on PET/CT has shown that tumour heterogeneity
assessed by CTTA may be associated with tumour
grade[35].

The basis for imaging tumour heterogeneity with CT is
that misshapen, irregular, disorganized and tortuous
architecture arising from tumour-induced angiogenesis
eventually results in the formation of hypoxic voids,
necrosis and an acidic milieu. These pathologic features
have a fundamental role in tumorigenesis and this
adverse microenvironment results in increased tumour
invasion and metastasis, tumour tissue swelling, impaired
delivery of chemotherapeutic agent, increased cellular
resistance to chemotherapy and radiotherapy and inhibi-
tion of immune responses[36,37]. We postulate that heter-
ogeneity measured on CT could potentially be a
reflection of the above complex vascular environment

Figure 1 Conventional CT image of a CRC lesion (A) and corresponding images selectively displaying fine (B), medium
(C) and coarse (D) texture obtained by using LoG filter values of 1.0 (width, 4 pixels or 3.9 mm), 1.5 (width, 6 pixels or
5.9 mm) and 2.5 (width, 12 pixels or 11.8 mm), respectively (courtesy of Professor Ashley Groves, Institute of Nuclear
Medicine, University College Hospital, London, UK).

Figure 2 The histogram displays the range and frequency
of pixel intensity values within the medium filtered (filter
value 1.5) image of a CRC lesion (courtesy of Professor
Ashley Groves, Institute of Nuclear Medicine, University
College Hospital, London, UK).
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seen within malignant neoplasms. This hypothesis is sup-
ported by previous clinical studies that have identified
biological correlates for CTTA, confirming an associa-
tion between CT heterogeneity and a hypoxic and angio-
genic tumour microenvironment. Tumour heterogeneity
at medium and coarse texture scale on CT correlated
with hypoxia in primary non-small cell lung cancer
(NSCLC, which included both extrinsic and intrinsic
histopathologic markers of hypoxia: pimonidazole and
Glut-1) and colorectal cancer (which included hypoxia-
inducible factor 1alpha, carbonic anhydrase IX, Glut-
1)[38,39]. Previous simulated modelling studies have
shown that vascular heterogeneity is reflected in CT mea-
surements of hepatic texture (e.g. entropy)[40].
Furthermore, in patient studies, tumour heterogeneity
at medium and coarse texture scales on CT correlated
with angiogenesis in primary NSCLC and colorectal
cancer (CRC)[38,39]. In this CRC study, heterogeneity
on CT combined with glucose uptake on PET correlated
with vascular endothelial growth factor[39].

Tumour heterogeneity assessed by CTTA has shown
an association with hormone receptor status in patients
with early breast cancer on PET/CT and therefore could
potentially be a useful adjunct to PET/CT[35]. A recent
study has also highlighted the potential advantages of
incorporating CTTA into a multi-parametric imaging
approach to understanding tumour biology by identifying
an imaging signature for the V-Ki-ras2 Kirsten rat sar-
coma viral oncogene homolog mutation in CRC based

on combined CT heterogeneity, CT perfusion and PET
fluorodeoxyglucose (FDG) uptake[41].

Emerging clinical applications of CTTA

Lesion detection and characterization

Computer-aided detection (CAD) is increasingly used in
radiologic diagnosis. CAD is mostly used for automated
detection of lesions, whilst leaving the decision of the
nature of the lesion to a radiologist. Common areas for
application of CAD include identifying lesions within the
breast, lung, liver and colonic polyps. Image analysis
methodologies that underpin CAD systems in the
above clinical areas include density variations within
masses at the pixel and region level, feature extraction,
wavelet analysis, fractal dimensions, support vector
machines, and artificial neural networks[42�69].

Identification of focal lesions depends on differences in
texture features between the lesion and surrounding
tissue, whereas characterizing a focal lesion relies on
differences in texture features between various patholo-
gies. Therefore the use of TA to characterize, rather than
detect, focal lesions is more challenging.

Benign vs malignant

CTTA has been applied to pulmonary nodule classifica-
tion as benign or malignant, mostly focusing on trans-
form-based, fractal-based and statistical-based
approaches[70]. Morphological and statistical-based tex-
ture measurements (surface smoothness and shape irreg-
ularity) of the lung nodule on CT showed diagnostic
potential (area under the receiver operating characteristic
curve¼ 0.857� 0.023)[71]. Textural features describing
the grey-level spatial variation (correlation and entropy)
between the neighbouring pixels in high-resolution CT
images have been shown to differentiate malignant
tumours from benign lesions with an accuracy of
90.3%72,73]. Furthermore, fractal dimensions were
found to be higher in pneumonias/tuberculomas than
carcinomas/hamartomas (P50.0001)[74].

TA (using wavelets techniques and artificial neural net-
work-based decision algorithms) of hepatic CT images
was able to classify visible focal lesions as benign or
malignant (hepatocellular carcinoma and colorectal
metastases) with a sensitivity of 75% and specificity of
88.1%75�78]. In another study, fractal dimensions and
abundance were found to be significantly higher in
colon cancer than normal bowel (P� 0.001)[79]. In
rectal cancer, fractal dimension was higher in malignant
lymph nodes compared with benign nodes with an accu-
racy of 88%[80].

Disease severity

Quantitative measures of image heterogeneity (degree of
irregularity and clumpiness within the tumour and fractal

Figure 4 An illustration of positive and negative kurtosis
(courtesy of http://en.wikipedia.org/wiki/Kurtosis).

Figure 3 An illustration of positive and negative skewed
histogram (courtesy of http://en.wikipedia.org/wiki/
Skewness).
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dimension of the border between tumour and neighbour-
ing tissues) have characterized either expansive or infil-
trative growth patterns of various tumours[81]. A previous
study has shown that irregularity associated with degree
of texture coarseness (combination of transform and sta-
tistical approaches) is associated with lung tumour stage
(rs¼ 0.71, P¼ 0.001; kappa¼ 0.7, sensitivity¼ 100%,
specificity¼ 87.5%, P¼ 0.0001) and glucose uptake mea-
sure (obtained from FDG-PET, rs¼ 0.51, P¼ 0.03)[82].

Another fractal-based approach to lung nodule charac-
terization demonstrated higher fractal dimension in ade-
nocarcinomas from squamous cells (P50.05) as well as
bronchioalveolar from non-bronchioalveolar cell carcino-
mas (P50.0001)[74,83].

Direction-oriented texture parameters based on second-
order statistical methods have been used to extract rele-
vant textural features from apparently normal liver on CT
to determine risk of disease recurrence in patients with
metastatic CRC (confidence level499%)[84].

Another recent study demonstrated using computation-
ally less intensive first-order statistics (entropy, unifor-
mity and mean grey-level intensity) applied to different
degrees of texture coarseness (transform approach)
derived from conventional hepatic CT having apparently
normal liver morphology could classify patients with
CRC with and without disease recurrence (patients
with hepatic metastases compared with patients with no
recurrence, P¼ 0.0257 and patients with extra-hepatic
disease, P¼ 0.0143)[85].

Preliminary analysis has provided an early indication
that CTTA can differentiate node-negative from node-
positive CRC patients but more work needs to be under-
taken to specifically look at Dukes B patients[86]. CTTA
risk stratification for these patients could potentially have
implications for selection of therapy.

Prognosis

Determining tumour prognosis from CT could potentially
affect therapy selection for patients with cancer. The few
studies that have explored this application have focused
on transform, model and statistical approaches.

Portal phase hepatic CTTA (coarse uniformity) pre-
dicted CRC patient survival (P50.005) better than
hepatic perfusion (P40.05)[87]. CTTA�s ability to stratify
survival in non-metastatic CRC could potentially be used
to modify the post-operative surveillance strategy for low-
risk patients. Tumour heterogeneity assessed by TA of
the CT component of PET/CT showed potential as an
independent predictor of survival (in comparison with
clinical stage, perfusion and glucose uptake, where avail-
able) in NSCLC (P¼ 0.001) and oesophageal cancer
(P¼ 0.0006)[88�90]. A recent study highlighted that het-
erogeneity (CTTA) within the whole primary colorectal
tumour on contrast-enhanced CT was a biomarker of 5-
year survival independent of stage (P¼ 0.001)[91].

In another study on pre-therapy contrast-enhanced CT,
heterogeneity assessed via CTTA was a marker of overall

survival (P¼ 0.005) along with patient body mass index,
tumour N-stage and primary mass size in patients with
locally advanced squamous cell cancers of the head and
neck treated with neoadjuvant chemotherapy[92].

Treatment planning and response

The potential for CTTA to assist in radiotherapy plan-
ning has been shown by a recent study in which PET/CT
texture parameters extracted from second-order co-occur-
rence matrices were used to delineate the tumour in head
and neck tumour regions[93]. The regions were similar to
those of the radiation oncologists (sensitivity 90� 12%
and specificity 95� 2%), suggesting that CTTA-based
automatic tumour segmentation could potentially
improve treatment planning accuracy[94]. By reflecting
hypoxia, CTTA could feasibly be used to identify
tumour subregions that are relatively resistant to treat-
ment, allowing a local boost in radiation delivery (e.g.
dose painting). The differences in CT texture shown for
benign and malignant lung lesions suggests a potential
role for CTTA in distinguishing NSCLC from adjacent
consolidated lung.

The potential for CTTA to provide an early marker of
tumour response is highlighted by a recent study demon-
strating that change in CT texture on contrast-enhanced
images after 2 cycles of treatment with tyrosine kinase
inhibitor in patients with metastatic renal cancer was an
independent predictor of time to progression
(P¼ 0.008)[95]. CTTA was more closely associated with
clinical outcome than existing imaging size criteria (i.e.
RECIST) and response assessments based on combina-
tions of size and enhancement (Choi and modified Choi
criteria). The implication of this study for patient care is
that addition of CTTA to standard response assessment
may improve the prediction of response to tyrosine
kinase inhibitors in metastatic renal cell carcinoma.
This could further help with optimal use and/or modifi-
cation of the treatment regime using this novel, expensive
and highly toxic drug based on individual patient
response to treatment.

Health-economic analysis of CTTA

Cost-effectiveness studies are not only used to guide clin-
ical practice but also to highlight the need to prioritize
clinical trials on the basis of potential impact in clinical
practice. A recent economic analysis of the impact of
CTTA-based surveillance strategies in colorectal cancer
indicated the potential economic benefits of reducing the
frequency of carcinoembryonic antigen (CEA)�CT in
low-risk CRC patients as determined by CTTA. A CTTA-
based surveillance strategy produced a minimal increase
in mortality at 5 years (74.2% versus 73.9%) and a min-
imal reduction in average life expectancy (10�11 days)
but with cost savings of up to £1248 per patient and net
monetary benefit of £427 per patient (i.e. cost-effective;
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based on a willingness to pay £30,000 per life year)[96].
In another economic analysis study, CTTA-based strate-
gies for selection of chemotherapy for patients with
advanced NSCLC produced cost savings of £485 to
£966 per patient, with a minimal reduction in quality-
adjusted survival of 0.01�0.02 quality-adjusted life
years, indicating a net monetary benefit of £264 to
£544 per patient[97]. Given these potential savings, fur-
ther large-scale studies to confirm the ability of CTTA to
stratify patients with CRC and NSCLC should be prior-
itized. Similar cost-effectiveness studies in other applica-
tions of CTTA need to be undertaken.

Limitations, future research and
developments, and anticipated

direction

The previous sections have highlighted the possible bio-
logical correlates and potential clinical applications of
CTTA in disease characterization, prognosis and treat-
ment prediction, and response evaluation. However, the
precise relationship between CTTA and tissue micro-
structure is less well defined. A previous computer-simu-
lated study showed that liver texture on CT may reflect
hepatic vascularity[40]. A recent study on simulated CT
image of an object phantom indicated that CTTA mea-
surements (uniformity and average brightness after image
filtration) are sensitive to variations in the concentration
and size of objects, respectively, which can potentially be
considered to reflect the degree of image heterogene-
ity[98]. Development of a physical heterogeneity phantom
that can simulate real CT images of soft tissue and
tumour as closely as possible is needed.

The impact of CT image acquisition parameters on
CTTA measurements of heterogeneity is an important
consideration in the development of texture-based ima-
ging biomarkers. This is especially the case for therapeu-
tic and longitudinal studies whereby change in CTTA
measurements of heterogeneity need to be related to biol-
ogy rather than variation in image or scanner character-
istics. A previous study highlighted that CTTA
(measured as uniformity and average brightness after
image filtration) from a water phantom was reasonably
insensitive (a coefficient of variation consistently less
than 5% was achieved) to image acquisition parameters
(tube voltage, tube current and slice thickness)[87]. The
impact of CT image photon noise is further reduced in
CTTA methodologies that use initial image transforma-
tion techniques (e.g. band-pass image filtration). Such an
approach has the desired capability to independently
assess and extract fine, medium and coarse textures,
where the fine texture is most influenced by image
photon noise (i.e. image quality or the radiologist�s per-
ception of visual heterogeneity) and medium to coarse
texture reflects underlying relevant biological heterogene-
ity. Another important consideration is to assess inter-
and intra-observer variation in the CTTA processing,

particularly regarding the delineation of regions or
volumes of interest. This source of variation is reduced
by semi-automated and automated approaches to delin-
eation of tumour regions or volumes. Although CT is a
fairly robust imaging modality in which clinical protocols
are consistently followed in routine practice and the CT
image pixel values represent the tissue density
(Hounsfield units), there is still a need to confirm the
reproducibility (test re-test studies) of heterogeneity
quantification via CTTA. With the current momentum
generated around heterogeneity quantification, commer-
cial clinical software platforms for CTTA are becoming
available. Furthermore, there will be a need for standard-
ization of CTTA in heterogeneity quantification both in
terms analysis methodology and across different equip-
ment manufacturers.

Dynamic CTTA to assess temporal changes in tumour
heterogeneity after administration of contrast material
could provide another dimension in the physiologic
assessment of tumours. Preliminary studies indicate the
potential of temporal changes in hepatic texture to pro-
vide diagnostic and prognostic information and increase
the utility of contrast-enhanced CT[86,99]. Particularly
change in fine texture within apparently normal liver
between images acquired pre-contrast and at 26�30 s
after contrast injection identified patients with node-pos-
itive CRC with 100% sensitivity and 71% specificity[86].

Heterogeneity is found across the entire volume of
tumour. Measuring volumetric heterogeneity via CTTA
may therefore provide an opportunity to extract even
more subtle variations potentially providing a more
robust association with histopathology and clinical out-
comes[91,100]. As the large numbers of finely collimated
images produced by current CT systems render CTTA
more extensive and time consuming, developments that
make CTTA less computationally expensive will be
required for widespread use of volumetric analysis in
clinical practice.

Conclusions

CTTA represents a novel imaging approach that can
potentially help address clinically important areas in
cancer imaging. CTTA can be easily incorporated into
imaging workflows at very little additional cost and
increase the utility of images acquired in routine clinical
practice. CTTA can potentially be used as a non-invasive
imaging biomarker in tumour characterization, prognosis
and treatment prediction, and response evaluation. With
standardization and refinement of existing applications
and further novel developments, CTTA is set to emerge
as a valuable tool in oncologic imaging.
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