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Abstract: Non-invasive prenatal testing (NIPT) for trisomies 21, 18, 13 and monosomy X is widely
utilized with massively parallel shotgun sequencing (MPSS), digital analysis of selected regions
(DANSR), and single nucleotide polymorphism (SNP) analyses being the most widely reported
methods. We searched the literature to find all NIPT clinical validation and clinical experience studies
between January 2011 and January 2022. Meta-analyses were performed using bivariate random-
effects and univariate regression models for estimating summary performance measures across
studies. Bivariate meta-regression was performed to explore the influence of testing method and
study design. Subgroup and sensitivity analyses evaluated factors that may have led to heterogeneity.
Based on 55 validation studies, the detection rate (DR) was significantly higher for retrospective
studies, while the false positive rate (FPR) was significantly lower for prospective studies. Comparing
the performance of NIPT methods for trisomies 21, 18, and 13 combined, the SNP method had a
higher DR and lower FPR than other methods, significantly so for MPSS, though not for DANSR.
The performance of the different methods in the 84 clinical experience studies was consistent with
validation studies. Clinical positive predictive values of all NIPT methods improved over the last
decade. We conclude that all NIPT methods are highly effective for fetal aneuploidy screening, with
performance differences across methodologies.

Keywords: NIPT; trisomy; massively parallel shotgun sequencing; digital analysis of selected regions;
single nucleotide polymorphism; cell-free DNA; meta-analysis

1. Introduction

Non-invasive prenatal testing (NIPT) describes a family of tests that rely on the analysis
of cell-free DNA fragments in the plasma of pregnant women to screen for fetuses affected
by the common autosomal trisomies (trisomy 21, 18, and 13). Some NIPT laboratories
also test for sex chromosome abnormalities (Turner syndrome, Klinefelter syndrome, XXX,
XYY, and various more complex karyotypes), other autosomal aneuploidy, chromosome
segmental imbalances (typically, >7 Mb), select microdeletion syndromes, Rhesus blood
group typing, and some monogenic disorders [1].

Initial clinical validation studies were focused primarily on the prenatal identification
of the common autosomal trisomies by detecting an overall quantitative difference in
the proportion of cfDNA for those chromosomes where a copy number difference could
exist [2–4]. The analysis requires a sufficiently high amount of circulating cfDNA derived
from the conceptus such that fetal aneuploidy would be detectable, even in the presence of
the larger quantities of cfDNA of maternal origin. Ensuring a sufficient “fetal fraction” (the
proportion of cfDNA derived from placental trophoblasts) was therefore a key factor in
the development of successful testing. Generally, adequate fetal fraction is achievable for
testing after 9 or 10 weeks gestational age [5].
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The methods used for cfDNA targeting, amplification, measurement, and data analysis
differ considerably between laboratories. Massively parallel shotgun sequencing (MPSS)-
based NIPT involves amplification of cfDNA across the whole genome with quantitative
measurement of the DNA fragments present [6,7]. The bioinformatics used in this method-
ology involves a normalization of the observed sequence frequency based on expected
amplification and measurement biases and comparison of the proportion of cfDNA from
target chromosomes with that seen for control chromosomes. A targeted enrichment ap-
proach, referred to as digital analysis of selected regions (DANSR), involves the targeted
amplification of key chromosomal regions involved in the most clinically important chro-
mosome imbalances [3]. This approach allows reduced cost, deeper sequencing, and/or
the use of alternative measurement technologies such as chromosome microarrays for the
detection of imbalances. Similar to MPSS, it involves a quantitative comparison of the
cfDNA present. An additional technical approach involves the selective amplification and
analysis of a panel of single nucleotide polymorphisms (SNPs) which are likely to differ
between mother and fetus. Chromosomal imbalances are detected by comparing observed
SNP data to a set of hypothetical SNP distributions representing euploid and aneuploid
states across different fetal fractions [8,9]. This latter approach can substantially distin-
guish between maternal versus fetal imbalances and detect imbalances such as triploidy
and uniparental disomy that do not have proportional copy number differences between
the chromosomes. Other methods have also been developed with variable scope for the
chromosome regions tested.

All methods have strengths and weaknesses, and none should be considered fully
diagnostic. Reasons for false-positive and false-negative results can include mosaicism,
which may be confined to trophoblasts or the fetus, maternal chromosome abnormalities
including both constitutional imbalances or somatically acquired abnormalities (including
those associated with maternal cancer), and fetal death of a co-twin (“vanished twin”; often
associated with an abnormal karyotype) [10]. Some of these factors are limitations for all
NIPT methods (for example, confined placental mosaicism), while the likelihood of other
false results is expected to be dependent on the technology used. Low fetal fraction (FF) is a
potential source of error, and therefore, clinical laboratories typically establish a minimum
FF cut-off below which the results are considered unreliable [11]. Low FF can also be
associated with trisomy 13, 18, and triploidy-affected pregnancies where the placentas are
usually small. Consequently, there is a reduction of fetal cfDNA in maternal plasma in
those clinical situations [12].

Numerous studies have documented clinical validation and early clinical experience
with NIPT. Prior meta-analyses have primarily considered the performance of all methods
together and concluded that cfDNA provides an effective screening approach for fetal
aneuploidy [13–16]. In this paper, we re-evaluated clinical validation studies distinguishing
between testing methodologies and also between prospective versus retrospective study
designs. Separately, we considered clinical experience studies that document actual patient
care with NIPT and where confirmation of results was limited. We focused on NIPT
for trisomies 21, 18, and 13 and monosomy X, where there has been the most extensive
reporting of validation and experience.

2. Methods

PubMed was searched for English language references using combinations of “pre-
natal”, “non-invasive”, “cell-free DNA”, “NIPT”, “NIPS”, “screening”, “trisomy”, and
“aneuploidy”, for publications between January 2011 and January 2022. Relevant studies
were reviewed for cross-references to additional studies that documented performance
of cfDNA screening for trisomies 21, 18, 13, and monosomy X (MX). The approach to the
meta-analysis was consistent with PRISMA guidelines with initial data extraction by one
author (PB), independent review by a second author (ZD), and with resolution of discor-
dances through joint review [17]. Figure 1 presents a flow diagram for the classification
of the data extracted from the literature. The total number of references initially extracted
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was not recorded because there were multiple overlapping searches with early exclusion of
ineligible studies.
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Because of potential ascertainment biases (see below), studies were subclassified as
either “validation” or “clinical experience”. “Validation” was defined as a study in which
a set of maternal plasma samples, drawn at varying first- or second-trimester gestational
ages, were tested for the presence or absence of fetal chromosome abnormality and where
the actual aneuploidy status of the pregnancy (“truth”) was known for all samples included
in the analysis. NIPT validation studies were typically conducted prior to the formal use in
clinical practice and the test results were not used clinically. “Clinical experience” studies
were defined as actual experience of a laboratory service that was routinely providing
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cfDNA screening for the purposes of patient management. Clinical experience studies
typically involved the laboratory requesting follow-up data from ordering physicians for
cases with high-risk but not low-risk NIPT results. Consequently, knowledge of outcomes
was incomplete. For both validation and clinical experience studies, results of cytogenetic
or cytogenomic analyses of amniotic fluid cells or chorionic villus sampling (CVS) or the
occurrence of a normal livebirth or abnormal birth with the expected phenotype were
considered evidence of truth. Without confirmatory genetic testing, the presence of either
abnormal ultrasound findings or a spontaneous abortion was not considered sufficient
evidence for aneuploidy. Because most NIPT were not designed to detect mosaicism, we
excluded cases where a mosaic karyotype was detected in follow-up genetic testing. Where
separately identified, twins or higher multiples were also excluded. Samples not yielding a
result were also excluded.

Meta-analyses of test performance including all eligible studies were performed sepa-
rately for “validation” and “clinical experience” studies. The outcome measures assessed
and statistical methods applied were chosen based on what was most appropriate for
each study subclassification as described below. We conducted statistical analyses using
R, a language and environment for statistical computing and graphics. The R package
mada was used for diagnostic meta-analysis implementing the approach of Reitsma et al.,
2005 [18].

2.1. Validation Studies

Validation studies were further sub-classified as either “retrospective” or “prospective.”
Retrospective was defined as a study where a set of maternal plasma specimens were
collected and frozen, and samples were only analyzed if truth was known (mostly from
CVS or amniocentesis samples) and sample truth status conformed to inclusion criteria in
the study design. Case-control studies were considered to be retrospective for the purpose
of this analysis. Prospective studies were based on a set of cases where cfDNA screening
and the decision to include samples in the analysis was carried out prior to the knowledge
of truth and where efforts were made to gather outcome on all tested cases. In some studies,
methods were insufficiently documented to determine whether the design was prospective
or retrospective.

For the validation studies, the outcome measures to assess test performance were
prevalence (Prev), detection rate (DR, sensitivity), false positive rate (FPR, 1-specificity),
diagnostic odds ratio (DOR), and positive predictive value (PPV). These outcome measures
were based on the formulae below. Screen positive, affected cases were considered true
positives (TP); screen negative, affected cases were considered false negatives (FN); screen
positive, unaffected cases were considered false positives (FP); screen negative, unaffected
cases were considered true negatives (TN).

Prev = TP + FN
Total number o f women with a screening result

DR = TP
TP + FN

FPR = FP
TN + FP

DOR = sensitivity × speci f icity
(1 − sensitivity) × (1 − speci f icity) = LR+

LR−
= TP × TN

FP × FN

The DOR is defined as the ratio of the likelihood of the test being positive for an
affected case (LR+) relative to the likelihood of the test being negative for an unaffected case
(LR−). A higher DOR is indicative of better test performance. A rationale for using this
single measure is that it is independent of prevalence and includes information about both
sensitivity and specificity. However, this independence means that it cannot distinguish
between tests with high sensitivity and low specificity and tests with low sensitivity and
high specificity. Therefore, it was important to also implement methods considering both
performance measures simultaneously.



J. Clin. Med. 2022, 11, 4760 5 of 23

PPV =
TP

TP + FP
=

sensitivity × prevalence
(sensitivity × prevalence) + ((1 − speci f icity) × (1 − prevalence))

Differences in PPV observed in different studies may be attributable to differences in
the proportion of affected pregnancies included in the various studies. To adjust for this
difference in prevalence across studies, we used a standard prevalence for each syndrome
representative of first trimester rates for a US population (population prev) [19]. The
rates used were 1/365 for T21, 1/1208 for T18, 1/3745 for T13, and 1/1291 for MX. A
standardized PPV (stdPPV) using the population prevalence was then calculated for each
syndrome and testing method with the formula:

stdPPV =
(sensitivity × population prev)

(sensitivity × population prev) + ((1 − speci f icity)× (1 − population prev))

Study-level data for validation studies were stratified by study type (retrospective and
prospective) and by the three main methods of testing (MPSS, DANSR, and SNP). Other test
methods were excluded due to insufficient data. Categorical variables were summarized as
the proportion of studies within each category. Continuous variables were summarized by
the median (25%ile and 75%ile). Forest plots showed the sensitivity and specificity for each
study by syndrome (Trisomy 21, Trisomy 18, Trisomy 13, and Monosomy X).

Pooled estimates of the observed test performance were calculated as a descriptive
summary of the data across studies by syndrome, method of testing, and study type.
However, simple pooling is a fixed-effect method that ignores both the characteristics of the
individual studies being pooled and the dependence of binary measures of test performance
on the particular threshold used to determine the outcome. As the threshold is varied
across all possible values, a trade-off is induced between sensitivity (DR) and specificity
(1 − FPR). To take this into account, we used a bivariate approach, as recommended by
the Cochrane Diagnostic Test Accuracy Working Group, to estimate the test performance
across studies. Bivariate random effects regression models were used to estimate average
sensitivity or detection rate (DR) and specificity (1 − FPR) through a joint distribution,
accounting for the correlation between the two performance measures. This random effects
approach incorporates unexplained variability in test performance measures between
studies. Because there was also variation due to sampling, as studies differed in size, the
precision by which DR and FPR were estimated in each study was incorporated by giving
higher weight to studies with more precise estimates [18]. Because the model requires
non-zero cells, we added a continuity correction of 0.1 to each cell of a study where a zero
was encountered.

In addition to fitting models for each syndrome and method of testing or study
type separately, bivariate meta-regression was performed on all validation study data to
explore the influence of method of testing and study type by including them as covariates
in the model. Studies using the SNP-based method were matched with studies using
other methods with respect to study-level characteristics including start year, country, and
prevalence. As a sensitivity analysis, meta-regression was performed for matched studies,
for the subgroup of studies that differed from SNP-based studies with respect to study-level
characteristics and for the full set of studies. Results were compared. Covariates were
added to the bivariate model to examine their effects on DR and FPR as well as adjust
for potential effects while testing for differences in performance by method of testing and
study type. No corrections were made for multiple comparisons.

Summary ROC plots (sROC) showed the observed pairs of sensitivity (DR) and FPRs
for each study as well as summary estimates of DRs and FPRs from bivariate models for
each method of testing or study type including the corresponding 95% confidence ellipse
showing the region of confidence that describes the uncertainty of the estimates.
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2.2. Clinical Experience Studies

Clinical experience studies included reports from reference laboratories, regional
fetal screening programs, and individual maternal–fetal medicine programs offering NIPT
testing. Testing may have included prior conventional screening, with NIPT offered to high-
risk women (“secondary screening”), or it may have been offered to a general pregnancy
population (“primary screening”). For all clinical experience studies, the outcome data
was judged incomplete. In particular, it is not possible to make a reliable estimate of
DR because a proportion of test negative affected pregnancies will not come to attention.
Even in the situation where there is a follow-up of a high proportion of screen-negative
livebirths, there can be missed affected cases because of the relatively high risk of post-
screening spontaneous pregnancy loss of aneuploid pregnancies. For this reason, TN were
not tabulated for clinical experience studies. FN are included where reported, but it is
important to note that these were largely data offered by ordering physicians, rather than
requested by laboratories. As such, it is expected to be an underestimate. Analyses that only
include participants for whom the outcome was obtained may produce biased estimates
of test performance. We calculated the following test performance measures based on
the observed data as well as using methods to correct for potential bias due to missing
outcome data.

A minimum estimate of prevalence (minPrev) was calculated, recognizing the limita-
tion that some false negatives are under-ascertained.

minPrev =
(TP + FN)/Proportion o f high risk calls with outcome data

Number o f women with results

An approximate estimate of FPR (estFPR) was calculated on the basis that positive
cases with follow-up were reflective of all positive cases and essentially all test negative
cases were unaffected (see discussion).

estFPR =
FP/Proportion o f high risk calls with outcome data

(FP/Proportion o f high risk calls with outcome data) + (number o f low risk calls)

The Observed PPV (obsPPV) was based only on cases with outcome data.

obsPPV =
Number o f test positive con f irmed a f f ected cases
Number o f test positive cases with outcome data

To correct for verification bias when calculating these performance metrics, we imple-
mented inverse probability weighting. The number of confirmed high-risk calls was inflated
by the inverse probability of having confirmation under the assumption that confirmation
is missing at random for high-risk calls and positive cases with follow-up were reflective
of all positive cases. We did not consider tests where no results were obtained. Standard
statistical methods for verification bias correction have been shown to be inadequate when
there are few false negatives. Therefore, the Observed PPVs were not considered to provide
a reliable overall estimate and also did not reflect differences in prevalence. To allow for
these factors, we also calculated and compared the standardized PPVs that incorporated
the rate of false negatives among low-risk calls from validation studies and also used
prevalence rates for a US population drawn from Benn et al. (2015) [19]. Study follow-up
was calculated as the percentage of high-risk calls that were confirmed.

3. Results
3.1. Validation Studies
3.1.1. Overall Performance

We identified 55 eligible validation studies, of which 22 were retrospective, 24 prospec-
tive, and 9 were both or of unknown study design (Supplemental Table S1). Of these
55 studies, 29 used an MPSS methodology, 13 used DANSR, 6 used SNP, and 7 used other
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methods. Supplemental Figure S1 summarizes, using forest plots, the sensitivity and
specificity of these studies. Additional summary tabulation of these studies, by the three
main methods of testing, publication year, year of laboratory testing, laboratory country,
population country, gestational age, maternal age, and major study groups included are
summarized in Supplemental Tables S2 and S3. Studies across the three methods of testing
were comparable with respect to study-level characteristics. There appear to be differences
between studies grouped by method of testing for start year, population country, and
prevalence. These characteristics were used for matching in sensitivity analyses. Raw
study-level data can be found in Supplemental Table S4.

For all validation studies combined, the pooled DR for T21 was 99.44% (95% CI
99.06–99.67%), and the FPR was 0.07% (CI 0.05–0.09%) (Table 1). From a bivariate random
effects regression model, the mean DR for T21 was 98.72% (CI 97.97, 99.19%), and the FPR
was 0.12% (CI 0.07, 0.21%) (Table 2). The DRs for T18, T13, and MX were lower than that
for T21, but FPRs were similar.

Table 1. Validation studies: pooled estimates by syndrome.

Syndrome Method No. Called Prevalence Sensitivity Specificity PPV Std PPV

T21

All 74697 3.35
(3.22, 3.48)

99.44
(99.06, 99.67)

99.93
(99.91, 99.95)

98.03
(97.41, 98.50)

79.78
(78.21, 81.34)

MPSS 24308 5.14
(4.87, 5.42)

99.68
(99.18, 99.88)

99.88
(99.83, 99.92)

97.88
(96.93, 98.54)

70.05
(67.53, 72.57)

DANSR 26208 1.91
(1.75, 2.08)

99.20
(97.96, 99.69)

99.96
(99.92, 99.98)

97.83
(96.16, 98.78)

86.43
(83.45, 89.41)

SNP 19822 2.12
(1.93, 2.33)

99.29
(97.92, 99.76)

99.97
(99.94, 99.99)

98.82
(97.26, 99.49)

91.37
(88.69, 94.05)

T18

All 72847 1.11
(1.04, 1.19)

96.43
(94.92, 97.50)

99.92
(99.90, 99.94)

93.21
(91.31, 94.73)

50.22
(46.84, 53.60)

MPSS 23508 1.77
(1.61, 1.95)

95.68
(93.28, 97.25)

99.89
(99.84, 99.93)

94.10
(91.44, 95.97)

42.27
(37.57, 46.97)

DANSR 25619 0.67
(0.57, 0.77)

97.66
(94.14, 99.09)

99.96
(99.93, 99.98)

94.35
(89.91, 96.90)

67.27
(60.35, 74.18)

SNP 19823 0.53
(0.44, 0.65)

98.11
(93.38, 99.48)

99.96
(99.93, 99.98)

93.69
(87.55, 96.91)

69.60
(61.04, 78.16)

T13

All 64640 0.50
(0.44, 0.55)

97.19
(94.74, 98.51)

99.94
(99.91, 99.95)

88.35
(84.58, 91.30)

28.94
(24.20, 33.68)

MPSS 23470 0.72
(0.62, 0.84)

96.47
(92.51, 98.37)

99.88
(99.83, 99.92)

85.42
(79.73, 89.71)

17.66
(12.26, 23.05)

DANSR 17629 0.29
(0.22, 0.38)

96.08
(86.78, 98.92)

99.97
(99.93, 99.99)

90.74
(80.09, 95.98)

47.43
(34.11, 60.75)

SNP 19823 0.30
(0.24, 0.39)

100
(93.98, 100)

99.97
(99.94, 99.99)

92.31
(83.22, 96.67)

51.36
(39.21, 63.51)

MX

All 15079 1.34
(1.17, 1.54)

96.04
(92.38, 97.98)

99.51
(99.38, 99.61)

72.66
(67.02, 77.66)

13.17
(9.12, 17.23)

MPSS 10552 1.05
(0.87, 1.27)

94.59
(88.71, 97.50)

99.40
(99.23, 99.53)

62.50
(54.98, 69.46)

10.84
(6.14, 15.54)

DANSR 2481 2.78
(2.20, 3.50)

100
(94.73, 100)

99.63
(99.29, 99.80)

88.46
(79.50, 93.81)

17.20
(8.83, 25.58)

SNP 2046 1.08
(0.71, 1.62)

90.91
(72.19, 97.47)

99.95
(99.72, 100)

95.24
(77.33, 99.76)

58.79
(37.73, 79.84)
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Table 1. Cont.

Syndrome Method No. Called Prevalence Sensitivity Specificity PPV Std PPV

T21, T13, T18

All 212184 1.71
(1.66, 1.77)

98.57
(98.13, 98.91)

99.93
(99.92, 99.94)

96.03
(95.35, 96.61) —

MPSS 71286 2.58
(2.46, 2.69)

98.47
(97.80, 98.94)

99.88
(99.86, 99.91)

95.76
(94.76, 96.58) —

DANSR 69456 1.04
(0.97, 1.12)

98.61
(97.47, 99.25)

99.96
(99.94, 99.97)

96.48
(94.89, 97.58) —

SNP 59468 0.99
(0.91, 1.07)

99.15
(98.02, 99.64)

99.97
(99.95, 99.98)

97.16
(95.49, 98.22) —

All

All 227263 1.69
(1.63, 1.74)

98.43
(97.99, 98.78)

99.90
(99.89, 99.91)

94.47
(93.71, 95.13) —

MPSS 81838 2.38
(2.28, 2.49)

98.25
(97.57, 98.75)

99.82
(99.79, 99.85)

93.04
(91.86, 94.07) —

DANSR 71937 1.10
(1.03, 1.18)

98.74
(97.69, 99.31)

99.95
(99.93, 99.96)

95.71
(94.09, 96.90) —

SNP 61514 0.99
(0.91, 1.07)

98.85
(97.64, 99.44)

99.97
(99.95, 99.98)

97.09
(95.45, 98.15) —

Table 2. Validation studies: summary estimates for Sensitivity (Sens) and Specificity (Spec) from
bivariate model, by syndrome and method.

Syndrome Method No.
Studies

Mean Sens
(95% CI)

Mean Spec
(95% CI)

T21

All 48 98.72 (97.97, 99.19) 99.88 (99.79, 99.93)

MPSS 26 99.05 (97.95, 99.56) 99.82 (99.63, 99.91)

DANSR 10 98.15 (94.97, 99.33) 99.95 (99.91, 99.97)

SNP 5 99.07 (97.34, 99.68) 99.97 (99.93, 99.99)

T18

All 43 93.54 (90.99, 95.40) 99.86 (99.77, 99.92)

MPSS 24 92.28 (88.28, 94.99) 99.83 (99.66, 99.91)

DANSR 9 96.76 (91.70, 98.78) 99.93 (99.80, 99.98)

SNP 5 96.25 (87.26, 98.97) 99.96 (99.92, 99.98)

T13

All 40 91.87 (86.13, 95.37) 99.90 (99.83, 99.95)

MPSS 23 90.90 (82.39, 95.53) 99.86 (99.69, 99.94)

DANSR 7 87.65 (64.99, 96.44) 99.96 (99.91, 99.98)

SNP 6 98.77 (86.17, 99.90) 99.95 (99.76, 99.99)

MX

All 21 90.90 (83.09, 95.31) 99.70 (99.29, 99.88)

MPSS 13 90.83 (81.24, 95.77) 99.70 (99.04, 99.90)

DANSR 4 98.92 (78.66, 99.96) 99.45 (97.35, 99.89)

SNP 4 85.04 (57.03, 96.05) 99.92 (99.56, 99.99)

Supplemental Table S5 shows the mean DORs stratified by study design, whether the
validation was prospective or retrospective in design. Table 3 summarizes the mean DORs
from a univariate model for each syndrome by testing method. For T21, T18 and T13, the
highest DOR values were achieved with the SNP-based NIPT. For MX, the highest DOR
was seen for DANSR.
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Table 3. Validation studies: summary estimates for Diagnostic Odds Ratio (DOR) from univariate
model, by syndrome and method.

Syndrome Method Mean DOR (95% CI)

T21

All 35,173 (22,313, 55,444)

MPSS 28,585 (15,104, 54,097)

DANSR 61,486 (22,113, 170,963)

SNP 108,829 (30,768, 384,936)

T18

All 7,212 (4395, 11,833)

MPSS 5,195 (2655, 10,165)

DANSR 18,403 (6755, 50,135)

SNP 20,455 (6053, 69125)

T13

All 6,798 (3959, 11,673)

MPSS 4,915 (2415, 10,004)

DANSR 9,197 (2659, 31,807)

SNP 14,206 (3215, 62,775)

MX

All 2,177 (1065, 4451)

MPSS 1,826 (650, 5135)

DANSR 3,898 (761, 19,976)

SNP 3,262 (655, 16,256)

For all syndromes, standardized PPVs were much lower than pooled observed PPVs
for all syndromes due to the higher prevalence seen across the validation studies. The stan-
dardized PPV for T21 was 79.78% (95% CI 78.21–81.34), for T18 50.22% (95% CI 46.84–53.6),
for T13 28.94% (95% CI 24.2–33.68), and for MX 13.17% (95% CI 9.12–17.23). Standardized
PPV was highest for the SNP method for all syndromes.

3.1.2. Retrospective Versus Prospective

Table 4 summarizes pooled estimates for the performance of testing by syndrome
and study type. From a bivariate model, the mean DR for retrospective studies for T21
was 99.14% (95% CI 98.16–99.60) and for prospective studies 98.02% (95% CI 96.37–98.93)
(Table 5). The mean FPR for retrospective studies for T21 was 0.21% (95% CI 0.08–0.57) and
for prospective studies 0.09% (95% CI 0.05–0.17). The DRs for T18, T13, and MX were lower,
but FPRs were similar. In a model controlling for syndrome, both the mean DR and mean
FPR for retrospective studies were significantly higher than that of prospective studies
(p = 0.004 and 0.003, respectively). Cohort prevalences for all syndromes were 4–6 times
higher in retrospective compared to prospective studies. The differences in DR and FPR
between prospective and retrospective studies were no longer statistically significant when
including prevalence as a covariate in the model.
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Table 4. Validation studies: pooled estimates by syndrome and study type.

Syndrome Study Type No. Called Prevalence Sensitivity Specificity PPV Std PPV

T21
Retrospective 11847 8.92

(8.42, 9.45)
99.53

(98.9, 99.8)
99.88

(99.79, 99.93)
98.78

(97.92, 99.29)
69.41

(66.65, 72.18)

Prospective 57892 1.68
(1.58, 1.79)

99.18
(98.38, 99.58)

99.94
(99.92, 99.96)

96.69
(95.38, 97.63)

82.45
(80.09, 84.82)

T18
Retrospective 11181 2.77

(2.48, 3.09)
98.39

(96.28, 99.31)
99.88

(99.79, 99.93)
95.91

(93.13, 97.60)
40.42

(35.03, 45.82)

Prospective 57049 0.60
(0.54, 0.67)

95.63
(92.91, 97.33)

99.95
(99.93, 99.96)

91.88
(88.58, 94.28)

60.77
(55.71, 65.84)

T13
Retrospective 10737 1.23

(1.04, 1.46)
95.45

(90.44, 97.90)
99.82

(99.72, 99.89)
86.90

(80.44, 91.45)
12.46

(7.08, 17.83)

Prospective 49321 0.22
(0.18, 0.27)

97.25
(92.22, 99.06)

99.97
(99.94, 99.98)

86.18
(78.98, 91.19)

42.92
(34.17, 51.67)

MX
Retrospective 5499 2.38

(2.01, 2.82)
96.18

(91.38, 98.36)
98.99

(98.69, 99.23)
70.00

(62.94, 76.22)
6.90

(3.20, 10.60)

Prospective 6880 0.39
(0.27, 0.57)

88.89
(71.94, 96.15)

99.78
(99.64, 99.87)

61.54
(45.90, 75.11)

23.94
(10.55, 37.34)

Table 5. Validation studies: summary estimates for Sensitivity (Sens) and Specificity (Spec) from
bivariate model, by syndrome and study type.

Syndrome Type N Studies Mean Sens (95% CI) Mean Spec (95% CI)

T21
Retrospective 16 99.14 (98.16, 99.60) 99.79 (99.43, 99.92)

Prospective 24 98.02 (96.37, 98.93) 99.91 (99.83, 99.95)

T18
Retrospective 13 96.50 (92.30, 98.45) 99.83 (99.65, 99.92)

Prospective 23 92.81 (88.66, 95.51) 99.91 (99.82, 99.95)

T13
Retrospective 12 88.35 (76.60, 94.61) 99.90 (99.62, 99.97)

Prospective 21 93.17 (84.53, 97.15) 99.92 (99.86, 99.96)

MX
Retrospective 9 93.84 (86.14, 97.4) 99.55 (97.87, 99.91)

Prospective 8 76.11 (49.09, 91.32) 99.67 (99.46, 99.80)

3.1.3. Method of Testing

For T21, the mean FPR for SNP was significantly lower than that of MPSS among all
validation studies (p = 0.029) (Table 2). In a sensitivity analysis that separately considered
studies similar to, or different from, SNP-based studies with respect to study-level charac-
teristics, the mean FPR for SNP remained statistically significantly lower than that of MPSS
(p = 0.01 and p < 0.001, respectively). For T18, when considering matched studies or all
studies combined, there was no statistically significant difference between methods. For
T13 and MX, there were no statistically significant differences between methods of testing.
When evaluating test performance in a model for each syndrome separately, there were no
statistically significant differences for DR between methods of testing and no statistically
significant difference between DANSR and SNP.

To evaluate the relationship between DR/FPR and method of testing using data for all
four syndromes combined, we fitted a bivariate model including syndrome and method
of testing as covariates. The mean FPR for SNP was significantly lower than that of MPSS
when controlling for syndrome among both matched studies (p = 0.046) and all studies
combined (p = 0.008). When considering the three trisomies combined (no Monosomy X),
the mean DR and FPR for SNP were significantly better than that of MPSS when controlling
for syndrome among matched studies (p = 0.04 and p = 0.02, respectively) (Figure 2).
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Figure 2 The summary ROC (sROC) plot shows the observed pairs of sensitivity and
false positive rates (1-specificity) for each study as small symbols with summary estimates
from bivariate models represented by the larger bolded symbols. Also shown are the
corresponding 95% confidence ellipse showing the region of confidence that describes
the uncertainty of the estimates for each method of testing. These plots typically show
a curve estimated using a regression model meant to fit as close to the observed data as
possible. The curve is estimated from 0 to 1 on both axes, but because the range of observed
sensitivities and FPRs in our studies is limited, the model extends well beyond the range of
the data to regions with limited or no data and therefore is not shown.

3.1.4. Country

Because the studies conducted in China tended to have several differences from the
other studies, namely, Chinese women tend to be of lower maternal weight, some early
studies did not measure fetal fraction, some centers initially had compensation insurance
for false negatives, testing was done mostly in the second trimester, and methods typically
used lower sequencing depth, we performed a comparative analysis. The mean FPR
for studies conducted in China was significantly lower than that of studies conducted
in other countries (p = 0.01). To assess whether these findings influenced our results for
differences between testing method, we performed a sensitivity analysis excluding studies
conducted in China. The mean FPR for SNP remained significantly lower than that of MPSS
when controlling for syndrome and excluding studies conducted in China (p = 0.001). In a
model including the three trisomies (no Monosomy X), the mean FPR for SNP remained
significantly lower than that of MPSS (p = 0.006), but the mean DR was no longer statistically
significantly different (p = 0.07) when excluding Chinese studies.
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Comparing studies conducted in European countries with those conducted in the US,
the mean DR for US studies was significantly higher than that of European studies when
controlling for syndrome and method of testing (p = 0.04).

3.2. Clinical Experience Studies

Overall Performance
A total of 84 eligible clinical experience studies were identified (Supplemental Table S1).

Of these, 55 studies used MPSS, 12 DANSR, 12 SNP, and 5 used other technologies.
Supplemental Table S6 summarizes the time of the study, laboratory country, population
country, maternal age, and major indications for testing for those cases where the testing
was based on MPSS, DANSR, or SNPs. Raw data from these studies are summarized
in Supplemental Table S7. As summarized in Supplemental Table S8, the percentage of
high-risk results where there was follow-up was highly variable.

Table 6 presents the estimated FPRs (estFPR), observed PPVs for confirmed cases
(obsPPV), and standardized PPVs based on estimates of the population prevalence, as
described in the Methods section. For confirmed cases for all syndromes, standardized
PPVs were much lower than observed PPVs for confirmed cases for all syndromes. This
difference can be explained by the higher prevalence seen across the clinical experience
studies compared with the population rates used and the higher false negative rates used
from the validation studies.

Table 6. Clinical experience studies: pooled estimates by syndrome and method of testing.

Syndrome Method FPR Min Prevalence PPV for Confirmed Cases Std PPV

T21

All 0.050
(0.047, 0.053)

0.68
(0.67, 0.69)

92.48
(91.88, 93.05)

84.34
(83.80, 84.88)

MPSS 0.056
(0.052, 0.060)

0.60
(0.59, 0.61)

91.82
(91.10, 92.48)

82.72
(81.91, 83.53)

DANSR 0.026
(0.012, 0.056)

1.16
(1.03, 1.30)

97.41
(94.08, 98.89)

91.40
(88.11, 94.69)

SNP 0.042
(0.039, 0.047)

0.74
(0.73, 0.76)

94.39
(93.03, 95.50)

86.37
(85.65, 87.10)

T18

All 0.040
(0.038, 0.043)

0.18
(0.18, 0.19)

78.47
(76.80, 80.06)

62.73
(61.42, 64.03)

MPSS 0.058
(0.054, 0.062)

0.16
(0.16, 0.17)

75.37
(73.39, 77.24)

49.04
(47.18, 50.90)

DANSR 0.039
(0.020, 0.074)

0.24
(0.19, 0.31)

79.55
(65.50, 88.85)

66.58
(54.84, 78.32)

SNP 0.019
(0.016, 0.021)

0.20
(0.19, 0.21)

91.77
(88.72, 94.05)

80.81
(79.22, 82.39)

T13

All 0.050
(0.048, 0.053)

0.06
(0.06, 0.07)

48.00
(45.15, 50.86)

30.20
(28.47, 31.94)

MPSS 0.059
(0.055, 0.063)

0.05
(0.04, 0.05)

43.66
(40.50, 46.86)

22.43
(20.17, 24.69)

DANSR 0.083
(0.053, 0.129)

0.10
(0.07, 0.15)

54.17
(35.07, 72.11)

22.16
(8.95, 35.36)

SNP 0.040
(0.036, 0.044)

0.08
(0.08, 0.09)

64.13
(56.98, 70.71)

40.23
(37.58, 42.89)

MX

All 0.095
(0.091, 0.100)

0.10
(0.10, 0.11)

31.05
(28.87, 33.33)

34.84
(33.37, 36.31)

MPSS 0.161
(0.153, 0.169)

0.05
(0.05, 0.06)

25.92
(23.70, 28.26)

18.68
(16.90, 20.46)

DANSR 0.072
(0.055, 0.094)

0.04
(0.03, 0.05)

31.43
(21.76, 43.03)

51.93
(40.91, 62.94)

SNP 0.045
(0.042, 0.050)

0.15
(0.14, 0.16)

74.70
(67.58, 80.70)

50.71
(48.58, 52.83)
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Table 6. Cont.

Syndrome Method FPR Min Prevalence PPV for Confirmed Cases Std PPV

T21, T13, T18

All 0.047
(0.045, 0.048)

0.31
(0.30, 0.31)

84.89
(84.22, 85.53) —

MPSS 0.057
(0.055, 0.060)

0.27
(0.27, 0.28)

83.25
(82.46, 84.01) —

DANSR 0.049
(0.035, 0.068)

0.51
(0.46, 0.56)

90.42
(86.24, 93.43) —

SNP 0.034
(0.032, 0.036)

0.34
(0.33, 0.35)

90.95
(89.59, 92.15) —

All

All 0.057
(0.056, 0.059)

0.26
(0.26, 0.27)

78.07
(77.35, 78.77) —

MPSS 0.076
(0.074, 0.079)

0.23
(0.23, 0.23)

75.39
(74.54, 76.21) —

DANSR 0.061
(0.049, 0.075)

0.27
(0.24, 0.30)

77.95
(73.17, 82.08) —

SNP 0.037
(0.035, 0.038)

0.29
(0.29, 0.30)

89.67
(88.29, 90.90) —

When results were stratified by study start year, the data were consistent with declining
minimum prevalence estimates for each of the conditions (Table 7). Despite the declining
prevalence estimates, PPV for confirmed cases increased with time for T21, T18, and T13
and remained approximately constant for MX.

Table 7. Clinical experience studies: pooled estimates by syndrome and study start year.

Syndrome Start Year Tech Min Prevalence PPV for Confirmed Cases

T21

2010–2013 All 0.84 (0.81, 0.86) 90.95 (89.82, 91.96)

2014–2016 All 0.64 (0.63, 0.66) 92.39 (91.43, 93.25)

2017–2019 All 0.45 (0.42, 0.47) 94.08 (92.61, 95.27)

T18

2010–2013 All 0.21 (0.19, 0.22) 70.00 (66.82, 73.00)

2014–2016 All 0.18 (0.17, 0.18) 82.39 (79.99, 84.56)

2017–2019 All 0.13 (0.12, 0.14) 80.21 (75.91, 83.91)

T13

2010–2013 All 0.05 (0.05, 0.06) 40.27 (35.40, 45.34)

2014–2016 All 0.06 (0.06, 0.07) 44.64 (40.14, 49.22)

2017–2019 All 0.05 (0.04, 0.06) 56.65 (50.23, 62.86)

MX

2010–2013 All 0.10 (0.09, 0.12) 30.99 (26.72, 35.61)

2014–2016 All 0.13 (0.12, 0.13) 30.47 (27.19, 33.95)

2017–2019 All 0.04 (0.03, 0.04) 31.01 (27.02, 35.32)

We observed trends in test performance among the clinical experience studies con-
sistent with those observed in the validation studies. Standardized PPVs for SNP trend
higher than those for MPSS for all syndromes and FPRs for SNP trend lower than those for
MPSS for all syndromes.

4. Discussion

In this study, we corroborate and update previous meta-analyses that showed that
both validation studies and clinical experience studies demonstrate high efficacy of cell-free
DNA in the prenatal screening of fetal trisomies 21, 18, 13, and monosomy X.

We show here that performance in validation studies depends on study design, with
FPRs in prospective studies being significantly lower than in retrospective studies. Retro-
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spective study design generally focused on ascertainment based on affected pregnancies
identified through amniocentesis or CVS, i.e., unambiguous affected or unaffected preg-
nancies with mosaic cases, pregnancy losses, and unrelated abnormalities excluded. These
studies are usually weighted to include sufficient affected pregnancies to allow robust esti-
mation of detection rates. In prospective studies, there are variable policies with respect to
the inclusion of cases with fetal loss, mosaicism, and other abnormality. Generally, prospec-
tive studies involve maternal plasma sample collection at the time of conventional maternal
serum screening, and therefore, these studies are more representative of an average risk
population, although inclusions may be weighted towards women with higher risks who
undergo additional testing. The major distinction between the two designs appears to be
prevalence. Our data show that after adjusting for prevalence, differences in DR and FPR
between prospective and retrospective studies were no longer statistically significant.

This observation that testing performance is related to prevalence runs counter to
classical views in screening where DR and FPR are considered intrinsic to the test and inde-
pendent of the population screened. However, NIPT differs from conventional screening
because many false positives have a biological, non-technical basis. For example, fetal or
placental mosaicism can explain some false-positive results. Mosaicism can arise through a
primary meiotic error (with correction to disomy via trisomy rescue), and the frequency
of these cases can be expected to be maternal age dependent. Similarly, false positives
due to a vanished twin, maternal cancer, somatic X-chromosome loss, and other maternal
health conditions are also anticipated to be dependent on maternal age. A lower FPR
and better than expected PPV in younger women compared to older women has been
described [20]. An association between test performance and prevalence has been shown
in other screening test settings [21,22]. Therefore, it is important to consider prevalence
when assessing differences in study population or design.

We also found that the performance of the three main clinically available methods
differed according to chromosome, with the SNP and DANSR methods trending towards
better performance as compared to MPSS, although the differences were often not statisti-
cally significant. When considering the three trisomies combined and when controlling
for syndrome among matched studies, the SNP method showed significantly better perfor-
mance than MPSS. The trends were most clear when considering the diagnostic odds ratio,
a measure that combines sensitivity and specificity. The same trends were also seen in the
clinical experience data, where prevalence-adjusted PPVs provided a composite assessment
of performance (Table 4).

NIPT has received increasing acceptance in medical practice, and consistent with this,
we observed a trend towards declining prevalence for all four aneuploidies in women
receiving the testing from 2010 to 2019 as the proportion of high-risk women in the testing
population decreased (Table 5). Although this might be expected to result in lower PPV,
in practice, the observed PPVs remained approximately constant. This may, in part, be
explained by our additional observation that test performance is not independent of
prevalence. It is likely also that improvements in testing have occurred. We acknowledge
the observed PPVs are subject to verification bias, the effect of which could lead to less
accurate results.

For clinical experience studies, we evaluated observed PPV and estimated FPR under
the assumption that test-positive cases with definitive diagnosis or pregnancy outcome
information are representative of all test-positive cases. In our experience, this tendency
is primarily driven by the fact that some practices often do not have the time to respond
to requests for follow-up information. Additionally, although it has been strongly recom-
mended that all women with positive NIPT results receive definitive follow-up CVS or
amniocentesis, follow-up is generally incomplete, and it is possible that in some cases with
high-risk NIPT results where major malformations were detected by ultrasound, women
chose to terminate their pregnancy without prenatal diagnostic testing. Conversely, it is
possible some women with positive NIPT results that would be expected to show major
malformations by ultrasound exam (e.g., trisomy 13 and 18) may choose not to pursue
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invasive testing in the absence of ultrasound findings. Additional difficulties exist for MX
where mosaicism, partial X-chromosome deletions or unbalanced rearrangements, and the
associated variable presentation are confounders. While drawing conclusions from positive
cases with incomplete follow-up may therefore seem tenuous, our analysis does indicate
that the FPRs and prevalence-adjusted PPVs in clinical practice are, in fact, consistent with
the validation studies.

A greater difficulty exists in assessing DR from clinical experience studies. First,
although some studies did report follow-up on FN that was offered, the majority of clinical
experience studies did not request follow-up on cases with a low-risk result. Additionally,
a high proportion of false-negative pregnancies may result in spontaneous losses without
coming to attention. Others could have resulted in live-borns but not have been reported to
the physician who ordered the NIPT. Some laboratories have attempted to infer DR based
on extrapolation of outcome data from positive tests [23,24]. However, given the entirely
different patient management of positive versus negative cases and the lack of supporting
data to validate their underlying assumptions, these estimates must be viewed as lacking
an evidence base.

We have not considered samples that did not provide results, as very few of the studies
reported outcome on such cases. It is known that most of these are attributable to low fetal
fraction, which is dependent on maternal weight and gestational age. Furthermore, there
are no absolute standards for the measurement of fetal fraction or the threshold at which
testing can be considered reliable. With low fetal fraction, there is a trade-off between
successful testing that provides results and accuracy, both of which need to be considered
when comparing test methodologies. Various strategies have been proposed to deal with
low fetal fraction, including reflexively resequencing at a higher depth of read, re-assessing
risk based on fetal fraction as a biomarker, use of artificial intelligence, use of alternative
screening, or proceeding directly to diagnostic testing. As cfDNA testing is refined, the
challenge posed by a low fetal fraction is being minimized.

Our review and analysis have limitations. We restricted our search to English language
references, and some studies did not contain sufficient information necessary for inclusion.
We were restricted to the study-level characteristics that we were able to extract, which
limited our ability to assess and account for heterogeneity in the analyses. Furthermore, we
did not assess the quality of individual studies. Due to the challenges with ascertainment
bias in the clinical experience studies previously described, we were required to make
assumptions and adjustments to calculate certain test performance measures. The bivariate
random-effects regression model required a correction to be added to zero cells; this
is known to lead to an underestimate of the performance in cases where the FNR and
FPR are considerably lower than the correction factor, though this is not expected to
affect overall trends. We used the method to account for various sources of bias and
acknowledge our attempts may be inadequate. We did not evaluate the performance
of NIPT for microdeletion syndromes and other chromosome imbalances. These newer
additional areas of testing are not offered by all laboratories or may be limited to specific risk
groups. Women with high prior risks due to abnormal ultrasound findings, family history,
or maternal serum screening tests often proceed directly to cytogenetic and microarray
diagnostic testing through CVS or amniocentesis. Exclusion of high-risk populations will
lower the observed screening test PPVs.

In summary, we have shown that prospective validation studies demonstrate the excel-
lent performance of NIPT for trisomies 21, 18, 13, and monosomy X and that methodological
performance differences exist. The available data from clinical experience studies show
that the performance of NIPT in clinical care is consistent with FPRs and PPVs obtained in
clinical validation studies.
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