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Estimation of Spatiotemporal Sensitivity Using Band-limited Signals  
with No Additional Acquisitions for k−t Parallel Imaging

Hidenori Takeshima1,2*, Kanako Saitoh2, Shuhei Nitta2, Taichiro Shiodera2,  
Tomoyuki Takeguchi2, Shuhei Bannae3, and Shigehide Kuhara4,5 

Purpose: Dynamic MR techniques, such as cardiac cine imaging, benefit from shorter acquisition times. 
The goal of the present study was to develop a method that achieves short acquisition times, while main-
taining a cost-effective reconstruction, for dynamic MRI. k − t sensitivity encoding (SENSE) was identified 
as the base method to be enhanced meeting these two requirements.
Methods: The proposed method achieves a reduction in acquisition time by estimating the spatiotemporal 
(x − f) sensitivity without requiring the acquisition of the alias-free signals, typical of the k − t SENSE tech-
nique. The cost-effective reconstruction, in turn, is achieved by a computationally efficient estimation of the 
x − f sensitivity from the band-limited signals of the aliased inputs. Such band-limited signals are suitable for 
sensitivity estimation because the strongly aliased signals have been removed.
Results: For the same reduction factor 4, the net reduction factor 4 for the proposed method was signifi-
cantly higher than the factor 2.29 achieved by k − t SENSE. The processing time is reduced from 4.1 s for  
k − t SENSE to 1.7 s for the proposed method. The image quality obtained using the proposed method 
proved to be superior (mean squared error [MSE] ± standard deviation [SD] = 6.85 ± 2.73) compared to the 
k − t SENSE case (MSE ± SD = 12.73 ± 3.60) for the vertical long-axis (VLA) view, as well as other views.
Conclusion: In the present study, k − t SENSE was identified as a suitable base method to be improved 
achieving both short acquisition times and a cost-effective reconstruction. To enhance these characteristics 
of base method, a novel implementation is proposed, estimating the x − f sensitivity without the need for an 
explicit scan of the reference signals. Experimental results showed that the acquisition, computational times 
and image quality for the proposed method were improved compared to the standard k − t SENSE method.
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compactness and energy saving at the expense of hardware 
performance. In this study, we describe a method that recon-
ciles these requirements, satisfying the following conditions:

a)  Shorter acquisition times: Image data should be 
acquired rapidly within procedurally relevant time 
to obtain clinically acceptable spatial and temporal 
resolutions in examinations, such as cardiac cine 
imaging and dynamic contrast-enhanced myocar-
dial perfusion.

b)  Cost-effective reconstruction: Studies focusing on 
the reduction of acquisition times often rely on 
reconstruction methods with high-computational 
costs. However, in the attempt of reducing the cost 
burden of MRI scanners, a reduction in computa-
tional cost is also set as a target for the present study. 
This condition, on the other hand, cannot impact 
well understood time limits, defined by the neces-
sity to allow for image review and inspection within 
the examination time.

Introduction
A high acquisition speed is desirable in dynamic MRI, but 
scanner design, especially for 1.5T systems, often focuses on 
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In consideration of these primary endpoints, k − t sensi-
tivity encoding (SENSE)1 was chosen as the base method 
most suitable for the proposed enhancement. In the fol-
lowing, we first present a novel method for reducing the 
acquisition time for k − t SENSE, meeting requirement a). 
While k − t SENSE already achieves requirement b), the pre-
sented method further reduces the computational cost.

k − t SENSE
In general, if input signals are undersampled with a regular 
interval R, the corresponding R signals result being aliased in 
the Fourier transform. In the transformed data, the spatial 
distribution of the aliased signals depends on the sampling 
locations in the signal space. 

For k − t SENSE, the signal space is referred to as the  
k − t (k: k-space, t: time) space. The corresponding Fourier-
transformed k − t signals are referred to as x − f (x: image,  
f: frequency) signals. For k − t SENSE, the sampling loca-
tions have a regular interval R in both the k-space and time 
directions and the encoding lines are shifted from one-time 
frame to the next. As a result, aliasing occurs in the oblique  
x − f direction (Fig. 1).

K − t SENSE recovers R signals from the aliased signals 
by performing the unfold operation in the x − f space. In 
order to do so, it treats the aliased signals as the weighted 
sum of the R signals in the x − f space. The weights are 
referred to as the x − f sensitivity, which is estimated sepa-
rately through training scans and is therefore assumed to be 
known in the unfold operation.

Since the main objective of this study is to evaluate the 
effect of eliminating the training scans, the baseline estimate 
described in the standard k − t SENSE method was not used.1 
Under this assumption, the R signals r can be obtained by 
solving the following equation:

S* ψ -1 Sρ = S* ψ -1 ρa  (1)

where S represents the sensitivity matrix for the R aliasing 
points of all coils, ψ represents the noise covariance matrix 
for all coils, and ρa represents the aliased signals for all coils.

If instead a baseline estimate is available, the equation 
would need to be slightly modified incorporating the differ-
ences between the signals and the baseline estimate. This 
aspect will not be further investigated in the present study.

While the original k − t SENSE method estimates the R 
signals by computing a pseudo-inverse matrix, direct solvers 
(e.g., LU decomposition) can also be used for linear equation 
systems such as Eq. (1). If a signal term in the vector r is 
known to be zero before solving Eq. (1), the signal and the cor-
responding elements of the sensitivity matrix can be removed.

x − f sensitivity
The x − f sensitivity is the ratio of the Fourier-transformed 
coil signals to Fourier-transformed body coil signals. To esti-
mate the x − f sensitivity, alias-free reference signals are 
needed. Since k − t SENSE undersamples the center of 
k-space, the sampled signals themselves are not alias-free.

As mentioned above, in the original k − t SENSE, the 
reference signals are scanned separately. In the alternative 
SPEAR2 method, the signals near the center of the k-space 
are acquired by dense sampling. In these methods, RNET, 
which is the ratio of full-sampled acquisitions to net acquisi-
tions, is less than R. While both these methods provide alias-
free signals, the need for additional reference signals comes 
at the cost of an increased acquisition time.

Methodological benefits
Among the challenges typical of standard k − t SENSE 
implementations we focused on the following:

a)  Unless information concerning the target is incorpo-
rated in the method,3–4 RNET tends to be much lower 
than R. For example, in 2D cardiac experiments with 
k − t SENSE, when R was set to 6, RNET was 4.6. For 
example, in 2D cardiac experiments with SPEAR, 
when R was set to 4, RNET was 2.9, and when R was 
set to 8, RNET was 4.3.

b)  The reliability of the x − f sensitivity is assumed to be 
the same at all frequencies. However, this assumption 
does not hold. The Fourier transformation of the k − t 
signals decomposes the average signals of the MR 
images into direct current (DC) components, and the 
MR images scatter into non-DC components. In par-
ticular for cardiac applications, the DC components 
correspond to a stationary image that is the average 
of various cardiac phases. Non-DC signals, con-
versely, display non-zero values if certain motions, 
such as heartbeat, are present. Typically, the signal-
to-noise ratio (SNR) of DC components is much 
higher than what displayed by non-DC components 
(a factor 10 higher in the example shown in Fig. 2).

c)  Despite the non-DC signals have a relatively low 
SNR (Fig. 2), the accuracy of the standard k − t 
SENSE method decreases as the number of non-DC 
signals unfolded from an aliased signal increases.

The present study proposes a novel method to estimate 
the x − f sensitivity, and therefore, overcoming the chal-
lenges described above. By extending the approach described 

Fig. 1 Aliasing in x − f space. By shifting the sampling pattern 
in a periodic manner, x − f data are aliased along an oblique 
x − f  direction.
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in an earlier presentation,5 instead of using reference signals, 
the proposed method estimates the x − f sensitivity from the 
unfolded, undersampled signals, addressing point a). The 
proposed method then estimates the motion-independent  
x − f sensitivity from the DC components only, addressing 
point b). Lastly, the proposed method attempts to detect 
motion from aliased x − f signals and reduces the number of 
non-DC components to be unfolded by masking the regions 
with no signals, accounting for point c).

The concept of the proposed method
For each position x and time t, the image value for coil i can 
be expressed as

Ii (x, t) = (Si (x) + ΔSi (x, t)) I (x, t), (2)

where I (x, t) is the image value to be reconstructed, Si (x) is 
the motion-independent spatial sensitivity, and ΔSi (x, t) is the 
motion-dependent spatial sensitivity. By applying inverse 
fast Fourier transform (IFFT) (F -1) in the t-direction, the fol-
lowing equation is derived.

 F-1 (Ii (x, t)) = Si(x) F-1 (I (x, t )) + F-1 (ΔSi (x, t) I (x, t)) (3)

In general, the x − f sensitivity cannot be estimated from the 
aliased x − f signals without using reference signals. The pro-
posed method obviates to this requirement by approximating 
the x − f sensitivity with the motion-independent x − f sensi-
tivity and by applying an x − f mask, without requiring the 
estimation of the non-DC sensitivity term. More in detail, the 
proposed method assumes that |∆Si (x, t)| is small with respect 
to the motion-independent x − f sensitivity, Si (x). Under this 
assumption, the x − f sensitivity is well approximated by 
Si (x) because F -1 (Ii (x, t)) ≈ Si (x) F-1 (I (x, t)).

The premise on |∆Si (x, t)| being negligible equates to 
assuming that no significant movement takes place during image 
acquisition. In the case of cardiac imaging, this requirement is 
satisfied by performing acquisitions during breath-holding.

In addition to estimating the motion-independent spa-
tial sensitivity, the proposed method applies an x − f mask 

identifying the motion-sensitive regions of the x − f sensi-
tivity. The purpose of generating the x − f mask is to 
 identify locations whose signal values are clearly negli-
gible. In order to detect the negligible regions, the pro-
posed method splits the aliased x − f signals into center 
band signals and non-center band signals. In the center 
band region, the spatial locations of aliased x − f signals 
with high signal values identify with the locations to be 
reconstructed. Conversely, regions for which the x − f 
signal values are negligible are excluded.

 In the non-center band regions, the proposed method 
attempts to ascertain spatial locations with no motion. This is 
achieved by identifying the locations in non-center band 
regions as negligible, when the spatial locations to be recon-
structed are masked in the center band region.

 The proposed method, thus, extracts band-limited sig-
nals (i.e., signals in the center band) and estimates both the 
sensitivity Si (x) and x − f mask using the extracted signals. In 
the band-limited signals, signals aliased strongly are 
excluded. The signals in non-center bands are not used for 
estimation of x − f sensitivity.

Materials and Methods
Implementation
The proposed method, schematically depicted in Fig. 3, 
requires as inputs the undersampled k − t signals and a 
threshold for masking, and consists of the following steps:

Step 1: Application of spatiotemporal IFFT to the input k − t 
signals. The outputs of this step are aliased x − f signals.
Step 2: Extraction of the center band for the aliased x − f 
signals. The outputs of this step are band-limited  
x − f signals.
Step 3: Masking of the x − f signal. In the center band, a 
value of 1 is assigned if the corresponding x − f signal value 
is above the input threshold, 0 otherwise. In the non-center 
band region, instead, the mask value is set to 1 where the 
corresponding f-axis value is above the threshold for both the 
DC signal and the band-limited part of the non-DC signal, 0 
otherwise. The output of this step is the x − f binary mask.
Step 4: Estimation of the motion-independent sensitivity. 
For each spatial x position, the sensitivity estimated from 
the DC component of the aliased x − f signals or one of 
the aliases is assumed to be motion-independent. The 
output of this step is the initial x − f sensitivity.
Step 5: Application of the x − f binary mask to the initial  
x − f sensitivity. The output of this step is the final x −f 
sensitivity.
Step 6: Solution of Eq. (1) with the aliased x − f signals and 
the x − f sensitivity estimated in the previous steps as inputs. 
The masked pixels (i.e., with a corresponding value of 0 in 
the mask) are set to zero and excluded from the pixels to be 
unfolded. The outputs of this step are the reconstructed x − f 
signals.

Fig. 2 Frequency-signal relationship for x − f  data with 16 frames. 
Since the strength of the noise can be considered to be the same at all 
frequencies, the signal-to-noise ratio (SNR) of the direct current (DC) 
components is much higher than that of the non-DC components.
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Finally, dynamic images can be reconstructed by applying 
temporal fast Fourier transform (FFT) to the reconstructed  
x − f signals.

Evaluation on simulated data
The proposed method was compared with k − t SENSE in a 
down-sampling simulation to an R-value of 4 using a set of 
fully-sampled, retrospectively gated cardiac steady-state 
free precession (SSFP) images. Acquisitions were per-
formed on breath-holding. The DC threshold was set to 4%. 
The influence of the DC threshold was also evaluated by 
comparing the results with values of 1%, 10%, and 30%. 
The non-DC threshold was simply set to 4% in all the 
experiments. The processing time was measured by running 
a single-thread C++ implementation on a 2.6-GHz CPU. 
The performance evaluation was conducted solving Eq. (1) 
by means of both the standard k − t SENSE and proposed 
methods.

 For the simulation, vertical long-axis (VLA), short-axis 
(SA), and four-chamber (4ch) views were acquired using a 
1.5T scanner. The scanning parameters were 256 readout 
(RO) steps, 96 phase encode (PE) steps, 15 coil channels, 
380 mm × 380 mm FOV of, 8 mm slice thickness of, 4.2 ms 
TR, 2.1 ms TE, and 40 frames, corresponding to two cardiac 
cycles. For the k − t SENSE method, 24 reference signals 
were retained after down-sampling. For each plane, a ROI 
was drawn for quantitative evaluation. Reconstruction errors 
were evaluated by computing the frame-by-frame mean 

Fig. 3 Flowchart for the proposed 
method. The x − f sensitivity is esti-
mated from 1) the x − f signals and 
2) the x − f positions where the 
unfolded values are estimated to 
be non-zero from the x − f signals. 
IFFT: inverse fast Fourier transform.

squared errors (MSEs) between the fully-sampled and recon-
structed images.

In the k − t SENSE case, the simulated acquisition time 
was 7.1 s (42 ´ 40 ´ 4.2 ms); compared to the 4.0 s (24 ´ 40 
´ 4.2 ms) simulated acquisition time of the proposed method.

Evaluation on experimental data
In order to evaluate the impact of increasing R-values,  
k − t signals sampled with R-values of 4, 6, and 8 were 
acquired and reconstructed using the proposed method. The 
corresponding number of frames was 12 for an R-value of 4, 
18 for an R-value of 6, and 24 for an R-value of 8. Acquisi-
tions were performed on breath-holding. All other scanning 
parameters matched those used for the simulations.

The acquisition time for each frame was determined by 
(96 / R) × 4.2 ms, so that the total acquisition time was 1.2 s 
for each of the R-values (4, 6, and 8).

Results
Evaluation on simulated data
For the ROIs and PE directions shown in Fig. 4, the 
 reconstruction MSEs at different DC thresholds are reported 
in Table 1 and Fig. 5. As apparent from Fig. 5, the errors are 
independent of the frame index. When a high threshold is 
selected, errors are shown increase likely because positions 
that are critical to the quality of the reconstructed image are 
being masked. However, as it can be seen in the case of a 1% 
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Table 1 Reconstruction errors for the proposed method at  
different direct current (DC) thresholds 

DC Threshold
Non-DC 4%

VLA
Mean ± SD

SA
Mean ± SD

4ch
Mean ± SD

1% 7.12 ± 2.85 4.60 ± 2.20 8.10 ± 1.98

4% 6.85 ± 2.73 4.46 ± 2.21 7.86 ± 1.77

10% 6.68 ± 2.64 4.46 ± 2.20 19.73 ± 3.43

30% 37.27 ± 18.12 4.46 ± 2.20 39.46 ± 8.70

The table reports the mean and SD for the errors of the proposed 
method at different DC thresholds calculated on the ROIs shown in 
Fig. 4. Higher thresholds can increase the errors, and in all the cases 
considered, a 4% threshold is found to be an acceptable DC thresh-
old. SA, short-axis; SD, standard deviation; VLA, vertical long-axis; 
4ch, four-chamber.

0 10 20 30 40
frame

0

0.2

0.4

0.6

0.8

M
S

E

DC 1%
DC 4%
DC 10%
DC 30%

Fig. 5 Direct current (DC) threshold errors in ROI in the vertical 
long-axis image. The errors for the ROIs in the remaining images 
are shown in Table 1. MSE: mean squared error.

Fig. 4 Region of interests for (a) ver-
tical long-axis, (b) short-axis , and (c) 
four-chamber images. The phase encode 
directions are horizontal for (a) and ver-
tical for (b and c). The white boxes indi-
cate the ROIs for computing the results 
shown in Tables 1 and  2.

a cb

Table 2 Comparison of the mean squared errors (MSEs) for x - f 
sensitivity encoding (SENSE) and the proposed method  

Method
R = 4

VLA
Mean ± SD

SA
Mean ± SD

4ch
Mean ± SD

k-t SENSE
RNET = 2.29

12.73 ± 3.60 7.06 ± 1.80 9.77 ± 2.60

Proposed method
RNET = 4

6.85 ± 2.73 4.46 ± 2.21 7.86 ± 1.77

The table reports the mean and standard deviation of the errors for 
both methods with R = 4 as measured on the ROIs shown in Fig. 4.  
The mean errors for the proposed method are lower than those for x - 
f SENSE. SA, short-axis; SD, standard deviation; LA, vertical long-ax-
is; 4ch, four-chamber.

0 10 20 30 40
frame

0

0.05

0.1

0.15

0.2

0.25

M
S

E

k-t SENSE R=2.29
proposed R=4

Fig. 6 Errors for x − f  sensitivity encoding (SENSE) and the proposed 
method measured on the region of interests  drawn on the vertical 
long-axis  image. The errors for the ROIs in the remaining images are 
shown in Tables 1 and 2. MSE: mean squared error.

threshold, a low threshold may also increase the errors (albeit 
slightly), possibly because it increases the number  
of positions to be unfolded. In all the simulations considered, 
the 4% threshold was found to be an acceptable DC threshold.

 Similarly, the MSEs for k − t SENSE and the proposed 
method are compared in Table 2, Figs. 6, and 7 for the same 
ROIs and PE directions. In Table 2 and Fig. 6, the MSEs for 

the proposed method are shown to be lower than those of k 
− t SENSE for almost all frames. Additionally, the error 
images in Fig. 7 display a much lesser conspicuity of bright 
pixels in the heart region for the proposed method as com-
pared to k − t SENSE.

 Since for the same R the net reduction factor, RNET, for 
the proposed method is much higher than the corresponding 
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value for k − t SENSE (Table 2), the proposed method proves 
to be suitable for fast acquisitions.

The processing time for the VLA image with R = 4 is 
reported in Table 3. In the sensitivity estimation step, k − t 
SENSE requires spatial and temporal IFFT for the reference 
signals. The processing time for IFFT is about 0.8 s. In the 
unfolding step, the number of locations to be unfolded in k − t 
SENSE is greater than what required for the proposed method, 
in which the x − f mask reduces the number of locations to be 
unfolded. Consequently, the processing time for the proposed 
method is smaller than what achieved by k − t SENSE.

Evaluation on experimental data
Vertical long-axis and SA reconstructed images with an RNET 
value of 8 are shown in Figs. 8 and 9, respectively. Figure 10 
shows 4ch reconstructed images with different RNET values. 
Artifacts due to aliasing are seen in the 4ch systolic and dias-
tolic views when an RNET value of 8 is used (Fig. 10). No 
significant artifacts are seen in any of the VLA and SA 
images, irrespective of the R-value. 

 For all the R-values, the acquisition time was about 1.2 s 
per slice. For a single-thread C++ implementation of the pro-
posed method running on a 2.6-GHz CPU, the reconstruction 
time per slice was 0.78 s for an R-value of 4, 1.09 s for an 
R-value of 6, and 1.34 s for an R-value of 8. While this 

reconstruction time is to be considered acceptable for many 
applications, it can be further improved by algorithm optimi-
zation applying methods such as multithreading.

Discussion
Comparison with k − t SENSE
The simulations experiment demonstrated that both the 
acquisition and computation times for the proposed method 

Table 3 Processing time (in seconds) for the VLA view with R = 4 
for k-t SENSE and the proposed method 

Method
VLA, R = 4

Sensitivity
estimation

Unfolding
FFT in  

time-axis

k-t SENSE
RNET = 2.29

1.69 2.40 0.02

Proposed method
RNET = 4

0.25 1.42 0.03

The processing time for the proposed method is smaller compared 
to k-t SENSE. FFT, fast Fourier transform; SENSE, sensitivity encod-
ing; VLA, vertical long-axis; 

Fig. 7 (a) Image reconstructed using x − f sensitivity encoding (SENSE). (b) Image reconstructed using the proposed method. (c) Error image 
reconstructed using x − f SENSE. (d) Error image reconstructed using the proposed method. Pixel intensity in (c and d) represents the error 
between the reconstructed pixel value and the reference pixel value (scaled by 20). White pixels have a high reconstruction error, while black 
pixels have a low reconstruction error. In the heart region, the error image for the proposed method has a smaller number of white pixels than 
the error image for x − f SENSE.

a b c d

Fig. 9 Short-axis (SA)  images reconstructed using the proposed 
method with (a and b) R = 8.

a b

Fig. 8 Vertical long-axis images reconstructed using the proposed 
method with (a and b) R = 8.

a b



25Vol. 18, No. 1

Estimation of Spatiotemporal Sensitivity

Fig. 10 Four-chambered images 
reconstructed using the proposed 
method with (a and b) R = 4, 
(c and d) R = 6, and (e and f) R = 8.

a b c

d e f

were less than what achieved with k − t SENSE. Most rele-
vantly, it was shown that the proposed method increased 
RNET, matching R, by estimating the x − f sensitivity without 
scanning for reference signals or target information. In addi-
tion, the simulation also proved that the MSEs for the pro-
posed method are lower than what obtained with k − t 
SENSE. The proposed method estimates the x − f sensitivity 
as a countermeasure to the instability of non-DC compo-
nents: this mechanism is thought to suppress the MSEs asso-
ciated to the x − f sensitivity instability in k − t SENSE.

The differences in the errors between the two methods, 
shown in Table 2, are considered to be a result of the dif-
ferences in the aliased x − f signals in the ROIs. In par-
ticular, the mean errors in the VLA image appear to be 
suppressed because there are no regions characterized by 
a strong signal along the PE direction from the ROI. This 
being the case, since the x − f mask removed all the 
non-DC components in the stationary regions; the number 
of locations to be unfolded was expected to be reduced to 
1 in the proposed method. Conversely, the mean errors for 
the 4ch image are thought to be higher due to the regions 
characterized by a strong signal along the PE direction 
from the ROI.

The experiments proved that an RNET value of 6 can be 
achieved with no significant artifacts for the cardiac cine 
application. However, in order to satisfy the assumption that 
the subject is stationary, acquisitions are to be performed 
while breath-holding. If this assumption is not satisfied, i.e., 
there is significant subject movement during acquisition, the 
accuracy of the non-DC components of the x − f sensitivity 
decreases, leading to increases in the errors for the proposed 
method. While motion correction could be applied to the pro-
posed method, like what was done for k − t SENSE, the 

computational cost would increase due to alternate, iterated 
calculations for motion compensation. Relaxation of this 
assumption is a subject for future work.

The threshold value of 4% used in generating the x − f 
mask was optimized for the MRI system used in the experi-
ments. The optimal threshold value depends on the amplitude 
of the noise in the aliased x − f signals. Since the aliased x − f 
signals are obtained by Fourier transformation of the under-
sampled k − t signals, the strength of the noise is proportional 
to the noise in the sampled signals and is inversely propor-
tional to the square root of the number of sampled signals. 
Since the noise in the sampled signals depends on the par-
ticular MRI system in use, tuning is required for each system.

It should be noted that partial Fourier acquisition was not 
used in this study. The RNET values can be further improved 
by applying partial Fourier acquisition and reconstruction, 
but this would also impact the quality of the reconstructed 
images.

It was previously shown that optimized sampling patterns 
are effective in improving the robustness of k − t SENSE.7 
While the sampling patterns change the oblique direction of 
aliasing in x − f space, the band-limited x − f signals are not 
changed much. The proposed method is therefore expected to 
provide comparable results for optimized sampling patterns.

Though baseline estimation was not used in this study, it 
can be applied to the proposed method without any restrictions. 
For applications with longer acquisition times, the acquisi-
tion time can be split into fixed lengths and the proposed 
method can be applied to the k − t signals corresponding to 
such fixed lengths. In such cases, since the thresholds for the 
proposed method depend on the length of the acquisition 
time, the same thresholds can be used even when the acquisi-
tion time is split.
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Lastly, since the proposed method does not rely on  
electrocardiogram (ECG) gating, it can be successfully 
applied to cardiac cine imaging in the presence of irregular 
heartbeat. On the other hand, the number of PE steps used for 
the experiments (96 PE steps) was lower than that used in 
ECG-gated cardiac cine acquisitions (typical, 160 PE steps in 
a clinical setting8). Clinical evaluation of the proposed 
method remains a subject for future work.

Comparison with other reconstruction methods
When MRI acquisitions are performed with array coils, 
methods such as parallel imaging (PI), compressed sensing 
(CS), and low-rank model (LRM) are commonly used to 
reconstruct highly undersampled data. 

Spatial PI methods such as SENSE,9 generalized auto-
calibrating partially parallel acquisitions (GRAPPA),10 and 
ESPIRiT11 utilize the differences in receiver coil sensitivities 
from array coil data. Such methods estimate the sensitivity 
either by including a separate prescanning step or by 
employing simultaneous data acquisitions known as auto-
calibration signals (ACS). 

Temporal PI methods such as time-adaptive SENSE 
(TSENSE)12 and temporal GRAPPA (TGRAPPA)13 estimate 
the spatial sensitivity from multiple image frames without 
the acquisition of ACS. For example, TSENSE estimates 
sensitivity using a temporal low-pass filter, and images are 
reconstructed using spatial PI (SENSE) and an additional 
temporal low-pass filter.

Spatiotemporal PI methods assume that images obtained 
using Fourier transformation in the temporal direction are 
sparse. Examples of spatiotemporal PI methods are k − t 
SENSE,1 SPEAR,2 k − t GRAPPA,14 and k − t principal com-
ponent analysis (PCA).15 These methods use spatial and tem-
poral information simultaneously, rather than serially, to 
achieve high acceleration factors. Spatiotemporal PI methods 
assume that the subject does not move significantly and require 
the acquisition of additional information for estimating the 
spatiotemporal sensitivity.

The CS typically relies on spatial16 and/or temporal 
sparseness17 as L0/L1 cost functions. Low-rank model for 
dynamic MRI typically exploits temporal image sparseness 
by representing dynamic pixels as a linear combination of the 
basis vectors.18,19 By leveraging the receiver coils sensitivity 
information, CS/LRM can be combined with PI.

Typically, solvers for CS/LRM iteratively evaluate the 
consistency between the collected data and prior knowl-
edge. Compressed sensing and its variants require iterative 
solvers such as iterative shrinkage-thresholding algo-
rithms20 and split Bregman solvers,21 at a high computa-
tional cost. To reduce the reconstruction time for CS, a 
graphics processor unit (GPU) implementation has also 
been evaluated.22 A common LRM solver is a nuclear norm 
optimizer that uses a scheme such as iterative singular value 
thresholding. For CS/LRM, an iterative solver such as a 

conjugate gradient solver is generally used for evaluation of 
the data consistency of PI.

A comparison of fast acquisition methods is reported in 
Table 4. While the prior knowledge used in CS/LRM 
increases the quality of the reconstructed images, the data 
consistency of PI is evaluated iteratively and several itera-
tions may be required, leading to extremely high computa-
tional costs. In contrast, spatial, temporal, and spatiotemporal 
PI methods rely on L2 cost functions and can therefore be 
implemented with non-iterative, computationally efficient 
solvers. Spatiotemporal PI methods, in particular, benefit 
from both spatial and temporal acceleration, while employing 
non-iterative solvers. k − t SENSE was therefore found to be 
a suitable starting technique to implement the novel method 
evaluated in this work.

Comparison with other calibration methods with no 
reference signals
Aiming at eliminating the need for explicit scanning of the 
reference signals, x − f Choice3 uses the characteristics of 
contrast-enhanced angiography and generates reference sig-
nals from the pre-contrast and post-contrast parts of the  
contrast-enhanced angiography images. A machine-learning 
approach for eliminating explicit scanning has also been 
studied.4 This method assumes that training data is available 

Table 4 Comparison of fast acquisition methods

Method
Spatio-temporal 

acceleration
Calibration /  

ACS
Optimization

SENSE No Required L2

GRAPPA No Required L2

TSENSE Serial No L2

TGRAPPA No No L2

k-t BLAST/
SENSE

Joint Required L2

k-t GRAPPA Joint Required L2

k-t PCA Joint Required L2, PCA

CS (+PI)
Implementation- 

dependent
No L0/L1, iterative

LRM  
(+ PI/CS)

Joint No
nuclear norm, 

iterative

Proposed 
method

Joint No L2

Spatiotemporal PI methods enable both spatial and temporal 
acceleration with non-iterative solvers. ACS, autocalibration sig-
nals; BLAST, broad-use linear acquisition speed-up technique; 
CS, compressed sensing;  GRAPPA, GRAPPA, generalized auto-
calibrating partially parallel acquisitions; LRM, low-rank model; 
PCA, pontocerebellar angle; PI, parallel imaging;  SENSE, sensi-
tivity encoding; TGRAPPA, temporal GRAPPA;  TSENSE, encoding 
incorporating temporal filtering.
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for the target organs. However, it is non-trivial to collect 
training data for the several types of possible lesions.

Non-spatiotemporal PI techniques have also been devel-
oped for estimating the sensitivity without explicit informa-
tion on the target samples. For a radial trajectory, non-Cartesian 
in nature, the acquired signals near the center of the k-space 
can be treated as calibration signals.23 For a Cartesian trajec-
tory, instead, sensitivity can be estimated by LRM in spatial 
PI.24 However, these methods are not designed for estimation 
of the x − f sensitivity.

Conclusions
This study aimed at achieving short acquisition times and a  
cost-effective reconstruction in dynamic MRI acquisitions. 
After a careful review of existing methods, k − t SENSE was 
identified as the most suitable reference method for our 
purpose.

 In order to reduce acquisition times as compared to k − t 
SENSE, a novel method for the estimation of the x − f sensi-
tivity, not requiring explicit scanning of reference signals, 
was proposed. This method approximates the x − f sensitivity 
to the motion-independent x − f sensitivity by applying an  
x − f mask, while the x − f sensitivity and x-f mask are esti-
mated from band-limited x − f signals.

The experimental results showed that the acquisition 
time, the computational time, and reconstruction errors could 
be reduced compared to k − t SENSE when applying the pro-
posed method.
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