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Abstract

Objectives: To develop a population specific pharmacogenetic acenocoumarol dosing algorithm for north Indian patients
and show its efficiency in dosage prediction.

Methods: Multiple and linear stepwise regression analyses were used to include age, sex, height, weight, body surface area,
smoking status, VKORC1 -1639 G.A, CYP4F2 1347 G.A, CYP2C9*2,*3 and GGCX 12970 C.G polymorphisms as variables to
generate dosing algorithms. The new dosing models were compared with already reported algorithms and also with the
clinical data for various performance measures. Odds ratios for association of genotypes with drug sensitive and resistant
groups were calculated.

Results: The pharmacogenetic dosing algorithm generated by multiple regression analysis explains 41.4% (p-value ,0.001)
of dosage variation. Validation of the new algorithm showed its predictive ability to be better than the already established
algorithms based on similar variables. Its validity in our population is reflected by increased sensitivity, specificity, accuracy
and decreased rates of over- and under- estimation in comparison to clinical data. The VKORC1-1639 G.A polymorphism
was found to be strongly associated with acenocoumarol sensitivity according to recessive model.

Conclusions: We have proposed an efficient north India specific pharmacogenetic acenocoumarol dosing algorithm which
might become a baseline for personalised medicine approach for treatment of patients in future.
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Introduction

The human genome project completion has opened a new era

of pharmacogenetics. Personalized medicine is emerging as a new

therapeutic approach in clinical practice in recent times [1,2].

Coumarinic oral-anticoagulants (COAs) like warfarin, acenocou-

marol and phenprocoumon are the most frequently prescribed

drugs for managing problems associated with blood coagulation in

patients with atrial fibrillation (AF), heart valve replacement

(HVR), deep vein thrombosis (DVT), pulmonary embolism and

with patients who had undergone orthopaedic surgery [3–6].

More than 2 million patients are given warfarin in USA alone for

preventing thromboembolism [7]. In north India, acenocou-

marol/acitrom is widely used in place of warfarin. COA therapy is

generally given lifelong and its dosing management is very difficult

as it has a narrow therapeutic range and there are significant inter-

individual as well as interethnic differences in stabilising dosages.

Lower doses cause decreased efficacy in anticoagulation and

higher doses increase the risk of bleeding events. Therefore, COA

usage requires serial monitoring of blood coagulation by

prothrombin time and international normalized ratio (INR)

measurements. More importantly, the initial phase of COA

therapy is very prone for clinical complications associated with

over or under dosing. Deranged INR values are often observed in

the first weeks of therapy and there is much higher risk of bleeding.

To avoid this risk it is advised to predict the initial loading and

stabilising doses of COAs [8–11]. At present only clinical

parameters are used to predict the drug dose for anticoagulant

therapy. For oral anticoagulants, the dose requirement and inter-

patient variability are well known to be influenced by age, body

weight, dietary vitamin K intake, concomitant disease and

interacting medications [4,12–14]. Genetics is a major role player

in variability of drug dosage requirement to achieve therapeutic

INR range [15–18]. More than 30 genes were found to be

involved in the activity and metabolism of COAs, of which

CYP2C9 (gene coding for cytochrome P450 drug metabolizing

enzyme) and VKORC1 (gene coding for drug target enzyme) are

the most important [19]. Previous studies have shown that ,30%

PLoS ONE | www.plosone.org 1 May 2012 | Volume 7 | Issue 5 | e37844



of the dose variance is explained by single nucleotide polymor-

phisms (SNPs) in VKORC1 and another ,12% by two non-

synonymous SNPs (*2, *3) in the CYP2C9 region [20,21]. A

genome wide association study has also revealed that VKORC1,

CYP2C9 and CYP4F2 are the principal genetic factors responsible

for variations in COA dose in white patients and the p values are

in concordance with the fact that SNPs in VKORC1 and CYP2C9

regions are most significant [22]. In terms of dose variance,

VKORC1 is found to be more influencing than CYP2C9 in some

recent studies [23,24]. However, the therapeutic drug dosage in an

individual is determined by complex sets of genetic and

environmental factors. Therefore, many attempts have been made

in recent years to develop pharmacogenetics guided dosing

algorithms based on genetic as well as clinical factors

[7,12,17,25]. The algorithm based dose prediction shows the

importance of pharmacogenetic testing in patients who are likely

to undergo COA therapy. Majority of these studies are based on

warfarin dosing and not much has been explored about the

pharmacogenetics of acenocoumarol and phenprocoumon. Perez-

Andreu et al. have shown the importance of pre-genotyping of

VKORC1, CYP4F2, CYP2C9*2 and *3 polymorphisms in patients

requiring extreme doses of acenocoumarol [26]. Recently van

Schie et al. have reported drug specific algorithms for acenocou-

marol and phenprocoumon which are significantly different from

warfarin dosing algorithms [27]. In Indian context, there is no

information available in terms of genetics responsible for

differences in acenocoumarol dosage requirements. Therefore,

we have tried to look up in this direction and attempted to develop

a pharmacogenetic algorithm to predict the stabilizing drug

dosage for a better treatment of Indian patients.

Results

Patient characteristics
Patient characteristics are listed and compared in Table 1

between the derivation and validation cohorts. The minor allele

frequencies of VKORC1-1639 G.A, CYP2C9*2,*3, CYP4F2 1347

G.A, GGCX 12970 C.G polymorphisms in derivation and

validation cohorts were comparable. Table 1 also shows the

distribution of genotypes and corresponding mean acenocoumarol

doses. The VKORC1 -1639 GG, GA and AA genotypes show daily

drug dose requirements of 3.4761.21 mg/kg,2.6060.92 and

1.2560.64 respectively in the derivation cohort. The respective

values for the validation cohort were 3.3961.20 mg/kg,

2.4960.88 mg/kg and 1.4760.22 mg/kg. There was only a

single patient present each in derivation and validation cohorts

with CYP2C9*2*3 genotype and they showed daily maintenance

dosage requirements of 1.28 mg/kg and 2.71 mg/kg respectively.

Comparatively higher drug dose requirements were observed for

CYP2C9*1*1, *1*2 or *1*3 genotypes in both the derivation and

validation cohorts. No significant difference was observed between

patients with different allelic combinations of CYP4F2 1347 G.A

and GGCX 12970 C.G polymorphisms. The trend of dosage

requirement was observed for both the cohorts. All other patient

characteristic were found to be comparable in both the cohorts.

Pharmacogenetic dosing algorithm by multiple
regression

Multiple regression analysis resulted in the following dosing

algorithm: dose (mg/day) = 3.082–0.013(smoking status, 1 for

smoker and 0 for non-smoker) –0.433 (gender, 1 for male and 0 for

female) –0.004(age in years) + indication(0.327 for DVR and

20.092 for AVR) +0.026(height in centimetres) +0.151(weight in

kilograms) –7.660(body surface area in cm2) –0.862(VKORC1

GA) –2.257(VKORC1 AA) –0.049(CYP2C9*2 CT) –

0.456(CYP2C9*3 AC) +0.449(CYP4F2 GA) +0.230(CYP4F2

AA) +0.245(GGCX CG) +1.055(GGCX GG) (Table 2). The

coefficient of determination (R2) value for this equation is 41.4%

(p-value ,0.001). It means that 41.4% of variation in acenocou-

marol dose is explained by this pharmacogenetic model.

Pharmacogenetic dosing algorithm by linear stepwise
regression

Linear stepwise regression produced a more simple equation

(including the clinical and genetic factors (Table 2). The R2 value

of this algorithm is 37% (p-value ,0.001), which is the highest

value produced in the stepwise regression modelling for the final

step. This second dosing algorithm was found to have similar

predictive trend as shown by the multiple regression equation.

However, in terms of mean weekly dose and mean absolute error,

the multiple regression equation was more accurate. The values of

mean weekly dose and mean absolute error by stepwise regression

equation were 22.0264.72 (95% CI 21.08–22.96) and 0.7167.86

(95% CI 20.76–2.19).

Performance of new dosing algorithm
When compared with clinical data, the new multiple regression

algorithm showed improvement in various performance measures

like sensitivity (76% vs 51%), specificity (64% vs 49%), rate of

overestimation (22% vs 27%), rate of underestimation (15% vs

23%), overall accuracy (63% vs 50%), accuracy in dug sensitive

cases (60% vs 51%) and accuracy in drug resistant cases (72% vs

49%). The Cronbach’s Alpha constant depicts the relatedness of

dosage data (as a group) predicted by the new algorithm or the

clinical algorithm with the actual therapeutic dosage data. This

value was higher in case of new algorithm in comparison with the

clinical data (0.56 vs 0.11) (Table 3).

Comparision of algorithms
The new multiple regression algorithm predicted better in

comparison to the therapeutic dose in the aspect of standard

deviation from mean weekly dose (Table 4). The mean weekly

dose calculated by this algorithm was 21.2664.82 mg/week (95%

CI 20.30–22.21). This value is closest to that obtained by van

Schie et al. acenocoumarol dosing algorithm, 23.5664.67 mg/

week (95% CI 22.63–24.49) [27]. The values for the algorithms by

Oner Ozgon et al. [28] and Wen et al. [29] were

27.1661.19 mg/week (95% CI 26.92–27.40) and

27.8764.94 mg/week (95% CI 26.89–28.85). The mean value

for therapeutic data of dose was found to be 21.3168.35 mg/week

(95% CI 19.65–22.97) (Table 4). The mean absolute error (MAE)

for the new algorithm was 0.0667.62 mg/week (95% CI 21.57–

1.45). The MAE values were 2.2567.86 (95% CI 0.69–3.81),

5.8467.96 (95% CI 4.26–7.42) and 6.5667.23 (95% CI 5.13–

7.99) for van Schie et al. (acenocoumarol algorithm) [27], Oner

Ozgon et al. [28] and Wen et al. [29] algorithms (Table 4).

Association with acenocoumarol dose
In the study subjects, VKORC1 -1639 G.A polymorphism has

the strongest association with acenocoumarol sensitivity according

to recessive model (OR 4.42, 95% CI 2.44–7.99, p value,0.05).

No other polymorphism was found to be significantly associated

with acenocoumarol sensitive, resistant and intermediate dosing

groups (Table 5).

New Dosing Algorithm for Acenocoumarol Therapy

PLoS ONE | www.plosone.org 2 May 2012 | Volume 7 | Issue 5 | e37844



Table 1. Patient characteristics in derivation and validation cohorts.

Variable Derivation cohort (n = 125) Validation cohort (n = 100) P value

Heart valve replacement surgery (AVR/MVR/DVR) 26/82/17 18/64/18 0.63

Gender (male/female) 88/37 63/37 0.26

Age (mean 6 SD) 37.45612.27 38.05612.85 0.72

Body weight (kg) (mean 6 SD) 56.08612.16 55.59610.49 0.75

Height (cm) 162.5969.67 162.1968.98 0.75

VKORC1 21639 (GG/GA/AA) 85/34/6 65/32/3 0.62

CYP4F2 1347 (GG/GA/AA) 42/59/24 71/112/42 0.67

CYP2C9 (*1*1/*1*2/*1*3/*2*3) 102/11/11/1 62/10/27/1 0.00

GGCX 12970 (CC/CG/GG) 115/8/2 97/3/0 0.22

INR (mean 6 SD) 2.8160.42 2.8960.44 0.16

Acenocoumarol dose (mg/d) (mean 6 SD)

Overall 3.1361.25 3.0461.19 0.61

VKORC1 -1639 GG 3.4761.21 3.3961.20 0.69

VKORC1 -1639 GA 2.6060.92 2.4960.88 0.61

VKORC1 -1639 AA 1.2560.64 1.4760.22 0.58

CYP4F2 1347 GG 2.8261.07 2.8160.79 0.96

CYP4F2 1347 GA 3.3661.29 3.0161.33 0.16

CYP4F2 1347 AA 3.0861.36 3.5161.23 0.30

CYP2C9*1*1 3.1661.24 3.2861.20 0.53

CYP2C9*1*2 3.0461.39 2.9461.12 0.84

CYP2C9*1*3 3.0861.14 2.5161.09 0.20

CYP2C9*2*3 1.2860.00 2.7160.00 0.38

GGCX 12970 CC 3.1061.27 3.0561.21 0.76

GGCX 12970 CG 3.2560.90 2.9060.70 0.57

GGCX 12970 GG 4.1461.22 - -

AVR/MVR/DVR: Aortic/Mitral/Double Valve Replacement.
doi:10.1371/journal.pone.0037844.t001

Table 2. Algorithm development by multiple and linear stepwise regression analyses.

Method Model, x variables Regression equation P value
R2 for
model, %

Multiple
regression

VKORC1, CYP4F2, CYP2C9*2, CYP2C9*3,
GGCX Genotypes, weight, height, sex,
age, body surface area, smoking status
and indication for surgery

dose (mg/day) = 3.082–0.013 (smoking status, 1 for smoker and 0 for
non-smoker) –0.433 (sex, 1 for male and 0 for female) –0.004(age) +
indication(0.327 for DVR and –0.092 for AVR) +0.026(height) +0.151
(weight) –7.660(body surface area) –0.862(VKORC1 GA) –2.257
(VKORC1 AA) –0.049(CYP2C9*2 CT) –0.456(CYP2C9*3 AC) +0.449
(CYP4F2 GA) +0.230 (CYP4F2 AA) +0.245(GGCX CG) +1.055(GGCX GG)

,0.001 41.4

Linear
stepwise
regression

Weight, Sex adose (mg/day) = 1.418+0.038(weight)-0.564 (1 for male, 0 for female) ,0.001 12.5

Linear
stepwise
regression

VKORC1 Genotype, weight dose (mg/day) = 0.755+0.896(VKORC1 GG)-
1.396(VKORC1 AA)+0.033(weight)

,0.001 31.0

Linear
stepwise
regression

VKORC1 Genotype, weight, sex dose (mg/day) = 0.192+0.879(VKORC1 GG)-1.443(VKORC1 AA)-
+0.04(weight)+0.569(1 for male, 0 for female)

,0.001 34.9

Linear
stepwise
regression

VKORC1, CYP4F2 Genotypes
weight, sex

bdose (mg/day) = 2.329(VKORC1 GG) +1.45(VKORC1 GA) +0.362
(CYP4F2 GA) +0.038(weight) –0.535(1 for male, 0 for female) –0.799

,0.001 37.0

aAlgorithm based only on clinical variables.
bAlgorithm for best fit model generated by linear stepwise regression using both clinical and genetic variables.
doi:10.1371/journal.pone.0037844.t002
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Discussion

It is very difficult for clinicians to predict the accurate COA

dose and they depend totally on the traditional physical

parameters like sex, weight, height, and age to decide the dose

in advancing the therapy. Many evidences of role of genetic

markers, influencing warfarin dosage, were shown by different

investigators in last few years [13,14,30]. Genotyping of patients

having VKORC1, CYP2C9 and CYP4F2 variant alleles has been

shown to decrease the risk of over-anticoagulation in comparison

to a fixed initial dose approach [31,32]. Distribution of VKORC1-

1639 A, CYP2C9*2 and CYP2C9*3 allele frequencies were found to

be different for Indians when compared with selected HapMap

populations [33]. The ground for population specific dosing

regimens, for patients on anticoagulation, is established by such

interethnic differences in allele frequencies. The VKORC1 21639

G.A polymorphism is present in the promoter region of the

coding sequence so it decreases the enzyme expression if present in

homozygous recessive state. The CYP2C9*2 and *3 polymor-

phisms are located in exonic region and they decrease the drug

clearance as evidenced by Rettie et al. [34] in 1994. We have

found only two patients with CYP2C9*2*3 genotype and they

required comparatively lower drug doses than those with

CYP2C9*1*1, *1*2 or *1*3 genotypes. Since the CYP2C9 enzyme

is involved in metabolism of COAs, decrease in their activity will

result in lower maintenance drug doses to achieve therapeutic

INR.

To prevent the phenotypic extremities of COA treatment, many

attempts have been made to develop pharmacogenetics guided

dosing regimens for warfarin [12,17,21,28,29,35]. The Clinical

Pharmacogenetics Implimentation Consortium (CPIC) has pub-

lished guidelines for the use of pharmacogenomic tests in warfarin

dosing (J A Johnson et al.). Many studies have proposed warfarin

dosing algorithms based on both genetic and non-genetic factors

Table 3. Comparision of performance of new algorithms with clinical data.

Performance measures Multiple regression algorithm Stepwise regression algorithm Clinical data

Sensitivity 76% 71% 51%

Specificity 64% 58% 49%

Rate of overestimation 22% 23% 27%

Rate of underestimation 15% 13% 23%

Accuracy in all cases 63% 64% 50%

Accuracy in drug sensitive cases 60% 59% 51%

Accuracy in drug resistant cases 72% 71% 49%

Cronbach’s Alpha 0.56 0.49 0.11

doi:10.1371/journal.pone.0037844.t003

Table 4. Mean weekly doses and mean absolute errors according to different algorithms.

Algorithm

Mean Weekly Dose
(Standard Deviation, 95% CI
Confidence Interval)

Mean Absolute Error
(Standard Deviation, 95% CI Confidence Interval)

New Algorithma 21.26 (4.82, 20.30–22.21) 0.06 (7.62,21.57–1.45)

Schie et al. [27]b 23.56 (4.67, 22.63–24.49) 2.25 (7.86, 0.69–3.81)

Schie et al. [27]c 17.84 (3.11, 17.22–18.45) 23.48 (7.36,24.942 22.02)

Anderson et al. [7] 40.48 (9.55, 38.58–42.37) 19.16 (9.45, 17.28–21.04)

Gage et al.[35] 37.16 (6.98, 35.78–38.54) 15.84 (9.10, 14.03–17.65)

Sconce et al. [17] 37.01 (9.56, 35.11–38.90) 15.70 (9.89, 13.74–17.66)

Wadelius et al. [21] 53.70 (11.64, 51.39–56.01) 32.39 (11.37, 30.13–34.65)

Oner Ozgon et al. [28] 27.16 (1.19, 26.92–27.40) 5.84 (7.96, 4.26–7.42)

Wen et al. [29] 27.87 (4.94, 26.89–28.85) 6.56 (7.23, 5.13–7.99)

Carlquist et al. [43] 27.40 (19.91, -11.35– 23.45) 228.72 (21.08,232.9– 224.54)

Zhu et al. [44] 37.56 (8.87, 35.8–39.32) 16.25 (8.63, 14.54–17.96)

IWPCc [36] 37.40 (8.46, 35.7–39.08) 16.09 (8.56, 14.39–17.79)

Miao et al. [45] 37.47 (12.08, 35.07–39.87) 16.16 (11.11, 13.96–18.36)

Ohno et al. [46] 43.64 (11.43, 41.37–45.90) 22.33 (10.48, 20.25–24.41)

Therapeutic Dosed 21.31 (8.35, 19.65–22.97)

aAlgorithm based on multiple regression.
bAcenocoumarol dosing algorithm, cPhenprocoumon dosing algorithm.
cIWPC: International Warfarin Pharmacogenetic Consortium.
dOur cohort.
doi:10.1371/journal.pone.0037844.t004
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[21,35,36]. The pharmacogenomic algorithms in these studies

have different model fitness as evidenced from the R2 values

ranging from 34 to 63. There are only a few reports about

pharmacogenetic dosing algorithms of acenocoumarol and phen-

procoumon. In a recent large European cohort study, acenocou-

marol and phenprocoumon algorithms were found to explain

59.4% and 49.0% variations in dose requirements respectively

[27]. In the present study, we have generated a new dosing

algorithm which is useful in predicting acenocoumarol doses in the

Indian population. We have been able to show that 41.4% of the

variability in daily maintenance acenocoumarol doses was

explained by our pharmacogenetic dosing model based on age,

gender, height, weight, BSA, smoking status, indication for cardiac

valve replacement surgery, VKORC1 -1639 G.A, CYP4F2 1347

G.A, CYP2C9*2, *3 and GGCX 12970 C.G polymorphisms.

The dosage data generated by our pharmacogenetic algorithm

displayed similar skewness as by the therapeutic maintenance

dosage data. van Schie et al. [27] acenocoumarol dosing algorithm

was most identical to our algorithm in terms of mean weekly dose

values. The mean weekly dosage and associated standard

deviation for the new algorithm and the van Schie et al. [27]

acenocoumarol dosing algorithm is close to that obtained in case

of therapeutic data (Table 4). The new algorithm was found to be

least erroneous as the MAE was minimum in its case. van Schie

et al. [27] acenocoumarol dosing algorithm was very close to our

algorithm in this aspect also. Out of other 13 algorithms, 12 were

derived from warfarin treated patients and 1 was derived from

phenprocoumon treated patients. These algorithms show moder-

ate to higher differences in mean weekly dose and MAE values

from the therapeutic dosage data. This observation suggested drug

specificity of dosing algorithms and advocated our approach. A

single study from south India had used genetic and clinical

parameters to develop a pharmacogenetics based dosing algorithm

for warfarin and it was found to be more useful in predicting the

stabilising drug doses [37]. We have not used their algorithm to

predict drug doses for our patient cohort as it uses complex

information of vitamin K intake and additional polymorphisms in

VKORC1 gene. Our main aim was to target most relevant markers

to predict drug dose and keep the algorithm simple. Due to the

difference in the type of drug (acenocoumarol in place of warfarin),

genetic differences [33,38] and dietary pattern of north Indians

and south Indians, there is a need to derive a dosing regimen for

acenocoumarol which is widely used in India.

The new algorithm was compared with the clinical data for

different performance measures. It was significantly sensitive (76%

vs 51%) than clinical data. The specificity was also increased if new

algorithm was used to predict the dose (64% vs 49%). There was

decrease in rate of over- and underestimation when new algorithm

was compared with clinical data. Moderate increase in accuracy

was observed for new algorithm in acenocoumarol sensitive cases

and it was significant in acenocoumarol resistant cases (72% vs

49%). The overall accuracy was also higher for new algorithm

than clinical data (63% vs 50%). The higher value of the

Cronbach’s Alpha constant in case of our algorithm as compared

with the clinical data (0.56 vs 0.11) proves again the closer

proximity of our algorithm with the therapeutic dosing.

We have found a strong association of acenocoumarol sensitivity

with the heterozygocity and homozygocity for the VKORC1-1639

G.A change. The presence of GA or AA genotype results in very

high risk of overdosing. In this condition the drug target enzyme is

expressed in lower amounts so lower drug doses can achieve

therapeutic INR range in early stage of treatment. Pavani et al.

[37] have also reported the high risk of warfarin sensitivity for

VKORC1-1639 G.A polymorphism. We have also looked for

association of other genotypes in drug sensitive, resistant and

intermediate dose groups but could not get any significant one. So

we can say that VKORC121639 G.A polymorphism is the key

player in drug sensitivity. We have observed presence of CYP4F2

1347 G.A polymorphism in the linear stepwise dosing algorithm

but it was not found to be associated with any of the dose groups.

This may be due to the fact that the linear stepwise regression

generates a best fit model for a scalar outcome. This analysis uses

both categorical as well as scalar variables as inputs. In contrast,

the binary logistic regression used for associating polymorphisms

with drug dose groups uses only categorical variables as inputs and

it calculates the risk as odds ratios. In other words, we can say that

VKORC1, CYP4F2, weight and gender explain 37% of variation

in acenocoumarol dosage requirements. The R2 values of 41.4%

and 37% in respective cases of linear stepwise regression and

multiple regression algorithms suggest that VKORC1 and

CYP4F2 are major contributors in acenocoumarol dosage

variability. The contributions of VKORC1and CYP4F2 geno-

types in overall predictive power of dosing algorithm are 21% and

3.7% respectively. There is only ,4% increase in R2 value by

including the other genetic factors like CYP2C9 and GGCX and

other non-genetic factors in multiple regression modelling.

Cardiac valve replacement surgery phenotypes (double/mitral/

aortic valve replacement) have ,1.5% contribution in explaining

the variability of dose requirements. This is reflected by the fact

that excluding these variables from multiple regression modelling

Table 5. Association between acenocoumarol sensitive/resistant/intermediate dose groups and polymorphisms.

Polymorphism

Acenocoumarol
sensitive vs other groups,
Odds ratio (95% Confidence Interval)

Acenocoumarol
resistant vs other groups,
Odds ratio (95% Confidence Interval)

Acenocoumarol intermediate
dose vs other groups,
Odds ratio (95%
Confidence Interval)

VKORC1 21639 GA+AA 4.42 (2.44–7.99#) 0.17 (0.08–0.37) 0.91 (0.50–1.66)

CYP4F2 1347 GA 0.87 (0.47–1.63) 1.58 (0.82–3.03) 0.74 (0.40–1.38)

CYP4F2 1347 AA 1.25 (0.57–2.74) 1.52 (0.67–3.46) 0.51 (0.22–1.20)

CYP2C9*1*2 1.52 (0.63–3.64) 0.68 (0.26–1.80) 0.92 (0.36–2.35)

CYP2C9*1*3 1.93 (0.97–3.87) 0.62 (0.28–1.34) 0.77 (0.36–1.65)

GGCX 12970 CG 0.69 (0.18–2.66) 0.75 (0.19–2.89) 1.84 (0.54–6.26)

GGCX 12970 GG 0.00 (0.00–0.00) 1.98 (0.12–32.21) 2.21 (0.14–35.90)

#P-value is statistically significant.
doi:10.1371/journal.pone.0037844.t005
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and including CYP2C9*2, *3 and GGCX 12970 C.G polymor-

phisms gives an algorithm with R2 value of 40%. This also reflects

that CYP2C9*2, *3 and GGCX 12970 C.G polymorphisms

explain about 3% of variability in the acenocoumarol dosage

requirements.

The low frequencies of CYP2C9*2, *3 and GGCX 12970 C.G

polymorphisms in north Indian population explain the lower

contribution of these markers in variability in dosage require-

ments. Also, the CYP2C9*2 and *3 alleles are less frequent in the

derivation cohort so their contribution is small in the algorithm.

This is a limitation of our study as there may be some bias in

patient selection for the two cohorts. Moreover, Loebstein et al.

[39] reported that an Arg36Tyr polymorphism VKORC1 was

responsible for higher dose requirement in warfarin resistant

patients and was significantly associated with higher drug dose

requirement. As we have not analysed this polymorphism in our

patient group, it is possible that this or some other polymorphisms

might also contribute to some extent for acenocoumarol resistance.

Conclusion
The multiple regression algorithm can be used for a more

accurate prediction of acenocoumarol doses. It explains 41.4%

variability in acenocoumarol dosage requirements. The linear

stepwise algorithm uses genotyping of only two polymorphisms

and it can be used for better cost to benefit ratio as its results are

comparable with the more complex multiple regression algo-

rithms. Polymorphisms in VKORC1 and CYP4F2 came out to be

the principal genetic determinants explaining 37% acenocoumarol

dosage variability. The less frequent CYP2C9*2, *3 and GGCX

12970 C.G polymorphisms in Indian population do determine

the dosage variability but to an extent of ,3% only. In

comparison to other dosing models, which are mostly based on

warfarin, our drug specific algorithms show more accurate

acenocoumarol dosage prediction.

Future perspective
Development of new oral anticoagulants like Dabigatran (direct

thrombin inhibitor) and Rivaroxaban (direct factor Xa inhibitor)

have sparked a new hope of overcoming the risk factors associated

with vitamin K antagonists. These new drugs may replace the

traditional oral anticoagulants in future.

However, till these new drugs are widely used, there is a need to

replicate this work in a larger sample size as well as in various

regions and ethnic groups of India before introduction in routine

clinical practice. Improved therapy outcomes based on such

studies will allow successful application of individualised dosing in

clinical setting.

Methods

Ethics Statement
The study protocol was approved by the institutional ethical

committee of Sanjay Gandhi Post Graduate Institute of Medical

Sciences (SGPGIMS). The authors followed the norms of World’s

Association Declaration of Helsinki. All the participants gave

written informed consent to participate in the study.

Patients
The present study was carried out on the DNA samples of

patients who had undergone surgery for aortic/mitral/double

valve replacement and were being followed-up for regular PT-

INR (Prothrombin Time-International Normalized Ratio) testing.

The PT-INR testing was done every 2 weeks for each patient. A

total of 7586 patients on COA therapy were screened and of

which 225 patients of northern Indian origin were recruited from

the outpatient department of Department of Cardiovascular and

Thoracic Surgery, Sanjay Gandhi Post Graduate Institute of

Medical Sciences and Department of Thoracic & Cardio-Vascular

Surgery, Chhatrapati Shahuji Maharaj Medical University,

Lucknow, India. The patient sample collection was done during

a period of about one and half year from March 2010 to August

2011. We have divided the patients into two cohorts, namely

derivation cohort of 125 patients and validation cohort of 100

patients. The selection of patients for derivation and validation

cohorts was done on a random basis. All these subjects were taking

maintenance dosage of acenocoumarol to achieve the INR in a

therapeutic range (between 2.0 to 3.5) for at least 3 consecutive

months. Patients aging less than 18 years or those suffering from

diabetes, liver disease, chronic diarrheal conditions or malabsorp-

tion were excluded from the study. Patients were given dietary

advice and food charts were prepared in order to avoid any

interference with acenocoumarol pharmacokinetics and pharma-

codynamics. Patients with interfering drug administration and

showing non-compliance and were excluded from the study.

Clinical data like age, body weight, height, gender, smoking habits,

indication for acenocoumarol therapy, average maintenance dose

and ethnicity were recorded. The average maintenance dose was

calculated as mean of the dose values during the 3 month period

when last two consecutive stable INR values were documented.

The north Indian ethnicity of patients was decided according to

their place of residence in the last three generations, food habits

and mother tongue (Hindi or related languages).

Genotyping
Blood samples were collected once in vacutainer vials coated

with ethylenediaminetetraacetic acid along with the samples taken

up for regular PT-INR tests. Standard salting-out method was

used to isolate genomic DNA from blood samples. DNA was

checked both for quantity as well as quality by gel electrophoresis

and spectrophotometry using the NanoDrop Analyzer (ND-1000)

spectrophotometer (NanoDrop Technologies, Wilmington, DE,

USA). The ratio of absorbance of DNA at 260 and 280unm were

between 1.7 and 1.9. The checked DNA was stored at 240uC.

The genotyping for VKORC1 -1639 G.A, CYP4F2 1347 G.A,

CYP2C9*2, *3 and GGCX 12970 C.G polymorphisms was done

by polymerase chain reaction and restriction fragment length

polymorphism (PCR–RFLP) [17,40–42]. Negative (genomic DNA

absent) and positive (known heterozygote) controls were used in

each PCR reaction. Genotyping was repeated in ,10% samples

by different lab members to check for genotyping errors and 100%

concordance was obtained. For the GGCX 12970 C.G polymor-

phism, Taqman probe-based genotyping was also performed by

using the ABI prism 7900 using SNP discrimination assays

designed by Applied Biosystems (ABI) (Applied Biosystems, Foster

City, CA, USA).

Statistical analyses
SPSS version 17.0 software (SPSS Japan, Tokyo, Japan) was

used to perform all the statistical analyses. Descriptive statistics was

used to calculate the patient characteristics. The minor allele

frequencies were calculated by counting the total number of alleles

for a particular SNP in all the patients and then dividing the allele

with low prevalence by the allele with higher prevalence and

expressed as percentage. The derivation cohort was used to

generate the pharmacogenetic model which was used to predict

the drug dosage in the validation cohort. The parameters used in

multiple regression for deriving the pharmacogenetic model were

age, sex, height, weight, body surface area (BSA), smoking status,
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indication for cardiac valve replacement surgery, VKORC1 -1639

G.A, CYP4F2 1347 G.A, CYP2C9*2, *3 and GGCX 12970 C.G

polymorphisms. A simpler pharmacogenetic model was also

developed by linear stepwise regression using the above said

variables. The genotype data was entered as 0 for absence and 1

for presence. We have not used complex dietary information of

vitamin K uptake because it was too difficult to obtain that in

clinical setting. Further, the patients were given dietary advice in

form of charts and any noncompliance in this regard was treated

as exclusion criteria. Apart from these pharmacogenetic algo-

rithms comprising of both genetic as well as clinical factors, we

have also generated an equation based only on clinical factors.

This was done by putting all except the genetic factors in linear

stepwise regression. We have extracted eleven algorithms through

literature search which use similar parameters for dosage

prediction. These algorithms were used to predict the doses based

on the patient profile in the validation cohort of our study. The

dosage predicted by our pharmacogenetic model was compared

with the therapeutic dosage and with those predicted by the twelve

algorithms. Of these 12 algorithms, 11 have been derived from

patient cohorts using warfarin for anticoagulation therapy. One

algorithm used patients on acenocoumarol treatment for deriving

pharmacogenetic dosing algorithm. For these comparisons, we

have computed the mean values of the dosage along with standard

deviation (SD) and 95% confidence interval (CI) values for each

algorithm. Comparison of the mean absolute error (MAE) of each

algorithm was used to evaluate the performance of each algorithm.

The absolute error values were calculated by deducting the actual

dose from the predicted dose and their means were defined as

MAE. The MAE values were calculated along with the SD and

95% CI values.

We have used SPSS software to make 3 quartiles of therapeutic

drug doses of all the patients. Patients on a maintenance dose of

#17.0 and $24.5 mg/week were considered acenocoumarol

sensitive and resistant respectively while the patients in the range

of 17.0-24.5 mg/week were assumed to be in intermediate range.

As a measure of association, odds ratio values for different

genotypes were calculated in both drug sensitive and drug resistant

groups. The performance of our pharmacogenetic algorithms was

compared with that of clinical algorithm in terms of sensitivity,

specificity, rate of over and underestimation, accuracy and

relatedness as a group. All these parameters were obtained by

calculations by Fisher’s exact test.
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