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Congenital heart defects (CHD) are structural imperfections of the heart or large blood vessels that are detected around birth and their
symptoms vary wildly, with mild case patients having no obvious symptoms and serious cases being potentially life-threatening. Using
cardiovascular magnetic resonance imaging (CMRI) technology to create a patient-specific 3D heart model is an important
prerequisite for surgical planning in children with CHD. Manually segmenting 3D images using existing tools is time-consuming
and laborious, which greatly hinders the routine clinical application of 3D heart models. Therefore, automatic myocardial
segmentation algorithms and related computer-aided diagnosis systems have emerged. Currently, the conventional methods for
automatic myocardium segmentation are based on deep learning, rather than on the traditional machine learning method. Better
results have been achieved, however, difficulties still exist such as CMRI often has, inconsistent signal strength, low contrast, and
indistinguishable thin-walled structures near the atrium, valves, and large blood vessels, leading to challenges in automatic
myocardium segmentation. Additionally, the labeling of 3D CMR images is time-consuming and laborious, causing problems in
obtaining enough accurately labeled data. To solve the above problems, we proposed to apply the idea of adversarial learning to the
problem of myocardial segmentation. Through a discriminant model, some additional supervision information is provided as a
guide to further improve the performance of the segmentation model. Experiment results on real-world datasets show that our
proposed adversarial learning-based method had improved performance compared with the baseline segmentation model and

achieved better results on the automatic myocardium segmentation problem.

1. Introduction

Congenital heart defect (CHD), also known as congenital
heart anomaly or congenital heart disease, is a structural
defect of the heart or large blood vessels that occurs at birth.
Symptoms vary widely, depending on the specific type of
defects [1], ranging from mild to life-threatening. Symptoms
typically include shortness of breath, bluish to purple skin
color, abnormal weight gain, and fatigue. CHD is usually
associated with complications of heart failure without caus-
ing chest pain, while most CHD are unrelated to other dis-
eases. CHD is the most common birth defect [2]. In 2015,
about 48.9 million people globally suffered from CHD ([3].
In different countries and regions, CHD affects 4 to 75 cases
per 1,000 live births, and moderate or severe problems can

occur in 6 to 19 people per 1,000 [1, 4]. CHD is the main
cause of death associated with birth defects. Among many
types of CHD, the most common involves the inner walls
of the heart, valves, or large blood vessels that pump blood
into and out of the heart. Some minor defects do not require
treatment, but moderate and severe cases can be effectively
treated with catheter-based or cardiac surgery. However,
many operations are often required, potentially even includ-
ing heart transplants. Nevertheless, the death rate from CHD
can be greatly reduced, given appropriate treatment is
provided.

Cardiovascular magnetic resonance imaging (CMRI) is a
noninvasive medical imaging technique used to evaluate the
function and structure of the cardiovascular system. By using
electrocardiographic (ECG) gated control and high time


https://orcid.org/0000-0003-0886-8819
https://orcid.org/0000-0003-3768-5720
https://orcid.org/0000-0001-7580-4693
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6618918

resolution, regular MRI is adapted to cardiovascular imaging,
and its importance is paramount in the evidence-based diag-
nosis and treatment of cardiovascular diseases [5]. Accurate
diagnosis is essential for the development of appropriate
treatment regimens for CHD. CMRI can safely provide
comprehensive information about CHD, without the use of
X-rays or intrusions. This technique is often used in conjunc-
tion with other diagnostic techniques, such as echocardiogra-
phy and diagnostic cardiac catheterization. The use of CMRI
for blood pools and myocardium segmentation is a prerequi-
site for surgical planning and patient-specific heart models
for children with complex CHD. The use of existing tools
for manual segmentation of 3D images is time-consuming
and laborious, which greatly impedes the routine clinical
use of 3D heart models. Therefore, automatic myocardial
segmentation algorithms and related computer-aided diag-
nosis systems were developed.

Traditional automatic myocardial segmentation algo-
rithms are generally based on semiautomatic segmentation
algorithms. Using prior knowledge, steps such as manual
selection of initial contour and initial seed points are auto-
mated to realize the automation of the entire cardiac segmen-
tation task. Common myocardial segmentation algorithms
include horizontal set segmentation algorithm [6], regional
growth segmentation algorithm [7], and threshold segmenta-
tion algorithm [8]. However, the segmentation results using
this kind of automatic cardiac segmentation algorithms are
not ideal, and algorithm robustness is not adequate. With
the continuous improvement of hardware equipment and
the development of technology, deep learning has been
increasingly applied in image processing, resulting in the
deep learning-based image segmentation algorithm, surpass-
ing the traditional image segmentation algorithm in many
specific tasks [9].

In recent years, with the increase of available data volume
and the improvement of computing power, deep learning has
made breakthrough progress in various applications in the
field of computer vision [10, 11]. Based on these successful
experiences, deep learning is now also widely applied in med-
ical image processing [12], including myocardial segmenta-
tion. However, common problems in the field of medical
image analysis still exist, namely, the low volume of labeled
data and networks prone to overfitting. In the field of cardiac
segmentation in particular, due to the complex structure of
the heart, cardiac labeling is often time-consuming and labo-
rious, which results in the lack of labeled cardiac data. Simul-
taneously, due to the complex shape of myocardium,
myocardium and other surrounding organs and tissues are
poorly differentiated in CMR images, and due to the influ-
ence of factors such as the tortuous segmentation boundary,
room for improvement remains in the final myocardial
image segmentation model.

This paper applies the idea of antagonistic learning to the
segmentation of myocardium, as an attempt to address these
issues. Through a discriminant model, additional supervisory
information is given to the segmentation model as a guide to
further improve its performance. The myocardial segmenta-
tion algorithm based on antagonistic learning is mainly com-
posed of two modules: (1) a segmentation network and (2)
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discrimination networks. Similarly, to the generation of the
maximum and minimum game against the network, the seg-
mentation network accepted the input image and generated
the segmentation probability graph. The discriminant net-
work received images and corresponding segmentation
results simultaneously and determined whether the input
segmentation results came from the segmentation network
or from manual annotation. We evaluated the method on
the HVSMR2016 dataset and the experimental results
showed that our method can achieve good results. An exam-
ple of the raw image and its segmentation regions is showed
in Figure 1.

2. Related Work

2.1. Myocardial Segmentation. Algorithms based on proba-
bility models are commonly used to solve the problem of
myocardial segmentation among the traditional methods,
especially the Gaussian mixture model (GMM) (13, 14].
According to the maximum likelihood (ML) estimation crite-
rion, the expectation maximization (EM) algorithm is usually
employed to calculate the parameters in the GMM [15]. On
this basis, the Naive Bayes classifier is used to classify each
pixel or voxel. Ngo et al. [16] proposed a fully automatic
myocardial segmentation method based on depth learning
and the level-set algorithm; Mukhopadhyay [17] proposed
a fully automatic myocardial segmentation algorithm based
on a variational random forest; Tziritas [18] proposed a fully
automatic myocardial segmentation algorithm based on the
3D Markov random field; Shahzad et al. [19] proposed a fully
automatic myocardial segmentation algorithm that combines
the multiple atlas and level-set algorithms. To address the
issue of performance and robustness, myocardial segmenta-
tion algorithms based on deep learning have been the subject
of research. Yu et al. proposed a fully automatic myocardial
segmentation algorithm based on 3D fractal convolutional
neural networks and dense connection convolutional neural
networks [20, 21]. Wolterink et al. [22] proposed a fully auto-
matic myocardial segmentation algorithm based on dilated
convolutional neural networks. Avendi et al. [23] applied
two deep structures, using convolutional neural networks to
automatically detect the left ventricle and a stack automatic
encoder to infer the shape of the left myocardium. The
inferred shape was then combined into the variability model,
to improve the segmentation accuracy. Tran [24] applied
fully convolutional network to myocardial MRI segmenta-
tion for the first time, extracting ROI regions, and then using
the network structure proposed by ROI region pairs to train
left and right ventricular segmentation using the stochastic
gradient descent (SGD) optimization algorithm. Tao et al.
[25] propose a novel shape-transfer GAN for LGE images,
which can (1) learn to generate realistic LGE images from
bSSFP with the anatomical shape preserved and (2) learn to
segment the myocardium of LGE images from these gener-
ated images. It is worth to note that no segmentation label
of the LGE images is used during this procedure.

2.2. Generative Adversarial Networks (GAN). Generative
adversarial networks (GAN), proposed by Goodfellow et al.



BioMed Research International

(a) Raw MRI image

(b) Segmentation regions

FIGURE 1: An example of the raw image and its segmentation regions.

[26], learn by pitting two neural networks in a zero-sum
game with each other. In recent years, GAN have become
the most popular learning method of complex probability
distribution. They consist of a generator and a discriminator.
The goal of the generator is generating samples that are as
close to the real data distribution as possible in an attempt
to deceive the discriminator, and the goal of the discrimina-
tor is to correctly distinguish whether the data belongs to
the real distribution or to the generator. The generator and
discriminator of conditional generative adversarial networks
(CGAN) [27] also use additional condition information, to
make the generated data satisfy certain constraints. On the
basis of CGAN, Luc et al. [28] used GAN for semantic image
segmentation. Xue et al. [29] proposed a novel end-to-end
adversarial network architecture called SegAN for MRI
image semantic segmentation tasks. Inspired by the original
GAN [26], the training process of SegAN is similar to the
minimax game, training the segmented network and dis-
criminant network alternately, minimizing and maximizing
the objective function, respectively, and combining multi-
scale loss in SegAN.

3. Dataset

The dataset used in this experiment was the HVSMR 2016
dataset. This dataset included 20 MR images with various
congenital heart defects, where in 10 cases, the image data
and their corresponding manual segmentation labeling have
been made public (training set). The remaining 10 cases con-
stitute the test set, which did not include manual segmenta-
tion tagging, and the segmentation results needed to be
submitted to an online test platform that returned the test
results.

The images of this dataset were acquired during clinical
practice at Boston Children’s Hospital, Boston, MA, USA.
Some subjects included in the dataset have undergone inter-
ventions. Imaging was done in an axial view on a 1.5 T scan-
ner (Phillips Achieva), without contrast agent, using a
steady-state free precession (SSFP) pulse sequence. The sub-
jects breathed freely during the scan, and ECG and respira-
tory gating were used to eliminate the effects of cardiac and
respiratory movements for the duration of the imaging. Man-
ual segmentation of the ventricular myocardium was per-
formed by a trained rater and validated by two clinical
experts.

There were three classes of labeling: blood pool, myocar-
dial layer, and background. The blood pool class included the
left and right atria, left and right ventricles, aorta, pulmonary
veins, pulmonary arteries, and the superior and inferior vena
cava. The myocardium class included the thick muscle sur-
rounding the two ventricles and the septum between them.
Image dimensions and image spacing vary across subjects,
with an average of 390 x 390 x 165 pixels and 0.9 x 0.9 x
0.85 mm, respectively, in the full-volume training dataset.

4. Method

4.1. Data Preprocessing. The data processing part of the
experiment consisted of two steps: data standardization and
random block taking.

4.1.1. Data Standardization. The preprocessing process of
the experiment was standardized using the Z-score:

X—X
x* = ) 1
. (1)

where x is the input image, X is the average of the gray value
of each voxel in the input image, that is, x = 1/n) . x;, and s
is the sample standard deviation of the input image, that is,

s= \/ 1/n—1Y7 (x;—x)*. After standardization, the mean

value of x* was 0 and the standard deviation was 1. Data
standardization is the most commonly used standardization
method and was performed to eliminate the systematic devi-
ation between data as much as possible and be robust to
abnormal data values.

4.1.2. Sliding Window Block Taking. Limited by the very
small dataset size, data augmentation was a necessary data
preprocessing process. In addition, the original 3D image
was large in size, therefore, too expensive to input directly
into the network for training. Consequently, the method of
sliding window block taking was adopted in this experiment.
An image block with a size of 64 x 64 x 64 from a standard-
ized input image was extracted along three spatial dimen-
sions with independent uniform distribution, and the
corresponding tensor was cut out from the segmentation
label according to the corresponding spatial position as the
segmentation label of the extracted image block. In order to
further expand the size of the training set and to consider



the possible direction invariance caused by the acquisition
process of MRI, random 90°, 180° and 270° rotations in the
axial plane and symmetric flip about the axial plane were also
introduced.

4.2. Overall Framework. The cardiac muscle segmentation
algorithm based on adversarial learning consisted mainly of
two modules, namely, the segmentation network and the dis-
crimination network. The segmentation network received the
input image and generated the segmentation probability
map. The discrimination network then received the image
and the corresponding segmentation results simultaneously
and determined whether the input segmentation result came
from the segmentation network or from manual annotation.
The outline of the algorithm is shown in Figure 2. The dis-
crimination network can be regarded as a special loss func-
tion, different from the commonly used cross-entropy loss-
function and dice loss function, which directly depends on
the value of each pixel and defines a complete loss function.
The discrimination network analyzed the image and segmen-
tation results jointly and had a deep network structure and a
large number of learnable parameters, therefore, it was able
to provide advanced guidance information for the segmenta-
tion network.

For the input 3D image block and its corresponding seg-
mentation result x, y, the segmentation probability map S(x)
given by the network was obtained through the segmentation
network S, using forward reasoning calculation, and the seg-
mentation loss function /., and the adversarial loss function
J.ay Were calculated, during training. Similar to the training
process of GAN, the segmentation network S and the dis-
crimination network D were trained in turn, and the param-
eters of the corresponding network model were updated by
the back-propagation algorithm.

In the prediction process, the input 3D image was pre-
processed and then several image blocks were extracted in a
certain step along the three spatial dimensions and input into
the segmentation network S, respectively, to obtain the seg-
mentation probability map of the corresponding image
blocks. Finally, the segmentation probability maps corre-
sponding to the image blocks at different positions were syn-
thesized, and the segmentation results corresponding to the
input 3D images were obtained after postprocessing.

4.3. Segmentation Network. A 3D full convolutional neural
network was used to segment the cardiac muscle and blood
pool. In theory, the full-convolutional neural network can
process input images of any size. However, the input image
size is directly related to the size of the characteristic tensor
of each layer of the network, demanding a lot of runtime
memory for oversized input images. Additionally, because
the input image and convolution kernel are 3D tensors, the
computational complexity will increase significantly with
the increase of input image size. Therefore, the sliding win-
dow block strategy of size 64 x 64 x 64 was used for the input
image, during both training and testing. The training process
blocked the input image at random positions. This step can
be seen as a form of data augmentation, which expands the
size of the training data set and also creates reasonable con-
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FIGURE 2: Outline of the cardiac muscle segmentation algorithm
based on adversarial learning.

straints on the size of the input image block, so that the net-
work model can complete the training process with limited
memory and within reasonable calculation time. The input
images were taken along three spatial dimensions with over-
lapping blocks at equal intervals during the test process, and
the extracted image blocks were input into the segmentation
model to obtain a segmentation probability map; then, the
segmentation probability maps at different positions were
divided according to the input image block. The spatial posi-
tion was arranged, and the overlapping part adopted the vot-
ing strategy to average the segmentation probability map and
finally obtain the segmentation result of the original image.

A ftull-convolutional neural network model with a struc-
ture similar to 3D U-Net was designed in this study. As a seg-
mentation network part, the network structure is shown in
Figure 3. The network model used a symmetric encoder-
decoder structure to extract the characteristics of the input
image and obtain the segmentation probability map through
forward reasoning calculation. The network used jump con-
nections, connecting the shallow and deep layers of the net-
work, and was able to simultaneously use high-dimensional
semantic features and low-dimensional grayscale, texture,
and other image detail features to jointly participate in the
final segmentation probability map calculation.

Each scale part of the encoder part was composed of two
identical stacked modules, with each module including a
convolutional layer with a kernel of 3 x 3 x 3, a step size of
1, a batch normalization (BN) layer, and linear rectification
function (Rectified Linear Unit, ReLU). Each time the maxi-
mum pooling was performed, the spatial scale of the feature
map was halved, but the number of feature channels was
doubled to retain a certain amount of information. The
decoder part was generally symmetrical with the encoder
part and had a similar structure. The kernel size and stride
of deconvolution are 2 x 2 x 2 and 2, respectively. The input
tensor of each scale consisted of the output of the previous
layer after deconvolution, while the output features of the
encoder of the corresponding size were spliced together.
After deconvolution, the spatial scale of features was doubled,
and the number of feature channels was halved. Finally, the
network used a convolutional layer with an output channel
of 3 and the SoftMax activation function to obtain a
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F1GURrE 3: Outline of the segmentation network model.

segmentation probability map. The three channels represent
the three category labels of cardiac muscle, blood pool, and
background, respectively.

4.4. Discriminant Network. A full-convolutional neural net-
work model is presented in this paper. The number of layers
is shallow, and the structure is similar to the VGG network.
The network structure is shown in Figure 4. The basic mod-
ule consisted of a convolutional layer with a step size of two,
followed by batch normalization and a linear rectification
activation function. The convolutional layer with a step size
of two can extract features and reduce the scale of the feature
map. The input of the discriminant network was the input
image and segmentation results. After the processing of four
basic network modules, the discriminate results were
obtained by global average pooling and sigmoid activation
function. The output value, ranging from 0 to 1, represented
the probability that the segmentation result was derived from
the manual annotation.

Compared with the segmented network, the discriminant
network was shallower, and the number of parameters used is
lower. The reason for this design was that the segmentation
network was tasked with the relatively complex task of gener-
ating segmentation results, which was the main part of the
model. Conversely, the sole output of the discriminant net-
work was one probability value, and too many parameters
are easy to over fit, which is not conducive to the convergence
of the model.

4.5. Loss Function. The most commonly used loss function in
image segmentation tasks is the pixel by pixel loss entropy
error function. The value of the loss function on each pixel
(voxel) was calculated independently. The pixel classification
prediction was compared with the standard vector encoded
by one-hot to measure the difference between them. The cal-
culation formula of the cross-entropy loss function is shown
in equation (2):

1 N
]CEz_N z zgilnpi’ (2)

classes i=1

where N is the total number of pixels (voxels), classes repre-
sent each category, g; denotes whether the i-th pixel is
marked as the true label of the current category, and p; is
the prediction probability that the i-th pixel is predicted as
the current category. It is clear from the formula that the
cross-entropy loss function was evaluated separately for each
pixel and then the contribution of all pixels was averaged to
obtain the final loss value. The segmentation network model
combined with cross entropy loss function was the basic
method used to address the image segmentation problem
by deep learning, and it was also the baseline method of the
experiment in this paper.

Adversarial loss function, J,4, is a minimum-
maximization function, defined as equation (3):

ming maxp/o, (S, D) = Ex)p,,, (xy) {108 D(x. y) ~log D[x, S(x)]},

(3)

where S and D are the segmentation network and the dis-
crimination network, respectively, X and Y are the input
image block and the corresponding segmentation result
annotation, respectively, P, is the data distribution com-
posed of the training data set, and D(x, y) is the prediction
probability of the segmentation result corresponding to X,
determined by the segmentation network. When the param-
eters of the segmentation network were fixed, the discrimina-
tion network minimized the binary cross entropy loss
function. When the parameters of the discriminant network
were fixed, the discrimination network was minimized as
follows:

~Ex y-p,, (xy) l0g D%, S(x)]. (4)
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FiGURE 4: Outline of the discrimination network model.

In other words, the segmentation network was induced to
produce a more realistic segmentation result.

The cross-entropy loss could effectively measure the dif-
ference between the classification prediction value of each
pixel and the gold standard, while the counter loss function
could comprehensively measure the difference between the
predicted image segmentation results and the gold standard
from a global perspective, complementing each other. The
two loss functions were used at the same time in this study,
in order to utilize both their advantages, and the total loss
function was defined as shown in equation (4):

J=Tcg + &g (5)

where « is a super parameter used to adjust the relative
weight of the above two loss functions. Larger values of « lead
to larger relative weight of J,4,, which also cause the influence
of the adversarial network on segmentation results to be
more explicit. On the other hand, smaller « values lead to
larger relative weight of ], causing the influence of adver-
sarial network on segmentation results to be less explicit.
Experimental results showed that when « was set as 0.15,
the overall performance of the model is optimal. The related
parameters are discussed in detail in the discussion part.

4.6. Evaluation Index and Implementation Details. The com-
monly used image segmentation task evaluation index Dice
coeflicient (DSC) was used to evaluate the performance of
myocardial and blood pool segmentation. The definition of
DSC is as follows:

_2xnY] ©

DSC >

|X|+Y |
where X and Y are the predicted segmentation result and the
manually annotated segmentation result, respectively. DSC is
a dimensionless number between 0 and 1 that measures the
similarity of two sets. High DSC values are associated with
close match between the predicted segmentation result of

TaBLE 1: Ablation study experimental results of the discriminative
network.

Model Myoc.ardlal Blooq pool
dice dice

3D UNet (baseline) 0.712 0.926

3D UNet + discrimination 0.753 0.929

network

the model and that of manual annotation, meaning better
model performance.

The experiment was based on the deep learning frame-
work Keras. The Adam adaptive optimization algorithm
was used to complete the training and testing of the network
model, using an NVIDIA 1080Ti GPU hardware platform.
The network was trained on the HVSMR 2016 dataset. The
Leave-One-Out scheme was used in the study, since there
were only 10 samples in the training set. One sample was
selected as the validation set, and the remaining nine samples
were selected as the training set that the 10-fold cross-
validation experiment was performed in turn to verify the
effectiveness of the proposed method and the discussion
experiment of super parameter. The final model was then
tested online with the complete training set and the opti-
mized hyperparameter training. The learning rate is 0.001,
and the batch size is 16.

5. Experiments and Results

We demonstrated the myocardial segmentation algorithm
based on adversarial learning and analyzed its effectiveness
by conducting ablation experiments. The training datasets
of the HVSMR 2016 datasets were used to conduct cross-
validation using the leave-one-out method and use the aver-
age value of the Dice score to evaluate the performance of the
model. The experimental results are shown in Table 1.
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Input image

Ground truth
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Baseline Proposed method

FiGure 5: Comparison of segmentation results on the validation set. Each row corresponds to a different case sample. The first column is the
CMR image slice of the case sample, the second column is the manually marked segmentation results, and the third column is the baseline
model. The fourth column is the segmentation result of the complete model.

The segmentation network shown in Figure 2 was used as
the baseline model on the HVSMR 2016 datasets. The dis-
crimination network, as shown in Figure 3, was then added.
We conducted relevant experiments again to verify the effec-
tiveness of the discriminative network. Comparing the exper-
imental results in Table 1, it is reasonable to conclude that
after using the discriminative network and introducing the
adversarial learning mechanism, the performance of the net-
work model in myocardial segmentation was considerably
improved and the Dice score increased from 0.712 to 0.753.
The improvement of the blood pool segmentation was very
small, because the blood pool has a simple shape and no
internal texture and structure. The blood pool was also rela-
tively easy to segment compared to the complex-shaped
myocardium with a thin layer structure. The baseline model
achieved good results, and improved space was relatively
small. Figure 5 shows the segmentation results of the
learning-based segmentation of the partial validation set. It
can be seen that the network model that introduced the
adversarial learning mechanism gained a better segmentation
result than the baseline model, thereby achieving more accu-
rate myocardial segmentation.

The network model trained on the HVSMR 2016 datasets
was tested online on the test datasets and compared with
other methods published in recent years. These methods
are mainly divided into two categories based on traditional
machine learning and deep learning, as shown in Table 2.

TaBLE 2: Quantitative comparison of the method presented in this
paper to segmentation performance of different methods from the
literature.

Method Myocardial dice Blood pool dice
Mukhopadhyay [17] 0.495 0.794
Tziritas [18] 0.612 0.867
Shahzad [19] 0.747 0.885
3D UNet [30] 0.707 0.926
Ours 0.762 0.928
Wolterink et al. [22] 0.802 0.926
Yu et al. [20] 0.786 0.931

The traditional machine learning algorithms included a
variation random forest algorithm proposed by Mukhopad-
hyay [17], a 3-D MRF model random field proposed by
Tziritas [18], and methods combining multiatlases and level
sets proposed by Shahzad et al. [19]. Limited to the character-
istics of manual design, the overall performance was slightly
worse than the methods based on deep learning. However,
in terms of deep learning models, the 3D FractalNet pro-
posed by Yu et al. introduced the idea of recursion, with the
network model being a complex fractal structure [20].
Wolterink et al. proposed a convolutional neural network
model with two-dimensional holes [22] that combines the
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ideas of multiple perspectives. 3D UNet has a relatively sim-
ple structure and a wide range of applications. Even though a
difference in performance was still present between the
method of 3D UNet + discrimination network proposed in
this paper and the optimal method, compared with the base-
line model, the performance was notably improved.

6. Discussion

The influence of the discriminator on the final segmentation
result was affected by using different loss function weight
coefficients a, further affecting the final average Dice coeffi-
cient. In the 10-fold cross-validation experiment conducted
on the training datasets, the « value was adjusted depending
on the average dice coefficient. The performance indexes of
different « values on the validation datasets are shown in
Figure 6. Experiments showed that the model achieves best
performance when « = 0.15.

7. Conclusion

A myocardial segmentation algorithm based on adversarial
learning was proposed in this paper, and experiments were
designed to comparatively analyze the effectiveness of the
adversarial learning mechanism on myocardial tissue seg-
mentation tasks. The introduction of adversarial learning
mechanism for model focus on the overall spatial structure
and context consistency was successful, and a more accurate
segmentation result was obtained. Our method improved the
quantitative segmentation performance index considerably,
compared with the baseline model.
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