
Multidimensional Compressed Sensing MRI Using Tensor
Decomposition-Based Sparsifying Transform
Yeyang Yu*, Jin Jin, Feng Liu, Stuart Crozier

School of Information Technology and Electrical Engineering, the University of Queensland, St Lucia, Queensland, Australia

Abstract

Compressed Sensing (CS) has been applied in dynamic Magnetic Resonance Imaging (MRI) to accelerate the data
acquisition without noticeably degrading the spatial-temporal resolution. A suitable sparsity basis is one of the key
components to successful CS applications. Conventionally, a multidimensional dataset in dynamic MRI is treated as a series
of two-dimensional matrices, and then various matrix/vector transforms are used to explore the image sparsity. Traditional
methods typically sparsify the spatial and temporal information independently. In this work, we propose a novel concept of
tensor sparsity for the application of CS in dynamic MRI, and present the Higher-order Singular Value Decomposition
(HOSVD) as a practical example. Applications presented in the three- and four-dimensional MRI data demonstrate that
HOSVD simultaneously exploited the correlations within spatial and temporal dimensions. Validations based on cardiac
datasets indicate that the proposed method achieved comparable reconstruction accuracy with the low-rank matrix
recovery methods and, outperformed the conventional sparse recovery methods.
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Introduction

Dynamic MRI (dMRI) plays a vital role in many clinical

applications, such as cardiac, perfusion and functional brain

imaging. In these applications, high spatial-temporal resolution is

desired to reveal anatomical details and physiological dynamics.

Conventionally, the data is acquired in chronological order

adhering to Nyquist sampling theorem, making MRI a relatively

slow imaging modality. Routine methods speed up the MRI

acquisition using a combination of fast gradient and Radio

Frequency (RF) pulsing with full k-space sampling [1,2]. However,

owing to hardware and physiological constraints, achieving high

spatiotemporal resolutions with hardware intensive sequences is

technologically challenging.

Instead of increasing the data sampling rate, various approach-

es, including Compressed Sensing (CS) [3], have attempted to

reconstruct full field-of-view (FOV) images from sub-Nyquist

acquisitions. CS has been recently applied to MRI to accelerate

the data collecting process. The pioneering work of applying CS to

MRI to accelerate the data collecting process can be found in

[4,5]. CS states that a faithful reconstruction of the signal is

achievable with a sampling rate far lower than the Nyquist limit,

provided that the signal has a sparse representation in some

transform basis (called the ‘sparsity basis’), which must be

incoherent with the sensing matrix (i.e., Fourier transform in

MRI) [3,6]. In static MRI and dMRI, the incoherence between

the sensing basis and the sparsity basis can be achieved by

randomly acquiring data in the k-space or k-t space [3,7]. Both the

predefined sparsity bases [8] and the data-dependent (also called

data-derived) transforms [9,10] have provided successful recon-

structions in static MRI applications.

CS has also been applied to dMRI, where the data sets are

naturally higher-order tensors (for instance, a third-order tensor for

a cine MRI and a fourth-order tensor for a volume dMRI).

Conventionally, 2D/1D sparsity bases were used to account for

the spatial and temporal sparsity. When the method k-t SPARSE

[4] was applied to the cine cardiac data, the 2D wavelet transform

was first applied in the spatial domain, followed by the 1D Fourier

transform along the temporal dimension. The non-linear conju-

gate gradient algorithm [11] was then used to reconstruct the

sparsity coefficients. This is a practical and straightforward

extension of the SPARSE MRI [8] as used in the static scenario.

However, using 2D wavelet transforms may generate smooth/

blurry reconstructions at the image boundaries. Alternatively, the

k-t FOCUSS method [12,13] applied different transforms to

sparsify diverse MRI signals and explored the temporal sparsity by

employing Principle Component Analysis and Fourier transform

for the aperiodic and periodic/pseudo-periodic data, respectively.

Then the recursively weighted minimum norm reconstruction

algorithm (called ‘FOCUSS’) [14,15] was used to reconstruct the

sparsity coefficients. Also using the FOCUSS algorithm, the k-t

ISD [16] improved the CS reconstruction by exploiting the

support information from the x-f space. Recent methods studied

the anatomical structures or features [17,18] to further improve

the reconstruction. Extending the application of sparsity, theoret-

ical works [19–25] have investigated the low-rank matrix

completion/recovery for more efficient signal recovery. The

applications of the low-rank matrix structure have demonstrated

merits in exploring the spatial-temporal signal redundancy in

dMRI. For example, the methods described in [26–34] used sparse

sampling schemes for data acquisition, and then generated basis

functions for low-rank regularisation or to model the dMRI

PLOS ONE | www.plosone.org 1 June 2014 | Volume 9 | Issue 6 | e98441

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0098441&domain=pdf


signals. The function bases in methods [26–28] were tailored from

the training data of the objects, they were more capable of

capturing the correlations among the dynamic image series. The

quality of the reconstructions achieved by these methods, however,

relied heavily on the quality of the training data. Some other

methods [29–34] used the combination of sparse sampling and

low-rank regularisation without training data.

Essentially, most of the existing CS-dMRI methods intend to

use 2D/1D transforms to solve 3D or even higher-dimension

problems. They either treat the 3D/4D data as a series of 2D

images and then employ 2D/1D sparsifying transforms to explore

spatial/temporal sparsity [4,12,13] or, unfold the higher-order

dataset into a 2D matrix to explore the spatiotemporal redun-

dancy [29–31,35]. Intuitively, using matrix/vector transforms in

dMRI data, being a higher-order tensor in nature, may not

simultaneously explore the inherent data redundancy. To inves-

tigate the possibilities of preserving the higher-dimensional data

format, this work proposes a novel concept of tensor sparsity for

dMRI. Inspired by a recent application of the second-order Singular

Value Decomposition (SVD) [9,10] in exploiting in-plane sparsity,

the Tucker model based Higher-order Singular Value Decompo-

sition (HOSVD) [36,37] was employed as a practical example for

the current investigation. Tensor sparsity or tensor rank, is a

powerful multidimensional signal processing tool that has been

successfully applied in various areas. For instance in the area of

pattern recognition/computer vision, HOSVD has been used to

extract the features of the training dataset to recognise/classify

future images (such as face verification) [38,39]. Recently, a low n-

rank tensor approach has also been successfully applied to dMRI

to achieve high quality image reconstruction for parallel and

dMRI [33]. Instead of regularising the global low-rank structure,

improved reconstruction accuracy and resolution were achieved

by exploiting the local low-rank structure for multidimensional

MR signals, where the unknown values of the image matrices were

locally estimated by considering the correlation among neighbour

pixels or voxels [32,34]. Comprehensive reviews of the applica-

tions of tensor decomposition, are provided in [40,41]. The

HOSVD in the current study takes advantage of the fact that the

signals in dMRI scenario are higher-order tensors. The presented

approach sparsifies the dMRI signals in their original tensor

format instead of the matrix format. Three experiments were

designed to present the comparisons of the performances between

this tensor sparsity basis and matrix transforms. In the first and the

second experiments, the third-order SVD (3D-SVD) was used to

sparsify the cine cardiac data (two spatial dimensions plus one

temporal dimension). These experiments aim to compare the

performance of the proposed method for pseudo-periodical data

with two existing methods in dMRI. In the third experiment, the

fourth-order SVD (4D-SVD) was applied as sparsity basis for the

dynamic volume cardiac data (three spatial dimensions plus one

temporal dimension), where the feasibility of the proposed sparsity

basis in 4D application is demonstrated.

The remainder of this article is organised as follows. Section 2

explains the theoretical background of the proposed method.

Section 3 describes the materials and methods used for validations.

Section 4 presents the comparisons of the reconstruction results

between the proposed method and the existing methods. Section 5

discusses additional properties of the proposed sparsity basis.

Section 6 concludes the contribution of this work.

Theory

In this section the general formulation of dMRI reconstruction

in CS framework is first introduced. Then, the construction of a

key component, the spasifying transform using tensor decompo-

sition, is described.

2.1. Formulation of Compressed Sensing in Dynamic MRI
(CS-dMRI)

To assist the discussion, the notations of scalars, vectors,

matrices (second-order tensors) and tensors are denoted by

lowercase letters (a, b, …), capital letters (A, B, …) and calligraphic

letters ( A, B, …), respectively. Letter i and j are used to index row

and column vectors, respectively. (A)j = Aj = aj, for example,

denotes the jth column vector of matrix A. Hence, A = (A1, A2,

…,AJ), where J is reserved for the index upper bounds, as is I. (A)ij,

also symbolised as aij, denotes the element with a row index i and a

column index j.

Suppose an Nth-order tensor A[ CI1|I2|:::|IN is used to

represent the spatial-temporal behaviour of the imaged object.

Without losing generality, the first M = N-1 dimensions of the

tensor are used to describe the spatial information (for example

M = 2 for 2D slice or M = 3 for 3D volume), which is collected at

IN time instances. The CS-dMRI problem can be solved using the

following optimisation procedure:

Minimise : Y(A)k k0

s:t: WF (A){yk kvE
ð1Þ

where y is the k space measurements collected from the MRI

scanner; e represents the data-fidelity tolerance between the

optimisation result and the measurements; Y is a transform that

sparsifies the tensor A (the imaging object), and WF is a

combination of operations, that is, the 2D Fourier transform for

the in-plane data followed by a random under-sampling.

Equation (1) minimises the l0-norm to enforce the sparsity of the

object A, and uses the l2-norm as a constraint to guarantee the

data-fidelity in the sampling domain. The optimisation problem in

equation (1) is NP-hard (Non-deterministic Polynomial-time hard).

The common solution for this problem is to relax the l0 norm to l1
norm, its nearest convex constraint [42]. Thus, the problem in

equation (1) can be restated as:

Minimise : Y(A)k k1

s:t: WF (A){yk kvE
ð2Þ

However, as has been extensively studied [43–48], replacing the

l1 norm with an lp quasi-norm (0,p,1) problem can reduce the

amount of measurements needed for reconstruction or, can

improve the reconstruction quality given the same amount of

measurements. Therefore, in this work, we adopt the lp norm as a

constraint to enforce the sparsity of the images. Thus, the NP-hard

problem in equation (1) can be replaced by solving a problem as

follows:

Minimise : Y(A)k kp
p

s:t: WF (A){yk kvE
ð3Þ

where 0,p,1. Section 3 will describe in detail the algorithm

adopted to solve the non-convex problem in the form of equation

(3).

Tensor Sparsity in Compressed Sensing Dynamic MRI
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2.2. Construction of the Sparsity Basis Y using Higher-
order Singular Value Decomposition

In this section, the general framework of HOSVD [37] and the

applications of HOSVD as sparsifying transform in CS-dMRI will

be introduced. Several higher-order tensor operations will be

introduced first to pave the way for the discussion of HOSVD.

The HOSVD sparsity basis was obtained from the inverse Fourier

transform of the zero-filled under-sampled k space (denoted as A0),

therefore no training data is required in this method.

Definition 1: Matrix unfolding-unfolding a tensor into matrices

[37].

For the Nth-order tensor A0[ C
I1|I2|:::|IN , the unfolded matrix

A0(n) contains the element a0i1 i2 :::in
at the position with a row

number in and a column number equal to

(inz1{1)Inz2Inz3:::INI1I2:::In{1z

(inz2{1)Inz3Inz4:::I1I2:::In{1z:::z

(iN{1)I1I2:::In{1z(i2{1)I3I4:::In{1z:::zin{1

Figure 1(a) exemplifies the process of unfolding a 3D tensor. There

are three matrix representations (horizontal, lateral, and frontal) of

the 3D tensor A0[ CI1|I2|I3 in which all the slices are stacked one

after another. The lateral matrix representation A0(1)[ C
I1I3|I2 is

defined as ½A0(1)�(i1{1)I3zi3,i2
~a0i1 i2 i3

; the frontal matrix represen-

tation A0(2)[ CI2I1|I3 is defined as ½A0(2)�(i2{1)I1zi1,i3
~a0i1 i2 i3

; and

the horizontal matrix representation A0(3)[ CI3I2|I1 is defined as

½A0(3)�(i3{1)I2zi2,i1
~a0i1 i2 i3

.

Definition 2: Multiplication of a higher-order tensor by matrices

[37].

The n-mode product of the tensor A0[ CI1|I2|:::|IN by a matrix

U[ C
Jn|In , denoted as A0|nU is an (I16I26…6In-16Jn6I-

n+16…6IN) tensor, of which the entries are given by

(A0|nU)i1i2:::in{1ininz1:::iN
~
def X

in

a0i1i2:::in{1ininz1:::iN
ujnin

Figure 1(b) visualises the multiplication of a 3D tensor by

matrix, where B~C|1V1|2V2|3V3 (B~C
J1|J2|J3 ,C~

CI1|I2|I3 ). In figure 1(b) we can see that there are three

multiplications of a 3D tensor by matrix. The 1-mode product of

the tensor C~C
I1|I2|I3 by a matrix V1[C

J1|I1 is defined as

(C|1V1)j1i2 i3
~
def P

i1

ci1 i2i3 vj1 i1 , which is a J1|I2|I3 sized tensor;

the 2-mode product of C~C
I1|I2|I3 by a matrix V2[ C

J2|I2 is

defined as (C|2V2)i1j2 i3
~
def P

i2

ci1 i2i3 vj2 i2 , which is a I1|J2|I3

sized tensor; similarly, the 3-mode product of C~CI1|I2|I3 by a

matrix V3[ CJ3|I3 is defined as (C|3V3)i1i2j3
~
def P

i3

ci1i2 i3 vj3i3 ,

which is an I1|I2|J3 sized tensor.

With these two operations defined, any Nth-order tensor

A0[ C
I1|I2|:::|IN can now be decomposed, in the HOSVD

framework, by

a0i1i2 i3 :::iN
~
XI1

j1

XI2

j2

:::
XIN

jN

sj1 j2:::jN
u

(1)
i1 j1

u
(2)
i2j2
:::u(N)

iN jN
ð4Þ

where u
(n)
injn

,n~1,2,:::,N, are the entries of the unitary matrices

Un,n~1,2,:::,N , and sj1j2 j3:::jN
are the entries of S[ C

I1|I2 :::|IN

which is a complex tensor of size I1|I2|:::|IN . To facilitate the

understanding of the properties of HOSVD, we first retrospect to

the matrix SVD, which was used as a sparsity basis for static MRI

[9,10]. For any complex matrix M[ C
I1|I2 , we can decompose it

into product as

M~USV H~S|1U|2VH~S|1U1|2U2 ð5Þ

where Un,n~1,2, are In|In,n~1,2, sized unitary matrices, and S

is an I1|I2 sized matrix with the properties of [37]:

(i) pseudo-diagonality: S~diag(s1,s2,:::,smin (I1,I2))

(ii) ordering: s1§s2§:::§smin (I1,I2)§0

where si are called the singular values of M.

Likewise, in higher-order situation, we can decompose any

complex Nth-order tensor A0[ CI1|I2|:::|IN as

A0~S|1U1|2U2|3:::|NUN , ð6Þ

where the unitary matrices Un[ CIn|In ,n~1,2,:::,N are called the

n-mode singular matrices. Tensor S[ CI1|I2|:::|IN has the

following properties:

Figure 1. Visualisation of matrix unfolding of a tensor. (a)
Visualises the matrix unfolding of a third-order tensor and, (b) visualises
a third-order tensor multiplied by matrix.
doi:10.1371/journal.pone.0098441.g001
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(i) all-orthogonality: two sub-tensors Sin~a and Sin~b are

orthogonal for all possible n, a and b subject to a ? b,

which means SSin~a,Sin~bT~0 when a ? b,

(ii) ordering: Sin~1k k§ Sin~2k k§:::§ Sin~In
k k§0 for all possi-

ble n,

where the Frobenius-norms Sin~ik k, symbolised by s(n)
i , are called

the n-mode singular values of A0.

As demonstrated in [37], given a Nth-order tensor A0, the n-

mode singular matrix Un in equation (6) is actually the left singular

matrix of the correlated n-mode matrix unfolding of A0 (as per

Definition 1 and 2). Therefore the computation of the HOSVD in

equation (6) eventually leads to N different matrix SVD operations

on the unfolded tensor. Therefore, the tensor S can be computed

as

S~A0|1UH
1 |2UH

2 |3:::|NUH
N ð7Þ

For example, U1 can be obtained by performing the matrix

SVD on the 1-mode unfolding matrix A0(1) as:

S1~U1A0(1)V1 ð8Þ

Generally, Un,n~1,2,:::,N, can be obtained by performing the

matrix SVD on the n-mode unfolding matrix A0(n) as:

Sn~UnA0(n)Vn: ð9Þ

With the unitary matrices obtained, we can then construct the

tensor sparsifying transform as:

Y(A0)~A0|1UH
1 |2UH

2 |3:::|NUH
N ð10Þ

where the sparsity basis Un,n~1,2,:::,N is obtained from the

inverse Fourier transform of the zero-filled under-sampled k space

A0.

The inverse sparsifying transform is then obtained as:

Y{1(S)~S|1U1|2U2|3:::|NUN ð11Þ

Figure 2(a) visualises the decomposition of a third-order tensor

A0[ C
I1|I2|I3 as

A0~S|1U1|2U2|3U3 ð12Þ

The unitary matrices Un,n~1,2,3, in equation (12) can be

obtained from equation (9). The properties of all-orthogonality

and ordering [37] guarantee that most of the energy of tensor S
accumulates around one vertex, and little energy distributes to the

broad area away from this region. Therefore, tensor S has a

sparse representation (refer to figure 2(a) for illustration). Likewise,

figure 2(b) presents an example of the HOSVD in the fourth-order

tensor case. It should be noted that the tensor S is shown in

logarithmic scale to assist the presentation, because S is too sparse

to be easily visible. It is clearly shown that in both 3D and 4D cases

the coefficients with large values are highly concentrated in one

voxel (light blue colour), while the vast majority of the elements in

the S tensor are close to zero (deep blue colour).

Materials and Methods

To test the possibility of employing HOSVD as higher-order

sparsifying transform in CS-dMRI applications, three experiments

are designed: two cine cardiac MRI schemes and one dynamic

volume cardiac MRI series.

3.1. Datasets
3.1.1. 3D-SVD: Application in cine cardiac MRI. Two sets

of cine cardiac MRI data were used to validate the proposed

method. The first dataset (Dataset A) was acquired at the

University of Utah, which was used in the method k-t SLR [30].

70 frames of k-space were acquired on a 3T Siemens scanner with

the spatial resolution of 906190 (phase encoding6frequency

encoding). The cardiac data was obtained with a saturation

recovery sequence (TR/TE = 2.5/1 ms, saturation recovery

time = 100 ms). The second dataset (Dataset B) was acquired at

Yonsei University Medical Center, which was used in the method

k-t FOCUSS [12,13]. 25 frames of full k-space data was acquired

using a 1.5T Philips system with an in-plane spatial resolution of

2566256. The cine cardiac data was obtained using steady-state

free precession (SSFP) sequence with a flip angle of 50 degree and

TR = 3.45 msec. The FOV was 345 mm6270 mm. The slice

thickness was 10 mm. A few frames from both Dataset A and

Dataset B are shown in figure 3(a, b).

3.1.2. 4D-SVD: Application in volume dynamic cardiac

MRI. The third experiment investigated the possibility of

employing the proposed HOSVD sparsifying transform for 4D

dynamic cardiac MRI. The images of the this dataset (Dataset C)

were of one subject, arbitrarily chosen from a total of 33 available

subjects [49]. The measurements were acquired from a GE

Genesis Signa MR scanner using the FIESTA protocol. The

dimension of the subject data is 2566256610620 (phase

encoding6frequency encoding6z position6time). It is noted that

Dataset C is in DICOM (Digital Imaging and Communications in

Medicine) format. Using the real-valued images, instead of the

complex-valued k-space data, has made the reconstruction of the

4D experiment easier. A few frames from Dataset C are shown in

figure 3(c).

3.2. Reconstruction
3.2.1. Optimisation algorithm. The lp quasi-norm in

equation (3) poses a non-convex optimisation problem. Theoret-

ical work [44,46] has demonstrated that this non-convex problem

is solvable and, the local minima can be avoided in practice

[43,50]. The applications in the medical imaging context

[30,45,47,48,51–55], have already demonstrated the practicability

and advances of non-convex optimisation. In this work, we adopt

the algorithms used in [30,47] to solve the optimisation problem

stated in equation (3). In [47], Chartrand used both wavelet

transform and discrete gradient to enforce the sparsity of the MR

images. In [30], Lingala et al. used the combination of rank

property and signal sparsity for reconstruction. In this work we use

only the HOSVD for sparsity enforcement. Therefore we herein

briefly state the modified optimisation process as follows.

We begin with the definition of a variable splitting operator:

H(A) ~
def

Minimise : Y(B)k kp
pzb A-Bk k2 ð13Þ

Tensor Sparsity in Compressed Sensing Dynamic MRI
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where bw0 is a constant. It is noted that H(B) is forced to

approach Y(B)k kp
p when b??.

We rewrite the problem in equation (3) as into its Lagrange’s

form as:

Minimise : WF (A){yk k2zl Y(A)k kp
p ð14Þ

where l is a constant to balance the weighting between the data

fidelity and the signal sparsity. Then the splitting operator was

applied on equation (14), arriving at:

Minimise : WF (A){yk k2zlH(A) ð15Þ

which can be expanded as:

Minimise : WF (A){yk k2zb A-Bk k2zl Y(B)k kp
p ð16Þ

We can then solve the problem above by iteratively solving the

variables A and B in turn. In this way the problem in equation

(16) is decomposed into two simple sub-problems. The two sub-

problems are decoupled, making it computational efficient. By

setting b??, the solution of equation (16) approaches that of

equation (14).

To solve the sub-problem with respect to variable A, we can fix

variable B and adopt the conjugate gradient algorithm as used in

[30]:

Minimise : WF (A){yk k2zb A-Bk k2 ð17Þ

To solve the sub-problem with respect to variable B, we fix

variable A and apply p-shrinkage operator to each pixel of Y(B).
As explained in [47] the p-shrinkage operator is executed as:

Sp
a(b)~max DbD{aDbDp{1,0gb=DbD

�
ð18Þ

To choose an appropriate value for the parameter b, we

initialised it with a relatively small value and then geometrically

increased it as proposed in [56]. To enforce the data-fidelity, the

residual of each sub-problem was added back to the data at each

iteration as proposed in [57]. For a summary of the optimisation,

please refer to figure 4.

3.3. Comparison Validations
The proposed method was compared with one of the recent

low-rank image reconstruction methods, k-t SLR, and a classic CS

method, k-t SPARSE. For fair comparison, we ensure that firstly

all the methods used the same sampling pattern of k-t space;

secondly, the parameters for all the methods were adjusted

appropriately so that both the signal to error ratio (SER) and the

averaged signal intensity for all methods were optimised; and

thirdly the optimisations for all the methods share the same

stopping criterion, that is the optimisations ceased when the

gradient magnitude of the object function reached 161024 or the

Figure 2. Visualisation of HOSVD. (a) Shows HOSVD on a third-order tensor and, (b) shows HOSVD on a fourth-order tensor. The left of (b) shows
a four dimensional cardiac dataset denoted as A. The four dimensions are labelled as i1, i2, i3 and i4. The right of (b) presents tensor S and the unitary
matrices U1 U2 U3 and U4, that were obtained by performing HOSVD operation on A. S is also a fourth-order tensor, the dimensions of which are
marked as i1, i2, i3 and i4.
doi:10.1371/journal.pone.0098441.g002
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number of iterations reached 300. All the evaluations were

implemented using Matlab 2011a (MathWorks, Natick, MA) on a

Mac OS X Lion operation system, with a dual-core 2.4 GHz Intel

processor and 4 GB of memory. The SER was calculated as:

SER~{10log10

Ares{Afull

�� ��
F

Afull

�� �� , ð19Þ

where Ares is the result of the reconstruction, Afull is the fully

sampled dynamic images, and :k kF denotes the Frobenius norm.

A greater SER value correlates to a better image quality.

The method k-t SLR employs two regularisations: the low-rank

structure and the sparsity of the signal. To exploit the low-rank

structure, k-t SLR reshaped the 3D dataset into a large 2D matrix

C. More specifically, the 2D images in a dynamic sequence were

firstly vectorised and then concatenated to form the matrix C. To

exploit the sparsity of the signal, the total variation (TV) was used

as an extra regularisation. Moreover, instead of using convex

penalties to regularise the low rank property and the sparsity, k-t

SLR adopted some of the recent algorithms on the non-convex

regularisation [43,47,48] for the optimisation, further improving

the reconstruction result. In [30], the combination of the

constraints provided better image quality than the variants of

the k-t SLR, which rely on either matrix SVD or TV constraint

alone. Therefore in this work, we only compare the proposed

method with k-t SLR, where both SVD and the TV regularisations

were used in the optimisation. The method k-t SPARSE is a classic

CS-dMRI method. It uses the wavelet transform (Daubechies 4

was used as the mother wavelet in this work) for in-plane sparsity

and the Fourier transform for temporal sparsity, assuming that the

change of the heartbeat is periodical. All the methods compared in

this work are flexible to account for arbitrary non-Cartesian k-

space sampling schemes; we adopt the radial trajectory with

uniform angular spacing as used in [30]. The trajectory was

randomly rotated with a small angle for each frame to implement

random sampling.

Results

4.1. 3D Application
Figure 5 and 6 show the reconstruction of Dataset A at

reduction factors 6 and 11 respectively. When the reduction factor

was 6 (reduction factor n means only 1/n of the full k-space

measurements were obtained), the SER values achieved by the

proposed method, the k-t SLR and the k-t SPARSE, were 8.9 dB,

8.7 dB and, 7.7 dB, respectively. Figure 5 shows the reconstruc-

tion of Dataset A when the reduction factor was 6. As shown in

figure 5(b), all the methods provided comparable averaged signal

intensity for the blood pool area (normalised to the maximum grey

level of the region of interest, figures 6, 7, 8, and 9 are normalised

in the same fashion). However, when comparing at the myocardial

Figure 3. Several frames of the datasets obtained at different
time instants (as indicated). From top to bottom: (a) Dataset A, (b)
Dataset B and, (c) Dataset C. In (c), images obtained at four time instants
(as indicated by t3) are presented row by row, and images obtained at
four z positions (as indicated by z, along axial direction (base-apex)) are
presented column by column. The regions of interest of each dataset
are marked within the red rectangles and, the regions of myocardial
and blood pool used for averaged signal intensity comparison are
marked with yellow and light blue colours, respectively.
doi:10.1371/journal.pone.0098441.g003

Figure 4. Outline of the reconstruction algorithm.
doi:10.1371/journal.pone.0098441.g004
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signal intensity, both the proposed method and k-t SLR obviously

outperformed k-t SPARSE, especially at the frames where the

averaged signal intensity changed rapidly (as marked with red

arrows in figure 5(a)). The region of interest (as marked in

figure 3(a)) of the 54th and the 14th frames, where the myocardial

and the blood pool signal intensities reached their peak values, are

presented on the top and the bottom rows of figure 5(c),

respectively. In figure 5(c), it appears that Dataset A contains

Figure 5. Reconstructions of Dataset A at reduction factor 6. (a) and (b) show the averaged normalised signal intensity at the myocardial and
blood pool regions, respectively, and (c) shows the images (region of interest only) at the peak signal intensity of myocardial (the 54th frame, top row)
and blood pool (the 14th frame bottom row). The left of (a) and (b) shows the averaged signal intensity of the fully sampled images (black line), k-t
SLR reconstruction (blue line) and, the reconstruction of the proposed method (red line); the right of (a) and (b) shows the averaged signal intensity
of the fully sampled images (black line), the k-t SPARSE reconstruction (blue line) and, the reconstruction of the proposed method (red line).
doi:10.1371/journal.pone.0098441.g005
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visible white noise, and some of the residual noise was maintained

in the result of the method k-t SPARSE. The images recovered by

the proposed method and the k-t SLR successfully supressed the

white noise. Both the proposed method and the k-t SLR provided

comparable overall image quality at the low reduction factor.

When the reduction factor was 11, the SER values achieved by the

proposed method, the k-t SLR and the k-t SPARSE, were 8.0 dB,

7.8 dB and, 6.4 dB, respectively. As shown in figure 6(b), all the

Figure 6. Reconstructions of Dataset A at reduction factor 11. (a) and (b) show the averaged normalised signal intensity at the myocardial
and blood pool regions, respectively, and (c) shows the images (region of interest only) at the peak signal intensity of myocardial (the 54th frame, top
row) and blood pool (the 14th frame bottom row). The left of (a) and (b) shows the averaged signal intensity of the fully sampled images (black line),
k-t SLR reconstruction (blue line) and, the reconstruction of the proposed method (red line); the right of (a) and (b) shows the averaged signal
intensity of the fully sampled images (black line), the k-t SPARSE reconstruction (blue line) and, the reconstruction of the proposed method (red line).
doi:10.1371/journal.pone.0098441.g006
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methods recovered comparable averaged signal intensity of the

blood pool area. However, when comparing the myocardial area,

the proposed method and the k-t SLR outperformed the k-t

SPARSE more obviously, especially at the frames where the signal

changes quickly (as indicated by the red arrows in figure 6(a)). The

region of interest of the 54th and the 14th images are presented on

the top and the bottom row of figure 6(c), respectively. The k-t

SPARSE was severely affected by the white noise at this high

reduction factor, while both the k-t SLR and the proposed method

were still robust to noise. In k-t SLR, TV regularisation provided

Figure 7. Reconstructions of Dataset B at reduction factor 6. (a) and (b) show the averaged normalised signal intensity at the myocardial and
blood pool regions, respectively, and (c) shows the images (region of interest only) at the peak signal intensity of myocardial (the 13th frame, top row)
and blood pool (the 24th frame bottom row). The left of (a) and (b) shows the averaged signal intensity of the fully sampled images (black line), k-t
SLR reconstruction (blue line) and, the reconstruction of the proposed method (red line); the right of (a) and (b) shows averaged the signal intensity
of the fully sampled images (black line), the k-t SPARSE reconstruction (blue line) and, the reconstruction of the proposed method (red line).
doi:10.1371/journal.pone.0098441.g007
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slightly better reconstruction for large contours or boundaries of

the images. However, it also generated a cartoon-like/over-

smooth effect on local fine details (also observed in [30]). This

effect is more obvious at reduction factor 11 (see figure 6(c)).

Compared with TV regularised k-t SLR, the proposed method

provided slightly better reconstruction of local fine details (see the

red arrows in figure 6(c)). The evaluation of all the methods based

on Dataset A indicates that the proposed tensor sparsity basis

outperformed the conventional matrix sparsity basis. Moreover,

even when comparing with k-t SLR that combines the low-rank

Figure 8. Reconstructions of Dataset B at reduction factor 11. (a) and (b) show the averaged normalised signal intensity at the myocardial and
blood pool regions, respectively, and (c) shows the images (region of interest only) at the peak signal intensity of myocardial (the 13th frame, top row)
and blood pool (the 24th frame bottom row). The left of (a) and (b) shows the averaged signal intensity of the fully sampled images (black line), k-t
SLR reconstruction (blue line) and, the reconstruction of the proposed method (red line); the right of (a) and (b) shows the averaged signal intensity
of the fully sampled images (black line), the reconstruction of k-t SPARSE (blue line) and, the reconstruction of the proposed method (red line).
doi:10.1371/journal.pone.0098441.g008
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matrix recovery and the sparsity constraint, the proposed method

was still able to provide comparable overall reconstruction

accuracy.

Figure 7 and 8 show the reconstruction of Dataset B provided

by all the methods at reduction factors of 6 and 11, respectively.

When the reduction factor was 6, the proposed method, the k-t

SLR and the k-t SPARSE achieved the SER values of 12dB, 10dB

and, 9.9dB, respectively. The averaged signal intensity compar-

ison, as shown in figure 7(a, b), demonstrates that the proposed

method was more capable of capturing the dynamic features of the

signal (see the red arrows in figure 7(a, b)) than k-t SPARSE. The

13th and the 24th frames (region of interest only, as marked in

figure 3(b)), where the peak averaged signal intensity of myocardial

and blood pool areas were reached, are presented on the top and

the bottom rows of figure 7(c), respectively. As shown in figure 7

(c), Dataset B contains more local details than Dataset A and, it

has little visible white noise. All the methods succeeded in

recovering the coarse features of Dataset B; meanwhile, the

proposed method and the k-t SLR captured more fine details (see

the red arrows in figure 7(c)). When the reduction factor was 11,

the SER values achieved by the proposed method, the k-t SLR and

the k-t SPARSE, were 10.4 dB, 9.5 dB and, 8.4 dB, respectively.

The averaged signal intensity of the myocardial and the blood pool

was compared in figure 8(a, b). The proposed method achieved

comparable reconstruction with the k-t SLR and, better overall

reconstructions as compared to k-t SPARSE. And the visual

evaluation in figure 8(c) shows consistent results with those of the

averaged signal intensity comparison, as indicated by the red

arrows. The quantitative and visual evaluations of Dataset B were

also consistent with those of Dataset A.

4.2. 4D Application
As shown in figure 2, the HOSVD method can be applied

straightforwardly to higher order datasets. In this work, we present

the application of HOSVD in the dynamic volume cardiac

imaging, where the dataset is a 4D tensor. At reduction factor 11,

the SER of the reconstructed 4D images achieved by the proposed

method was 12.1 dB. The averaged signal intensity at the

myocardial and the blood pool areas is presented in figure 9. As

illustrated in figure 9, at the high reduction factor of 11 the

proposed method was still able to recover the dynamic features of

the signal without noticeable error. Several fully sampled and the

Figure 9. The averaged normalised signal intensity achieved
by the proposed method at reduction factor 11. (a) The
myocardial signal intensity of the fully sampled images and the
reconstructed images provided by the proposed method; (b) the blood
pool signal intensity of the fully sampled images and the reconstructed
images provided by the proposed method.
doi:10.1371/journal.pone.0098441.g009

Figure 10. The reconstruction of Dataset C (region of interest
only) achieved by the proposed method at reduction factor 11.
(a) Presents several fully sampled images, and (b) presents the
corresponding reconstructed images. In (a), images obtained at four
time instants (indicated by t) are present row by row; and images
obtained at four z positions (indicated by z along axial direction (base-
apex)) are presents column by column. Likewise, (b) presents the
reconstructed images at the corresponding time instants (indicated by
t) and z positions (indicated by z).
doi:10.1371/journal.pone.0098441.g010
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reconstructed images (region of interest only, as marked in

figure 3(c)) are shown in figure 10(a) and (b), respectively. As

shown in figure 10(b), the proposed method successfully recovered

the coarse features of the object and, most of the fine details were

also recovered, which demonstrated the feasibility of the proposed

sparsifying transform for the 4D application.

Discussions

5.1. The Tucker Model Based HOSVD
This work takes the Tucker model based HOSVD as an

example to demonstrate the potential of tensor decomposition in

the exploration of higher-order signal sparsity. The Tucker model

based HOSVD decomposes a dense tensor into a sparse tensor

multiplied by matrices along individual modes (as shown in

figure (1–2)). The k-t SLR actually used solely the mode-2 unfold of

the tensor structure to explore the low rank properties. However,

this work does not explore the low-rank structure of the reshaped

tensor. Instead, it explores the sparsity in a tensor structure. In

addition to HOSVD, there are a broad range of tensor

decomposition techniques for future investigation, such as the

CANDECOMP/PARAFAC decomposition [58,59] and its vari-

ants, which can be used to explore the tensor rank minimisation.

5.2. Computational Cost
In this work, when the same stopping criteria was set, the

computation time for the proposed method in the 3D application

was, on average, 28 and 29 minutes for Dataset A and B

respectively. The k-t SLR method used 21 minutes for Dataset A

and 29 minutes for Dataset B. As for the k-t SPARSE, it took

29 minutes on average for Dataset A and 40 minutes for Dataset

B. In dealing with third-order tensor, the proposed method

performs SVD three times (once per equation (8–10)), while k-t

SLR needs only one SVD computation. The proposed method

involves only one regularisation, while the k-t SLR involves two

regularisations. Therefore, though the computing time of the

HOSVD basis function is three times that of the SVD basis

function, the overall optimisation time of the proposed method

was only approximately 30% more than that of the k-t SLR. The

sparsifying transform in the k-t SPARSE involves multiple times of

wavelet transforms for each frame and one Fourier transform for

the temporal dimension therefore, it was slightly slower than the

proposed method.

5.3. Parameter Setting
The balance between the data fidelity in k-space and the sparsity

of the images has become a common concern in many the CS

approaches. This issue becomes more complicated when more

than one regularisation terms are involved in the optimisation,

such as in the method k-t SLR. Although the setting of the

regularisation parameters has been discussed within the CS-MRI

framework [6060,61], it is believed that further investigation is still

required for specific applications. As far as we have observed,

when using the same sparsifying transform, the image artefacts

increase as the amount of k-space acquisitions decreases.

Therefore, the weighting of the sparsity constraint needs to be

slightly increased. With the same reduction factor, different

sparsifying transforms provide significantly different values of the

lp quasi-norm, while the values of the l2 norm (the data-fidelity in

k-space) stay relatively stable. Therefore it would be inappropriate

if the values of l are identical for different sparsifying transforms.

Instead they should be optimised case by case.

Conclusion

This work proposes a novel concept of tensor sparsity for

Compressed Sensing in dynamic MRI, and presents the Tucker

model based Higher-order Singular Value Decomposition as a

practical example. The tensor decomposition based method

derives the sparsity basis adaptively and directly from the zero-

filled under-sampled k-t space measurements, and does not require

extra scan time to obtain training data. The proposed tensor

sparsity basis provides improved image reconstruction quality

when compared to the classic sparsity basis. The reconstruction

quality is similar to that with a stronger constraint–low rank

property of matrix.
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