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Lung cancer survival statistics are sobering with survival ranking among

the poorest of all cancers despite the addition of targeted therapies and

immunotherapies. However, improvements in tools for early detection hold

promise. The Nederlands–Leuvens Longkanker Screenings Onderzoek

(NELSON) trial recently corroborated the findings from the previous

National Lung Screening Trial low-dose Computerised Tomography

(NLST) screening trial in reducing lung cancer mortality. Biomarker

research and development is increasing at pace as the molecular life histo-

ries of lung cancers become further unravelled. Low-dose CT screening

(LDCT) is effective but targets only those at the highest risk and is burden-

some on healthcare. An optimally designed CT screening programme at

best will only detect a low proportion of overall lung cancers as only those

at very high-risk meet screening criteria. Biomarkers that help risk stratify

suitable patients for LDCT screening, and those that assist in determining

which LDCT detected nodules are likely to represent malignant disease are

needed. Some biomarkers have been proposed as standalone lung cancer

diagnosis tools. Bronchoscopy technology is improving, with better capac-

ity to identify and obtain samples from early lung cancers. Clinicians need

to be aware of each early lung cancer detection method’s inherent limita-

tions. We anticipate that the future of early lung cancer diagnosis will

involve a synergistic, multimodal approach, combining several early detec-

tion methods.

1. Introduction

Lung cancer is the leading cause of death from cancer

worldwide. To improve survival, there needs to be a

shift in the stage of disease at which it is first diagnosed

along with timely and successful treatment. Lung cancer

is broadly classified into small cell lung cancer and nons-

mall cell lung cancer (NSCLC). The early detection of
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NSCLC, which accounts for ~ 85% of all lung cases [1],

will be the focus of this review. NSCLC is further

divided into its two main subtypes: adenocarcinoma,

typically located in the lung peripheries, and squamous

cell carcinoma typically found in the central airways.

Ever-increasing molecular subtyping is now used giving

more precise treatment strategies and better prediction

of clinical trajectories.

Sadly, three quarters of patients with lung cancer are

diagnosed at stage III or IV [2], when disease has spread

to lymph nodes or other organs and is incurable. Earlier

detection at stages I and II means better survival as radi-

cal (potentially curative) treatment approaches can be

employed; 92% of those patients diagnosed with stage

IA1 disease (tumour < 1 cm and no involvement of

main bronchi or nodal disease) survive 5 years or more,

compared to just 10% for patients diagnosed with stage

IV disease (cancer in both lungs, in the lungs’ lining or

spread to another organ) []. Importantly, even a small

increase in tumour size from < 1 cm (stage IA1) to

> 2 cm (stage IA3), reduces 5-year survival to 77%. As

soon as local nodes become involved or the tumour is

larger than 5 cm or it invades local structures (Stage

IIB), 5-year survival drops to 53% (Fig. 1).

Five-year survival rates have historically been worse

in the United Kingdom (UK) compared to comparator

countries worldwide [4]. Causes of this discrepancy are

thought to be a combination of wide geographical

variation in access to curative surgical resection or

radical radiotherapy [5], and late or delayed diagnosis,

with delays occurring in presentation, primary care

and secondary care. Patients in England are less likely

to have their NSCLC diagnosed at stage I compared

to those in the United States (US) (15% vs 24%), and

this results in avoidable deaths [6]. This study con-

cludes that in the UK there are 98 excess deaths per

one thousand patients with histology-proven NSCLC.

Although details of specific treatments are outside of

the remit of this review, early detection and diagnosis

and definitive treatment are intimately related to lead

time bias, especially when considering screening popu-

lations for lung cancer, a topic discussed shortly.

There also needs to be equity in treatment access [7,8].

Lead time bias occurs when a diagnostic approach

merely identifies the disease earlier and gives the

impression that survival is prolonged when in fact the

treatment has no effect on outcome [9]. Hence, the

requirement for an effective treatment if one pursues
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Fig. 1. Overall survival by clinical stage according to the eighth edition of the TNM classification for Lung Cancer. Figure re-published with

permission from authors.
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earlier diagnosis. The median volume doubling time

(VDT) of NSCLC is believed to be 121 days with 41%

of lung cancers having a VDT of < 100 days [10], cor-

roborating the need to act quickly Yang et al. sought

to correlate the timing of lobectomy with survival out-

come in just under 5000 patients who had stage IA

squamous cell lung cancer (LUSC) between 2006 and

2011. They found that a delay of more than 37 days

from time of diagnosis to surgery was associated with

worse survival [11]. The overall 5-year survival was

58%, the study using the older Tumour Node Metas-

tasis (TNM) staging system without further subtyping

of stage IA into IA1, IA2 and IA3.

The UK Lung Cancer Coalition ‘25 by 25’ [12]

builds on the NHS’s Long Term Plan to diagnose

75% of cancers at an early stage. The Coalition aim to

improve lung cancer’s 5-year survival rate to 25% by

2025 [13]. The current UK 5-year survival (unspecified

stage) has been modestly increasing and currently sits

at 16% [14], having previously been 9% in 2005 [12].

The National Lung Cancer Audit has driven improve-

ments by systemically reviewing nationwide data on

lung cancer outcomes in the UK. The most recent data

show there has been a 5.4% increase in the number of

lung cancer operations and importantly less variation

between trusts [15]. There has also been progress made

in treatment; stereotactic body radiotherapy (SABR) is

now used to treat patients unfit to undergo surgical

management [8,16,17], and targeted therapies and

immunotherapy are now available, but these are

licensed only in advanced disease and offer modest

benefits in the realm of months [18,19]. They are also

costly.

This review starts by describing strategies that have

aimed to change patient behaviour towards lung can-

cer diagnosis, followed by a review of biomarkers pro-

posed as standalone lung cancer early detection tools.

The review then examines low-dose computerised

tomography (CT) screening and the adjunct use of

biomarkers. It finishes by exploring the early detection

and treatment of central lung cancers.

2. What are the causes of late
detection?

Many individuals with lung cancer have symptoms for

several months before they seek medical help. One

modifiable trait is the consulting behaviour of patients

at risk of having lung cancer. A UK study found the

mean delay between symptom onset and date of diag-

nosis was 12 months, a figure that persisted when

accounting for patients with operable, early disease

[20]. This was supported by a Swedish study [21] and

challenges the belief that lung cancer is asymptomatic

until advanced. One Scottish study separated symp-

toms into participant-defined and health professional-

defined, the latter being based on a checklist of com-

mon symptoms [22]. Here, the median time from par-

ticipant-defined first symptoms to consultation with a

healthcare professional was 21 days. However, most

participants, even those having described themselves as

having none, reported additional symptoms when

probed by the clinician using the symptom checklist,

suggesting that these symptoms had been ignored/

deemed not important. The median time from earliest

reported checklist symptoms until consultation was

99 days. This nearly matches the aforementioned med-

ian VDT [10]. The delay in presentation of patients’ to

a healthcare professional has been attributed to

patients displaying ‘medical nihilism’, believing lung

cancer to be incurable; fear; lack of interpretation that

their symptoms are serious [23] and stigma around

smoking [24]. It has been shown that current smokers

are more likely to experience respiratory symptoms

but less likely to consult about them [25].

Behavioural intervention can promote earlier presen-

tation to healthcare professionals amongst those at

risk of lung cancer. The rewards are being reaped from

an initiative that was started in 2011 in Leeds [26].

Here, a two-pronged approach to introduce a stage

shift through improving symptom awareness (to both

patients and health care professionals) was rolled out.

Firstly, a primary healthcare educational package was

delivered highlighting what the local chest X-ray refer-

ral guidelines were. Secondly, a marketing communica-

tion campaign was developed with the tagline: ‘Got a

cough, get a check’. There was a subsequent 80%

increase in chest X-ray referrals and importantly, an

8.8% increase in the proportion of patients diagnosed

with stage I/II lung cancer.

3. Can molecular biomarkers be used
as a standalone test for early lung
cancer detection?

The advances in multi-omic technologies have

informed us about the molecular biology underpinning

lung carcinogenesis leading to an explosion in biomar-

ker research. The vast intertumour heterogeneity that

exists makes identifying a ‘one size fits all’ (maximally

sensitive) biomarker to identify all lung cancer cases

difficult. Rarer mutations may not be accounted for.

The common mutations in lung cancer genes are also

present in ex-smokers in histologically ‘normal’ tissue

[27], accumulate with age [28] and in chronic lung con-

ditions such as lung fibrosis [29] and chronic
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obstructive pulmonary disease (COPD) [30], limiting

the specificity of many candidate biomarkers. Also,

this elusive ideal biomarker should ideally be involved

in early carcinogenesis to limit lead time bias.

There are many tumour-derived components that

can be detected in blood: cancer-associated auto-anti-

bodies, circulating cell-free tumour DNA (ctDNA),

circulating cell-free tumour RNA – the most abundant

type being microRNAs (miRNAs), circulating whole

tumour cells (CTC), tumour educated platelets (TEPs)

and exosomes. Figure 2 depicts these components.

3.1. Cancer auto-antibodies

The EarlyCDT-Lung trial has shown promise in

increasing the pretest probability of lung cancer in a

high-risk population [31]. This study involved a blood

test that measures auto-antibodies to the lung cancer-

associated antigens p53, NY-ESO-1, CAGE, GBU4-5,

Annexin 1 and SOX2. More recently, Hu-D was added

to the panel. In contrast to detecting cancer-associated

antigens as markers of tumour burden, detection of

auto-antibodies may theoretically be better suited to

screen for early disease, as there is an early amplifica-

tion signal in auto-antibody levels produced during the

immune sensing phase [32]. Initial clinical validation of

the six-auto-antibody panel notably showed no signifi-

cant differences in detection efficacy among the vari-

ous stages of disease, demonstrating potential utility in

early disease. Meta-analysis of four studies explored

the diagnostic value of the 7-panel assay – shown to

be superior to the 6-panel assay – and showed a

pooled sensitivity of 47% (range 37–66%), specificity

of 90% (range 84–91%) and area under curve (AUC)

of 0.90 (range 0.87 and 0.93) but of note, the P value

was 0.00 indicating heterogeneity between studies [33].

A sensitivity of 47% suggests it is not a useful stan-

dalone lung cancer rule in test, but, as discussed later,

this auto-antibody test may have utility when com-

bined with other tests.

3.2. Circulating cell-free tumour DNA

Detecting circulating ctDNA has been applied success-

fully for the monitoring of patients with existing

tumours, in particular tracking drug-resistant EGFR

mutations [34]. It has not been useful for early diagno-

sis of cancer because of both low sensitivities in detect-

ing small tumours that only shed minute quantities of

DNA into the blood but also due to a lack of knowl-

edge of the primary tumour to guide mutational analy-

sis. The ctDNA fraction (equivalent to mutant allele

Fig. 2. Image depicting all tumour-derived components that can be detected in blood. Produced using BioRender.
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fraction) in early disease is low, representing ~ 0.01–
1% of total circulating cell-free DNA (cfDNA) [35]. A

1 mL of blood sample contains an amount of DNA

equivalent to the genomes of 2000 cells, so one can see

the limits in detecting such mutant variants. Diaman-

dis et al. [36] have shown that when a tumour diame-

ter drops below 10 mm, not a single mutant DNA

copy is likely to be retrieved in 10 mL of plasma. Fur-

thermore, a 1-mm tumour is likely to be associated

with just one copy of ctDNA in the entire circulation.

These calculations were built from work using circulat-

ing fetal DNA in the maternal circulation. Assuming

the fetus is a ‘foreign body’ (used as a proxy for

tumour presence) and the concentration of fetal-

derived DNA correlates with fetal weight; if the rate

of diffusion of DNA into the circulation is equal

between normal and malignant tissue, then a 10-cm3

tumour correlates to 0.1% of ctDNA in the circula-

tion. These assumptions have some limitations. The

rate of diffusion of ctDNA is unlikely to match that

of normal tissue and different tumours are likely to

shed DNA at different rates. This model does however

serve to illustrate the limitations of ctDNA in early

cancer detection and explains why it is currently clini-

cally utilised in tracking resistance and relapse when

tumours are larger and/or more aggressive.

Studies using library sequencing adaptors for genes

selected at a population level have so far shown sensitiv-

ities of 50% for patients with stage I NSCLC [37] and

59% for patients with stage I or II NSCLC [38]. This

approach reduces the test’s specificity as some of these

mutated genes can also be present in noncancerous tis-

sue. A recently published machine learning method was

able to distinguish somatic clonal haematopoiesis muta-

tions from tumour-derived mutations based on frag-

ment size and mutational signature. The authors were

able to detect ctDNA from 42% of patients with stage I

lung cancer [39]. Another paper used cell-free DNA

fragmentation length and position within the genome to

diagnose cancer [40]. The team discovered that the frag-

ments of tumour-derived ctDNA varied more in length

compared to cfDNA, being typically shorter by about

3–6 bases. The sensitivity of another machine learning

model based on fragmentation features for detecting

lung cancer was 100% (of various lung cancer stages),

and 73% when used in patients with stage I Iung cancer.

These fragmentation models indicate that instead of

seeking to detect single variants, akin to finding needles

in haystacks, a more superficial approach such as ana-

lysing fragment size may be required for detection of

early-stage disease.

Another approach is to analyse the methylome of

ctDNA. Akin to analysing fragment length,

information can be derived from a nonspecific portion

of genomic DNA regions rather than searching for

individual mutations as there are global changes in

DNA methylation during the initiation and progres-

sion of tumourigenesis [41], that are also tissue- and

cancer-type specific [42]. Chen et al. [43] recently

showed that PanSeer, a noninvasive blood test detect-

ing methylation aberrations in ctDNA, detects cancer

in 95% (95% CI: 89–98) of asymptomatic individuals

who were diagnosed up to 4 years after the test. Lung

cancer patients were included in the dataset, but the

specific sensitivities for lung cancer are not quoted.

The healthcare biotechnology company GRAIL Inc

aim to produce a multicancer early detection test that

identifies abnormally methylated ctDNA [44]. GRAIL

investigators showed that whole-genome bisulfite

sequencing outperformed whole-genome and targeted

sequencing approaches for multicancer detection

across many cancer stages at high specificity [45]. The

data on lung cancer specifically have not been pub-

lished.

3.3. MicroRNAs

MicroRNAs are short noncoding, stable RNA sequences

that regulate gene expression post-transcriptionally.

Tumour-secreted miRNAs are detectable in the circulat-

ing blood [46]. Studies evaluating miRNAs as an early

detection tool are discrepant, potentially due to issues

around sample sizes, processing techniques and lung can-

cer pathology. A meta-analysis of 28 studies showed a

pooled sensitivity and specificity of miRNA as biomark-

ers of 0.75 and 0.79, respectively [47]. Subgroup analyses

show that miRNAs are more effective in detecting

NSCLC in Caucasian populations compared to Asian

populations; panels of miRNAs were superior to individ-

ual, as were blood-derived miRNAs compared to spu-

tum-derived miRNAs. The largest study in this meta-

analysis included only 320 subjects. Future studies will

perhaps focus on specific histological subtypes of cancer

as miRNAs vary and reflect lung cancer subtypes [48].

3.4. Circulating tumour cells

Migration of tumour cells into the blood stream is an

early event that occurs during carcinogenesis, resulting

in CTCs. CTCs have been found to be present in as

many as 80% of patients with stage I/II NSCLC [49].

CTCs are, however, rare and both difficult and costly

to isolate, so cementing a role for them in clinical

practice appears challenging [50]. A recently published

multicentre, prospective cohort study sought to assess

whether CTCs can be used as a standalone lung cancer
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screening tool amongst high-risk patients [fulfilling

National Lung Screening Trial (NLST) criteria] with

COPD [51]. The study included three annual LDCT

visits to determine the sensitivity of CTCs; the primary

endpoint was the diagnostic performance of CTCs at

the first screening visit. Out of 614 patients who

attended the first visit, 27 patients had CTCs detected

(seven patients had malignant looking CTCs that had

to have all four cytological features of malignancy and

20 patient had CTCs with ‘uncertain’ malignant fea-

tures, where the cells only had to have one cytological

feature). There were 19 lung cancers detected (screen

detected at T0 and confirmed on histology); of which

five had CTC detected (three malignant, two uncertain

malignant features) giving a sensitivity of 23.8%, too

low to justify use of CTC isolation as a standalone

tool. This study used a single method of CTC extrac-

tion, and other extraction methods may increase CTC

yield. Of interest, the authors found the overall risk of

developing lung cancer was almost three times higher

than that in NLST and Nederlands–Leuvens Longkan-
ker Screenings Onderzoek (NELSON), supporting

COPD as being an independent risk factor for lung

cancer development [52].

It seems the sensitivity of detection of CTCs chal-

lenges their use as a screening tool but improved

methodology may help. Meanwhile, their use as a prog-

nostic marker in more advanced disease looks more

exciting [53]. For instance, pulmonary vein CTCs col-

lected at surgery revealed higher mutation overlap with

future metastasis than with the primary tumour, sug-

gesting a causal role in disease relapse [54]. Their pres-

ence may therefore guide relapse treatment strategies.

3.5. Tumour-educated platelets

Platelets are known to interact with tumour cells and can

affect their growth and invasive capabilities [55]. Platelets

are receptive to growth factor release from tumour cells

that cause specific spliced RNA profiles within platelets

that can be sequenced [56]. Such analysis was able to dis-

criminate 53 locally advanced NSCLC patients from 377

healthy individuals with an AUC of 0.89 [57]. The defini-

tion of locally advanced was not given. A key challenge

with TEPs appears to be the transcriptome is exquisitely

sensitive to external conditions so future prospective

studies must ensure the patient and control samples are

collected under the same conditions.

3.6. Extracellular vesicles

Extracellular vesicles (EVs) are cell-derived structures

that are present in plasma. They traffic biological

material across membranes to maintain compartmen-

talisation of molecules, but also serve as a cross-talk

communication system that can influence tumour

related pathways within the tumour microenvironment

[58]. Exosomal RNA is more resistant to RNAse activ-

ity than free form circulating RNA [59] and is more

sensitive in detecting epidermal growth factor muta-

tions compared to matched ctDNA [60]. Proteins are

also carried by extracellular vesicles; Vykoukal et al.

[61] used mass spectrometry to identify over 600 pro-

teins, four of these were able to distinguish adenocarci-

noma (stages I and II) from healthy controls with an

AUC of 0.90. Despite EVs being a trove of tumour

cell-specific information more resistant to degradation

and hence very appealing, a limiting factor in clinical

practice will be their challenging isolation from

plasma.

3.7. Volatile organic compounds

Alterations in key metabolic pathways can be

detected in exhaled breath and are strongly linked to

the transformation of healthy cells to malignant cells

[62]. A breath test is noninvasive and cheap to per-

form. Exhaled breath analysis detects the concentra-

tions of volatile organic compounds (VOCs), which

reflect underlying pathophysiological processes [63].

Patterns of VOCs have been shown to alter when

lung cancer is present [64–71]. A recent study demon-

strated that exhaled breath analysis could differentiate

subjects with lung cancer from healthy individuals

with a sensitivity of 94%, a negative predictive value

of 85% and an AUC of 0.76, although 75% of

patients had disease at stage III or later stages [72].

Specificity is an issue, as VOCs are also present in

healthy individuals, and hence, there is no consensus

on what constitutes a normal reference value. Anto-

niou et al. provide some insight as to why there are

no validated, approved breath tests despite their

strong biological basis: studies have small numbers,

many of which are not multisite so reproducibility is

not ascertained; breath collection and analysis meth-

ods need to be standardised; findings have not been

prospectively validated and development requires

fruitful collaborations between academia and industry

[71].

3.8. Bacterial biomarkers

The mucosal surface in the lung is colonised by a

diverse bacterial community. The interplay between

the host response to microbes and lung carcinogenesis

is of increasing interest. The development of lung
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cancer is associated with chronic inflammation [73] but

how the tumour exploits the local immune system to

create a permissive environment for growth is not well

understood. The microbiota is believed to orchestrate

the balance between tumour promoting inflammation

and tumour immunity. Interestingly, a recent study

showed that germ-free or antibiotic treated mice were

protected from lung cancer development, despite hav-

ing KRAS mutations and p53 loss [74]. Commensal

bacteria were shown to activate cd T cells that pro-

voked the inflammatory response necessary for car-

cinogenesis. It has also been shown patients with lung

cancer carry a different and less diverse microbiota

compared to healthy controls [75].

The microbiome of saliva has shown promise as

a biomarker in a small study of 61 patients with

lung cancer and 25 controls. Specifically, detection

of both Capnocytophaga and Veillonella species has

a 84% sensitivity and 86% specificity in distinguish-

ing patients with lung squamous cell carcinoma (all

with stage II disease or above) from control sub-

jects [76]. The results were less convincing for ade-

nocarcinoma.

We foresee a definite role for biomarkers as an

adjunct tool to improve pretest probabilities for

screening, assist our decision making in nodule man-

agement and help guide decisions in early central can-

cers. Finding a standalone, highly sensitive biomarker

for early detection that is subsequently validated in a

highly statistically powered, multicentre study to

ensure reproducibility however has significant cost and

time challenges to commercialisation.

4. Early detection of parenchymal
lung cancers: low-dose CT screening
and integration with biomarkers

Earlier attempts to screen for lung cancer using X-ray

and sputum testing failed to show a mortality reduc-

tion [77], the prime objective of a screening pro-

gramme [78]. The success of two trials showing

reduction in mortality using spiral low-dose CT screen-

ing has catapulted lung cancer screening onto the

agendas of health policy makers worldwide due to the

speed of image acquisition, low radiation dose and

high sensitivity. To understand where biomarkers show

promise, one needs to be aware of the limitations of

LDCT screening.

Two landmark studies – NSLT [79] and NELSON

[80] – have demonstrated that LDCT screening reduces

lung cancer mortality. LDCT screening does however

have challenges that need solutions, or more likely,

compromises. The trial methodologies and results are

summarised in Table 1. As compared to the NSLT

trial, the NELSON trial included younger patients

with less smoking exposure; fewer females; different

screening intervals; and the comparison group were

not screened. Importantly, NELSON also used a vol-

ume-based nodule-management protocol rather than

the diameter-based protocol of NLST; positivity

depended on initial lesion volume and in later screen-

ing rounds, VDT. This resulted in a much lower false-

positive rate of 1.2%. To put into perspective the pro-

mise of LDCT screening, the number of women

needed to screen to prevent one death from breast

Table 1. Overview of findings from NLST and NELSON LDCT screening trials.

National Lung Screening Trial (NLST)

Nederlands–Leuvens Longkanker Screenings Onderzoek

(NELSON)

Trial design RCT of annual LDCT or chest X-ray

Diameter-based protocol for lesion

measurement

RCT of 4 CT scans over 6 years (rounds 1/2/3/4:

baseline, year 1/3/5.5) vs no screening

Volume-based protocol for lesion measurement

Number of participants (male/

female)

53 454 (31 532/21 922) 15 792* (13 195/2594)

* 3 unknown sex

Inclusion criteria Aged 55–74

> 30 pack year history

Current smoker or quit < 15 years

Aged 50–74

Current or former smokers (< 10 years since quitting)

who had smoked > 15 cigarettes a day for > 25 years

or > 10 cigarettes a day for > 30 years

Key results 20% relative risk reduction in lung cancer

mortality

7% reduction in overall mortality

False-positive rate: 96.4%

63% cancers detected stage 1

24% relative risk reduction in male lung cancer mortality

33% relative risk reduction in female lung cancer

mortality (not statistically significant due to small

sample size)

All-cause mortality rate ratio 1.01

False-positive rate: 1.2%

71% cancers detected stage 1
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cancer is 781 [81]; compare this to the NLST trial

which needed to screen 320 patients to prevent one

death from lung cancer [79].

The actual number of lung cancer lives saved using

the NLST inclusion criteria was shown to only prevent

10% of annual lung cancer deaths in the US [82]. The

U.S. Preventive Services Task Force has since

increased the age cut off for their current screening

service to 80 years of age [80]. NLST criteria are

insensitive for detecting stage I/II cancers: in one large

US cancer centre only 48% of stage I/II cancers would

have met NLST inclusion criteria for screening [83].

Using model-estimated risk predictors is superior to

just using smoking and age [84]; numerous such pre-

diction models now exist (e.g. Liverpool Lung Project

[85], Prostate, Lung, Colorectal and Ovarian Cancer

Screening Trial (PLCOm2012) [86], Nord-Trøndelag

Health Study (HUNT) [87]). There have been several

smaller but successful LDCT screening trials in the

UK [88–90]. In February last year, the UK NHS

announced the targeted Lung Health Check Pro-

gramme, rolling out LDCT screening across 14 sites in

England [91], a likely stepping stone before it is imple-

mented nationwide.

The incidence of adenocarcinoma has risen in the

US since 2006 [92] and has now surpassed lung squa-

mous cell carcinoma [93]. Lung adenocarcinoma is

often located at the lung periphery and can display a

wide variety of microscopic features [94], and these

observations necessitate a revised classification system

[95]. The incidence in men has stabilised but is rising

in women [96], and this cannot be explained by smok-

ing behaviour alone [97]. The declining rates of smok-

ing may underlie the rise in relative proportion of lung

cancers in never-smokers. In the UK, it is estimated

that nearly 6000 people who have never smoked die of

lung cancer every year [98]. These patients are more

commonly female and harbour an oncogene-driven

adenocarcinoma [99]. Current LDCT screening selec-

tion criteria will miss this important population, in

addition to those patients that have a lower smoking

history than what eligibility criteria demand. It is esti-

mated that < 50% of incident lung cancer cases are

amongst individuals who are eligible for screening

[100]. Therefore, early detection methods are desper-

ately needed that allow us to screen a wider popula-

tion, potentially then leading to more intensive

screening such as LDCT.

Molecular biomarkers could routinely aid LDCT in

three ways: by selecting patients who will gain the

most benefit (most deaths being averted while being fit

enough to proceed with treatment), using the least

resources (for economic and radiation reasons) while

potentially including people that would not qualify for

CT screening through current criteria; assisting in

interpreting nodules and supporting decisions on inter-

val screening schedules.

5. Molecular biomarkers for selecting
patients for CT screening, aiding
nodule interpretation and to
determine CT scanning intervals

Early detection is only worthwhile if effective treat-

ment can be offered. Screening highly co-morbid

patients who are unlikely to be offered treatment leads

to lead time bias. The criteria determining who is ‘fit’

to receive curative treatment are broadening with the

advent of SABR [8,16,17].

5.1. Patient selection

Young et al. have compared the utility of a gene-based

model [germline single nucleotide polymorphisms

(SNP)] with the PLCOm2012 risk model in predicting

risk of developing lung cancer. While the gene-based

risk model has comparable predictive utility as the

PLCOm2012 risk model (unpublished data, personal

communication with author), it may be more efficient

at identifying who will benefit most from lung cancer

screening [101]. This gene-based risk model combines

the genotypes of 12 SNPs with a simplified clinical

score for lung cancer validated in a subgroup of the

NLST (N = 10 054 subjects). Young et al. found that

when NLST participants that had been initially classi-

fied according to the PLCOm2012 risk model were

reclassified according to the personalised gene-based

risk model, 41% of them changed risk tertile (unpub-

lished data, personal communication with author). The

authors believe the SNP data reflect tumour aggres-

siveness [102] and re-classifies some of the

PLCOm2012 intermediate risk individuals into the

high-risk tertile (where net screening benefit decreases

due to competing causes of death, more aggressive

cancer and decreased treatment tolerability). Similarly,

patients in the PLCOm2012 high-risk tertile with less

aggressive tumour biology are re-assigned into the

intermediate risk tertile where screening benefits are

greatest. When stratifying by risk quintiles (N = 5), the

number of individuals needed to screen to prevent one

lung cancer across quintiles 2–4 (intermediate risk) was

reduced from 182 with the PLCOm2012 model to 98

using the gene-based approach – twofold more efficient

[103].

A panel of five proteins was shown to outperform

the current US screening eligibility criteria in
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predicting lung cancer in a cohort of 63 patients with

lung cancer and 90 matched controls (sensitivities 0.63

vs 0.42). It was also more specific (0.95 vs 0.86), again

providing evidence that biomarker risk profiling may

aid patient selection to screening programmes [104].

A group in Scotland used the seven-auto-antibody

panel previously described to select adult patients (50–
75, > 20 pack years, living in the most deprived quin-

tile of deprivation) for LDCT screening. Participants

were randomised to either undergo the Early CDT-

Lung test (and if positive, LDCT scanning 6 monthly

for 2 years; if negative, to receive standard clinical

care) vs no Early CDT-Lung test and standard clinical

care in the control arm. Their aim was to see whether

this intervention reduces the rate of late-stage cancer

diagnoses [105,106]. At 2 years, there were 127 lung

cancers detected from 12 208 participants randomised.

In the intervention arm, 33/56 (58.9%) lung cancers

were diagnosed at stage III/IV compared to 52/71

(73.2%) in the control arm. The hazard ratio for stage

III/IV presentation was 0.64 (95% CI 0.41, 0.99).

There were nonsignificant differences in lung cancer

and all-cause mortality after 2 years. Full data from

this study are awaited and detail on whether the sur-

vival advantage can be attributed to the blood test or

simply the increased CT rate in the active arm. Given

the surprisingly low incidence of lung cancer, the abso-

lute risk reduction in late-stage diagnosis in the inter-

vention arm was only 0.3%. This low lung cancer

incidence could be attributed to the fact that the Early

CDT-Lung test misses early lung cancers that may

have been detected if all participants had received

LDCT.

5.2. Nodule interpretation

Molecular biomarkers may help stratify low- and high-

risk nodules, giving clinicians more confidence when

interpreting scans. False-positive test results following

screening are a problem, they cause psychological mor-

bidity [107] and rarely death; there were six deaths

within 60 days of an invasive procedure in the NLST

amongst patients who had false-positive scan results

[79]. Indeterminate scans are also common, and these

require further screening resulting in increased radia-

tion exposure for recipients. In NELSON, 20% of

scans within the first screening round were indetermi-

nate [80]. In the UK, clinicians typically use the

BROCK University Lung Cancer Screening and Risk

Prediction model (BROCK) to aid solid nodule risk

prediction [108,109] and the British Thoracic Society

Nodule guidelines to determine interval scanning. The

problem with these models is there is interobserver

variability in measuring diameters, volumes and other

factors used in the models, however the use of com-

puter aided detection should reduce this [110]. Of note,

the BROCK model has utility in solid nodules, but

not for subsolid nodules (ground glass and part-solid

nodules).

A protein-based model that combines clinical risk

factors with 13 proteins to classify indeterminate lung

nodules – those deemed to have a clinician assessed

pretest probability of malignancy of < 50% – has been

proposed by Silvestri et al. [111]. In a prospective,

multicentre observational trial with 685 patients, sub-

group analysis of 178 patients who had one nodule of

between 8 and 30 mm diameter showed that use of the

13-protein classifier outperformed other validated risk

prediction models and positron emission tomography

scans (P < 0.001) and demonstrated a sensitivity of

97% and a negative predictive value of 98% in distin-

guishing benign from malignant nodules. Malignancy

was confirmed histologically; benign disease was con-

firmed either by histology or radiologically (nodule

size remained stable or reduced).

The addition of the 7-auto-antibody panel has

shown to also distinguish between benign and malig-

nant nodules [112]. It increased the relative risk of

malignancy by 2.7 for nodules measuring 4–20 mm.

Lowering the risk threshold to include more partici-

pants (using the Solitary Pulmonary Nodule Malig-

nancy Risk Score (MAYO) [113]) and adding this

antibody panel increased sensitivity by reclassifying a

proportion of patients who had been wrongly classified

as negative by MAYO criteria. Another group more

recently used a combination of four other auto-anti-

bodies that could detect malignant nodules with an

AUC of 0.78 in a subgroup of indeterminate nodules

(8–20 mm) amongst an independent validation cohort

of 250 patients [114]. These results, as with all novel

biomarkers, need validation in much larger studies.

Philips et al. [115] reanalysed the dataset of around

300 patients who donated breath for an earlier LDCT

study [116]. Accordingly, they identified a VOC signa-

ture, termed Mass Abnormalities in Gaseous Ions with

Imaging Correlates (MAGIIC), that was able to pre-

dict which pulmonary nodules were malignant with an

AUC of 0.88 [115]. These results remain to be vali-

dated in a larger study.

The plasma of 60 healthy controls and 150 patients

who underwent surgery for suspicious nodules was col-

lected and tested for [117] methylation at the promot-

ers of five genes known to be differentially methylated

in the circulating DNA of patients with NSCLC

(SOX17, TAC1, HOXA7, CDO1 and ZFP42)

[118,119]. A three-gene combination of the best
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individual genes had a sensitivity and specificity of

93% and 62%, respectively, and an AUC of 0.77 for

identifying malignant nodules.

Multicentric Italian Lung Detection trial (MiLD), a

randomised LDCT trial in Italy (annual or biennial

LDCT vs observation only), collected plasma prospec-

tively and then retrospectively analysed for a 24-

miRNA classifier [120] previously tested for the predic-

tion of both the risk of lung cancer development and

presence of aggressive disease [121]. The classifier

grouped patients into tertiles of high, intermediate or

low risk of having lung cancer. For patients who had

suspicious nodules detected and classified as being high

risk by the miRNA classifier, the false-positive rate

was reduced from 19.4% (LDCT screening alone) to

just 3.7%. For all patients across both arms, the classi-

fier had a negative predictive value of 99% indicating

the miRNA panel may also have a use as a pre-LDCT

test to select patients for screening. Other smaller stud-

ies have supported the use of miRNA in distinguishing

malignant and benign nodules [122,123].

5.3. CT screening intervals

Blood miRNA isolated from the MiLD trial has also

shown promise in selecting the timing of the next

LDCT interval scan [124]. Those with a negative

miRNA and initial negative CT had a 3-year follow-

up scan. There were no detrimental effects on stage 1

resection or interval cancer incidence in the 3-year

double-negative group suggesting the use of MiRNA

can provide reassurance when scheduling interval scans

and can limit unnecessary radiation exposure.

6. Future use of molecular biomarkers
in lung cancer screening: nonsmokers,
aggressive tumours and stopping
screening

First, biomarkers are needed to detect lung cancer in

those that do not qualify for lung screening – light or

never-smokers [125]. Second, from the NELSON data-

set, at year 3 (round 3), 3.9% of all tumours were

stage IV, whereas 2.5 years later, 13.1% of tumours

were stage IV [126]. A biomarker that could identify

individuals who develop these aggressive tumours at

an earlier time point is much needed to avoid having

to increase the frequency of scanning across the whole

screened population. Finally, there is also a vacancy

for a biomarker to help determine whether it is safe to

stop screening. Currently in the US, screening stops

once patients turn 81 or if it has been more than

15 years since they stopped smoking. So, if a 55-year-

old quits smoking on starting screening, then screening

will stop 15 years later, at which point their risk of

lung cancer is one and a half times the risk of when

they started screening [86,127].

7. Challenges of LDCT screening

7.1. Uptake & adherence

The large LDCT trials have enrolled participants of a

higher socioeconomic status (SES). Those from a

lower SES, who are at highest risk of developing lung

cancer, are less likely to engage with an offer of

screening or persist with the whole programme [128].

Services need to be designed to reduce this participa-

tion bias. The Manchester Lung Health Check com-

munity-based project is one such example; most

participants were from the lowest decile of deprivation

in England. Ever smokers aged between 55 and 74

were invited for a lung health check in mobile vehicles

next to local shopping centres, with immediate access

to LDCT for those at high risk (6-year risk ≥ 1.51%,

PLCOM2012 calculator) [90]. The Lung Screen

Uptake Trial (LSUT) in London, aimed to increase

enrolment to a LDCT programme using a postal invi-

tation strategy for high-risk patients to have a ‘lung

health check’ [88] and tested invitational materials

designed to reduce anxiety and increase uptake in peo-

ple from lower SES. Patients in Islington and Hackney

were randomised to either receive a more ‘traditional’

text heavy leaflet or one that was less text heavy and

pictorially targeted some known psychological barriers

to attendance. Sixty per cent of patients (across both

arms) were from the most deprived Index of Multiple

Deprivation quintile. Across both trial arms, uptake

was higher than has ever been observed previously at

53% of those invited. The low-burden intervention did

not improve uptake overall but was the more equita-

ble, better engaging those living in areas of highest

deprivation and lung cancer incidence.

7.2. Incidental findings

More sophisticated imaging techniques means more

incidental findings are detected [129].

The prevalence of incidental findings detected during

the early phase of the NELSON trial was reported to

be as high as 73%, but when these cases were dis-

sected, those requiring further evaluation was only 7%

[130]. In the baseline round of NLST, 10% of subjects

had a negative (for lung cancer) screen but other find-

ings warranting further evaluation [79]. Incidental
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findings cause anxiety [131] and are also costly. In the

US, 46% of the money reimbursed for screening from

Medicare was for incidental findings [132]. Incidental

findings, however, may offer an opportunity to discuss

primary prevention measures. Sixty-one per cent of

patients that took part in the London LSUT trial had

coronary artery calcification. Ninety-eight per cent of

patients had a QRISK score of > 10%, who would

qualify for a statin as primary prevention against car-

diovascular disease; however, only 56% of patient

reported statin use [133].

7.3. Oncogenic risks of radiation dose

With a LDCT scan, patients are exposed to an average

dose of 1.5 mSv of radiation [134], approximately half

of the 2.7 mSv natural ambient yearly exposure in the

UK [135]. It is estimated that the ratio of LDCT-

caused cancers to lung cancer deaths averted by LDCT

is 1:20 [136]. A biomarker to help determine appropri-

ate screening intervals would likely shift the benefit-

harm ratio even more favourably.

7.4. Resource demands of LDCT screening

In order to deliver LDCT screening nationally, there

needs to be ample radiographers, radiologists and CT

scanners. There is currently a national shortage of

radiologists (of over 1000 consultants) to deliver the

current workflow of the NHS, even without LDCT

scanning [135]. There are also shortages in CT scan-

ners: the latest figures are from 2014, where in the UK

there were 9 CT scanners per million population, com-

pared to 35 in Germany [135]. Artificial intelligence

deep learning algorithms are being developed to detect

lung cancer, which may assist with workflow [137,138].

7.5. Tissue diagnosis

To comprehensively genotype tumours requires an

adequate quantity and purity of tissue [139]. Most

early cancers are detected in the lung parenchyma.

Sixty per cent of nodules are in the outer third of lung

[140] and can be challenging to sample as nodules

move with respiration [141]. Current methods for tis-

sue acquisition include percutaneous CT guided lung

biopsy and bronchoscopic trans-bronchial biopsy. Per-

cutaneous CT biopsy can be very accurate with a diag-

nostic sensitivity of 85.7–97.4% [142].

Navigational bronchoscopic technology has been

increasingly used in sampling lung nodules. Rendering

of CT imaging to create a virtual bronchoscopic path

to nodules can help guide the bronchoscopist. The

addition of fluoroscopy and radial endobronchial

ultrasound (EBUS) can then identify when the nodule

has been reached for sampling but not visible [143].

Electromagnetic navigation has most commonly been

adopted. This is a system that guides a metal catheter

tip to the tumour using a virtual map [144]. Cone

beam CT has been used to allow almost real time

biopsies as imaging is performed just prior to biopsy

and can be combined with novel navigational methods.

These bronchoscopic techniques have sensitivities in

the range of 60–70% [145,146], but use of robotic

bronchoscopy may change this, housing a flexible and

steerable bronchoscope and catheter [147]. The sensi-

tivities for robotic bronchoscopy ranged from 69% to

77% in 165 patients treated across four different cen-

tres [148].

7.6. Overdiagnosis

Overdiagnosis refers to identifying and potentially

treating problems that were never going to cause harm

[149], the patient will die from something other than

their lung cancer. Overdiagnosis was felt to represent

18% of all lung cancers detected in the NLST trial

[150] but with an additional median 6 year of follow

up data, overdiagnosis is reduced to 3% [151]. In a

similar vein, it must be noted that although lung can-

cer mortality is reduced by LDCT screening, NEL-

SON failed to show a reduction in all-cause mortality

[79,80]. Lung cancer screening is not unique with this

discordance being seen in most cancer screening trials

[152,153]. Proposed reasons for this include harms due

to interventions resulting from screening; biases in

interpreting causes of death and small sample sizes.

Biomarkers may improve overdiagnosis by detecting

more aggressive tumours or enriching the screened

population with those individuals most likely to bene-

fit. This may favourably alter the all-cause mortality

rates.

8. Early detection of central airway
cancers

Bronchoscopic detection and surveillance has allowed

pre-invasive lesions to be identified and followed clo-

sely [154–157]. Importantly, tissue collected longitudi-

nally for analysis provides a window to unravel the

dynamic molecular events that occur in early lung

squamous cell cancer (LUSC) development. Before

progression to invasive LUSC, there is a step-wise evo-

lution of ever more disordered pre-invasive lesions,

ranging from mild and moderate dysplasia (low-grade

lesions) to severe dysplasia and carcinoma-in-situ
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(high-grade lesions) [158]. High-grade lesions are more

likely to progress to invasive cancer than low-grade

lesions [156,159–163], with progression rates varying

between 43% and 87% across different studies that

have different endpoints [155,161,164–166]. The preva-

lence of severe dysplasia and carcinoma in situ was

6% and 1.6%, respectively, amongst a cohort of cur-

rent smokers [167,168].

The rationale for early detection is the survival of

those with intraepithelial neoplastic lesions (stage 0),

or early-stage invasive cancers (Stage 1A – tumour

≤ 2 cm without metastatic spread) of the central air-

way can be excellent, with 5-year survival of more

than 70% [169–171]. Micro-invasive or pre-invasive

lung cancers are still eligible for curative treatment

[172].

9. Diagnosis of early central lung
cancers

Pre-invasive lesions are not commonly detected as they

are often asymptomatic and discovered by chance

[163]. The classic screening method for centrally

located early lung cancer is sputum cytology. How-

ever, this method is limited by low sensitivity

[173,174]. Autofluorescence bronchoscopy (AFB)

enables their detection by utilising the spectral differ-

ences in fluorescence and absorption properties of nor-

mal and dysplastic epithelium [168]. AFB has twice the

sensitivity compared to white light bronchoscopy for

lesion detection, but its specificity is limited due to

false-positive fluorescence in areas of inflammation or

increased epithelial thickness [175]. However, there are

data showing abnormal fluorescence and benign histol-

ogy does impart lung cancer risk which conforms to

the recent findings of disordered genomes being pre-

sent in ‘normal’ airway basal cells [27].

Their mainly silent existence lends to a screening

programme. Low-dose CT scanning misses small cen-

tral micro-invasive or pre-invasive disease [176]. The

addition of AFB to low-dose CT scanning showed suc-

cess in two small studies [176,177] but in a larger study

of patients deemed high risk for lung cancer, AFB

detected too few CT occult cancers (0.15%) to justify

the addition of AFB into a lung cancer screening pro-

gramme [174,178]. The low detection of CT occult

lesions may in part be due to patient selection – in one

of the earlier studies, the authors used sputum cytome-

try as a surrogate for risk to be included in a CT

screening trial; 29% of cancers were identified by AFB

that were CT occult [177]. Another contributory factor

was there were large variations in both the number of

biopsies taken across the different trial sites in addi-

tion to experience using AFB technology.

To design a screening trial to detect early central

lung cancers requires enriching the target population

for a greater risk of bronchial premalignant change.

Ideally, this would be a less-invasive approach to a

current bronchial airway 280-gene classifier (necessitat-

ing bronchoscopy) that performs well in predicting the

presence of pre-invasive lesions (AUC = 0.92) [179].

The future may consist of AFBs for patients with

abnormal cheek or nasal samples akin to colposcopy

for patients with abnormal preceding cervical smears.

The nasal airway transcriptome is different between

smokers and nonsmokers and shares similarity to the

transcriptome of the bronchus [180]. Work from the

Lung PreCancer Atlas – a multicentre multi-omic

characterisation of premalignant lung lesions – will

seek to explore whether genetic changes can be

detected noninvasively in the nasal epithelium [181].

The nasal epithelium does not develop squamous cell

cancer, which suggests the presence of protective

mechanisms, which may pose a challenge in nasal bio-

marker development.

10. Biomarkers to predict pre-invasive
lesion progression

In the largest longitudinal study of treatment na€ıve

pre-invasive high-grade lesions, it has been shown that

50% of high-grade lesions progress to invasive cancer

within 2 years and 30% spontaneously regress [158].

In the same study, molecular analyses of the high-

grade biopsy that precedes either progression to inva-

sive disease or regression to lower grade or normal

epithelium (the ‘index’ biopsy) has shown that progres-

sive lesions have more mutations compared to regres-

sive lesions, with frequent alterations in known LUSC

drivers such as CDKN2a, SOX2 and AKT2 and fre-

quent gains/amplifications at multiple locations on dis-

tal 3q. The DNA methylome of regressive index

lesions was similar to normal epithelium. The authors

devised prediction signatures for progression based on

both gene expression (which was able to predict all

‘progressors’ correctly when used on a validation

cohort) and DNA methylation (AUC 0.99). The

authors also found a considerable number of probes

from index lesions had intermediate methylation. The

methylation classifer was still able to predict progres-

sive from regressive cases amongst these intermediately

methylated regions (AUC = 0.74). Importantly, this

methylation heterogeneity that allowed for prediction

was a genome-wide phenomenon and not just related
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to certain genes functionally implicated in lung cancer

development.

Systemic biomarkers for precancerous disease is an

area in need of study. The only published study to

date investigating ctDNA in pre-invasive bronchial

lesions showed that the amount of ctDNA did not dif-

fer amongst patients with pre-invasive bronchial dis-

ease compared to controls [182] but it appears in the

literature that no sequencing or methylation analysis

has ever been performed.

11. Treatment of pre-invasive
squamous cell lung cancer

There is no randomised trial evidence to help decide

whether treatment of precancerous lesions is beneficial.

Chemo-preventative trials have had limited success.

Inhaled corticosteroids [183]; Sulindac [184], a nons-

teroidal anti-inflammatory drug; Myo-inositol [185], an

inhibitor of the PI3K pathway and Iloprost [186], a

synthetic analogue of prostacyclin have all been tested.

The latter two did show some anticarcinogenic effects.

Spontaneous regression rates as high as 30% make tri-

als difficult. A trial is currently underway to investi-

gate whether Nivolumab (PD-1 antagonist) can reverse

low-grade dysplasia in pre-invasive lesions [187]. New

drug targets will become available as the molecular

biology is better understood. For instance, it has

recently been shown that amongst progressive high-

grade lesions, antigen presentation is impaired by both

genetic and epigenetic changes; CCL27–CCR10 sig-

nalling is altered and the immunomodulator TNFSF9

is downregulated [188].

Surgery is an option but the lesions’ central location

means most individuals require a lobectomy, carrying

appreciable morbidity and mortality that is difficult to

justify when there is no guarantee of progression to

invasion. Patients also have a field effect indicating

high chances of cancer developing elsewhere. Tissue

sparing therapies using either electrocautery or photo-

dynamic therapy delivered via a bronchoscope show

promise [189,190].

12. Conclusion

The goal of early detection is to facilitate curative

treatment in those that will receive benefit from the

intervention. Smoking cessation or strategies to pre-

vent smoking initiation are the best means to reduce

lung cancer mortality. In the UK, funding for smoking

cessation programmes was recently cut by 24% [191].

The last 10 years has seen a trove of potential

biomarkers uncovered by having a better

understanding of lung cancer biology. Biomarker dis-

covery research is costly and difficult. Large, well-de-

signed studies are needed, and then, successful

discoveries require validation. We hope biomarkers

will enter the clinical workspace to supplement risk

models and enrich the population for LDCT screening;

reduce the false-positive rates of screen detected nod-

ules and determine screening schedules, and for central

early lung cancers to identify patients with aggressive

pre-invasive central lung lesions. The search for

biomarkers to detect lung cancers early or in never-

smokers and light smokers has the largest clinical

potential but currently seems the furthest away.
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