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Abstract
Background: The Hotdog fold was initially identified in the structure of Escherichia coli FabA and
subsequently in 4-hydroxybenzoyl-CoA thioesterase from Pseudomonas sp. strain CBS. Since that
time structural determinations have shown a number of other apparently unrelated proteins also
share the Hotdog fold.

Results: Using sequence analysis we unify a large superfamily of HotDog domains. Membership
includes numerous prokaryotic, archaeal and eukaryotic proteins involved in several related, but
distinct, catalytic activities, from metabolic roles such as thioester hydrolysis in fatty acid
metabolism, to degradation of phenylacetic acid and the environmental pollutant 4-chlorobenzoate.
The superfamily also includes FapR, a non-catalytic bacterial homologue that is involved in
transcriptional regulation of fatty acid biosynthesis.

We have defined 17 subfamilies, with some characterisation. Operon analysis has revealed
numerous HotDog domain-containing proteins to be fusion proteins, where two genes, once
separate but adjacent open-reading frames, have been fused into one open-reading frame to give a
protein with two functional domains. Finally we have generated a Hidden Markov Model library
from our analysis, which can be used as a tool for predicting the occurrence of HotDog domains
in any protein sequence.

Conclusions: The HotDog domain is both an ancient and ubiquitous motif, with members found
in the three branches of life.

Background
We have found the HotDog domain, as we suggest calling
the Hotdog fold, to be widespread in eukaryotes, bacteria,
and archaea and to be involved in a range of cellular proc-
esses, from thioester hydrolysis, to phenylacetic acid deg-
radation and transcriptional regulation of fatty acid
biosynthesis. We present the superfamily and its func-
tional subfamilies here. The Hotdog fold was first
observed in the structure of Escherichia coli β-hydroxyde-
canoyl thiol ester dehydratase (FabA), where Leesong et al.

noticed that each subunit of this dimeric enzyme con-
tained a mixed α + β 'hot dog' fold [1]. They described the
seven-stranded antiparallel β-sheet as the 'bun', which
wraps around a five-turn α-helical 'sausage', see Figure 1.
This characteristic fold has been found in a number of
other enzymes, including: 4-hydroxybenzoyl-CoA
thioesterase (4HBT) from Pseudomonas sp. strain CBS-3
[2] and Arthrobacter sp. strain SU [3], a novel gentisyl-CoA
thioesterase from Bacillus halodurans [4] and in Escherichia
coli thioesterase II [5].

Published: 12 August 2004

BMC Bioinformatics 2004, 5:109 doi:10.1186/1471-2105-5-109

Received: 30 April 2004
Accepted: 12 August 2004

This article is available from: http://www.biomedcentral.com/1471-2105/5/109

© 2004 Dillon and Bateman; licensee BioMed Central Ltd. 
This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 14
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15307895
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1186/1471-2105-5-109
http://www.biomedcentral.com/1471-2105/5/109
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Bioinformatics 2004, 5:109 http://www.biomedcentral.com/1471-2105/5/109
Results and Discussion
Although several proteins are now known to contain a
Hotdog fold from structural analysis it has not to our
knowledge been demonstrated that these proteins can be
related to each other by sequence similarity. We have
attempted to unify these structurally related proteins
using a sequence analysis approach. Using sequence anal-
ysis means that we will identify additional proteins that
are likely to contain a Hotdog fold. We have used the PSI-
BLAST program [6] and used a representative of each Hot-
dog fold of known structure as a query against Swiss-Prot
and TrEMBL protein database [7]. We used the sequences
of the following PDB entries: 1C8U [5], 1IQ6 [8], 1LO7
[9], 1MKB [1], 1NJK [10], 1O0I [11] and 1PSU [12]. These
searches have uncovered many novel members of this
superfamily as well as finding links between the known
structures with a Hotdog fold (see Table 1 and Additional
file 1).

The Pfam database [13] contains a Thioesterase super-
family with 697 members, each member containing a
4HBT domain (accession: PF03061) corresponding to the
HotDog domain. The SCOP database [14] contains a
thioesterase/thiol ester dehydrase-isomerase superfamily,
divided into 5 families, namely the 4HBT-like, beta-
hydroxydecanoyl thiol ester dehydrase, Thioesterase II
(TesB), MaoC dehydratase and PaaI/YdiI-like families.

Our searches have found a total of 1357 proteins (see
Additional file 2) to be related to the known structures of
HotDog domain proteins. We took these proteins and
clustered them using single linkage clustering to define
subfamilies with common functions. This clustering puts
1293 (95%) of the sequences into 85 clusters (see Addi-
tional file 3). The HotDog domain is found to be
associated with a wide range of other domains. The vari-
ous domain architectures are shown schematically in Fig-
ure 2. We describe the 17 subfamilies (Table 1) that have

The structure of the active HotDog domain dimerFigure 1
The structure of the active HotDog domain dimer. (A) A ribbon representation of the Escherichia coli FabA dimer (PDB 
code: 1MKB), viewed along the dyad axis. Each 171-residue subunit contains a Hotdog fold/ domain, consisting of a seven-
stranded antiparallel b-sheet 'bun', coloured magenta and green, and a five-turn a-helical 'sausage' coloured blue and purple in 
the respective subunits. The Hotdog fold is best observed in Figure B. There are two independent active sites located between 
the dimers, the active site residues of His70 from one subunit and Asp84 from the other subunit, represented as a ball-and-stick 
model with CPK colouring (carbon, black; hydrogen, white; oxygen, red; nitrogen, blue), constitute the potential reactive pro-
tein groups in the active sites [1]. (B) A view of FabA rotated 90° along the dyad axis. The figures were generated with MOLS-
CRIPT [69] and rendered with RASTER3D [70].
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Table 1: Classifying the HotDog superfamily into subfamilies.

Number of 
Members

Phyletic distribution Subfamily 
Name

Representative member(s) Accession 
Number

E.C. 
number

Associated 
Domain(s)

General 
Function

135 Proteobacteria : 67 Acyl-CoA 
thioesterases

Cytosolic long-chain acyl-CoA 
thioester hydrolase/ Brain acyl-
CoA hydrolase

Q64559 3.1.2.2 2 × HotDog Fatty acid 
metabolism

Metazoa: 25
Firmicutes: 16
Archaea: 9
Actinobacteria: 7 Cytoplasmic acetyl-CoA 

hydrolase (including brown fat 
inducible thioesterase)

Q8WYK0 3.1.2.1 2 × HotDog, 
START

Fatty acid 
metabolism

Chlamydiae: 4
Viridiplantae: 2
Fungi: 2
Deinococcus-Thermus: 2 Acyl-CoA hydrolase Q81EE4 3.1.2.20 None Fatty acid 

metabolism
Chlorobi: 2 Probable medium chain acyl-

CoA hydrolase
Q7NUH6 3.1.2.19 None Fatty acid 

metabolism

130 Proteobacteria: 61 FabZ-like 
Dehydratases

(3R)-hydroxymyristoyl – (acyl-
carrier-protein) dehydratase/ 
β-hydroxy-acyl ACP 
dehydratase (FabZ)

P94584 4.2.1.58 Lpx C in 
Q8KBX0

Fatty acid 
biosynthesis, lipid A 
biosynthesis 
(Q8KBX0)

Firmicutes: 36
Cyanobacteria: 9
Chlamydiae: 4 Coronafacic acid (CFA) 

dehydratase
P72238 4.2.1- None CFA biosynthesis

Alveolata: 4
Viridiplantae: 4
Planctomycetes: 3
Bacteroidetes: 2
Fusobacteria: 2
Aquificae: 1
Chlorobi: 1
Deinococcus-Thermus: 1
Metazoa: 1
Thermotogae: 1

122 Proteobacteria: 81 MaoC 
dehydratase-like

(R) specific enoyl-CoA 
hydratase (phaJ)

Q8KRE2 4.2.1.- None PHA biosynthesis

Firmicutes: 13 PHA synthase (phaC) O32472
Archaea: 11 MaoC protein P77455 None PHA biosynthesis
Actinobacteria: 8 17-beta-hydroxysteroid 

dehydrogenase
P51659 Aldehyde 

Dehydrog.
PHA biosynthesis

Deinococcus-Thermus: 2 type 4 ADH short, 
SCP

Hormone 
biosynthesis

Fusobacteria: 2
Spirochaetes: 2
Acidobacteria: 1
Planctomycetes: 1
Viridiplantae: 1

32 Proteobacteria: 23 NodN-like Nodulation protein N P25200 None Nodule formation
Actinobacteria: 5
Bacteroidetes: 2
Deinococcus-Thermus: 1
Spirochaetes: 1

102 Proteobacteria: 70 YbgC-like YbgC protein P44679 None Cell envelope 
maintenance?

Firmicutes: 14
Cyanobacteria: 6
Archaea: 3
Actinobacteria: 2
Planctomycetes: 2
Spirochaetes: 2
Aquificae: 1
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Deinococcus-Thermus: 1
Metazoa: 1

77 Proteobacteria: 36 FabA-like 
dehydratases/ 
synthases

β-hydroxydecanoyl ACP 
dehydratase (FabA)

P18391 4.2.1.60 None Unsaturated fatty 
acid biosynthesis

Actinobacteria: 26 Omega-3 polyunsaturated fatty 
acid synthase (pfaC)

Q93CG6 2 × HotDog, 
various 
numbers of 
BKAS N-term, 
BKAS-C-term 
& Acyl-transf. 
in Q93CG6, 
Q8YWH0, and 
Q9S1Z9

Polyunsaturated 
fatty acid 
biosynthesis

Fungi: 13 Fatty acid synthase Q48926 Acyl-transf., 
BKAS-N & 
BKAS-C

Fatty acid 
biosynthesis

Cyanobacteria: 1
Stramenopiles: 1

73 Viridiplantae: 57 Fat subfamily FatA acyl-ACP-thioesterase Q43718 3.1.2.14 None Fatty acid synthesis
Firmicutes: 15 FatB acyl-ACP-thioesterase Q41634 3.1.2.14 None Fatty acid synthesis
Bacteroidetes: 1

66 Proteobacteria: 31 TesB-like E. coli acyl-CoA thioesterase II 
(tesB)

P23911 3.1.2.- 2 × HotDog, 
cNMP in 
Q8GYW7

Fatty acid 
metabolism

Actinobacteria: 14
Metazoa: 14 Human thioesterase II/ 

Peroxisomal acyl-CoA 
thioesterase

O15261 3.1.2.2 2 × HotDog Fatty acid 
metabolism. Role in 
HIV infection?

Viridiplantae: 4
Fungi: 3

59 Proteobacteria: 30 4HBT-II 4-hydroxybenzoyl-CoA 
thioesterase from Arthrobacter 
sp. strain SU and TM1

Q04416 HAD domain 
in Q89YN2

4-chlorobenzoate 
degradation

Firmicutes: 12
Actinobacteria: 11 ComA2 protein P14205 None Unknown
Bacteroidetes: 2
Viridiplantae: 2
Chlorobi: 1
Deinococcus-Thermus: 1

21 Firmicutes: 21 CBS-associated Hypothetical protein bh3175 Q9K832 DRTGG, 2 × 
CBS

Unknown

19 Proteobacteria: 10 PaaI Phenylacetic acid degradation 
protein I

P76084 None Phenylacetic acid 
metabolism

Archaea: 5
Actinobacteria: 2
Bacteroidetes: 1
Firmicutes: 1

14 Proteobacteria: 8 Hydroxyacyl-
CoA 
dehydrogenase-
associated

A. tumefaciens C58 3-
hydroxyacyl-CoA 
dehydrogenase

Q8UJY0 3HCDH_N, 
3HCDH in 
Q8UJY0 and 
Q92NF5

Fatty acid 
metabolism

Firmicutes: 5
Actinobacteria: 1

13 Proteobacteria: 10 Acetyltransferase E. coli YiiD protein P32148 acetyltransf Putative 
acetyltransferase

Chlorobi: 1
Cyanobacteria: 1
Metazoa: 1

Table 1: Classifying the HotDog superfamily into subfamilies. (Continued)
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some experimental characterisation, below. The 17 sub-
families contain 909 proteins or 67 % of the total number
of HotDog domain proteins. 384 (28 %) proteins cluster
into the remaining groups, which contain predominantly
hypothetical proteins or proteins that have no known
function. They are not discussed here but we hope that
our analysis may help in identifying functions for these
proteins. Finally we have generated a Hidden Markov
Model (HMM) library by concatenating together the Hot-
Dog domain sequences of the 85 clusters generated in our
analysis (see Additional file 4). This library can be used in
conjunction with the HMMER program [15] to search for
HotDog domain(s) in any protein of interest.

Acyl-CoA thioesterase subfamily
The largest subfamily represents over a hundred acyl-CoA
thioesterases that are widespread throughout the prokary-
otic kingdom, with members also found in eukaryotes.
This group of enzymes catalyze the hydrolysis of acyl-CoA
thioesters to free fatty acids and coenzyme A (CoA-SH.)
[16]. The subfamily includes thioesterases with activity
towards medium and long chain acyl-CoAs (medium
chain acyl-CoA hydrolase and cytosolic long-chain acyl-
CoA hydrolase/brain acyl-CoA hydrolase (BACH) respec-
tively) and also cytoplasmic acetyl-CoA hydrolase
(CACH), which hydrolyzes acetyl-CoA to acetate and
CoA-SH. Brown-fat-inducible thioesterase (BFIT), a cold-
induced protein found in brown adipose tissue (BAT) [17]
is also included in this group. Both BFIT and CACH pos-
sess a StAR-related lipid-transfer (START) domain [18]
that is involved in lipid binding, consistent with the role
of BFIT and CACH in lipid metabolism. Duplication of
the HotDog domain and recruitment of the START
domain seems to be a mammalian innovation.

FabZ like dehydratase subfamily
Members of this subfamily are found in a wide range of
bacteria and sporadically in eukaryotes. In E. coli the prod-
ucts of the fab operon catalyze the four sequential reac-
tions necessary for each round of fatty acid elongation
[19]. The third step in each cycle of fatty acid elongation
involves the dehydration of the β-hydroxyacyl-ACP pro-
tein intermediate by β-hydroxyacyl-[acyl carrier protein]
dehydratase (FabZ) to give trans-2-decenoyl-ACP. FabZ is
effective at dehydrating both short-chain and long chain
saturated and unsaturated pathway intermediates.

This subfamily also contains a dehydratase component of
the coronafacic acid (CFA) biosynthetic cluster encoded
by the cfa2 gene [20,21]. CFA is the polyketide constituent
of a phytotoxin called coronatine, which is a virulence
factor of Pseudomonas syringae, a plant pathogen that
causes disease in many agriculturally important plants
[20].

MaoC dehydratase-like subfamily
The maoC gene exists as an operon with the maoA gene in
E. coli and is an enoyl-CoA hydratase involved in supply-
ing (R)-3-hydroxyacyl-CoA from the fatty acid oxidation
pathway to polyhydroxyalkanoate (PHA) biosynthetic
pathways in fadB mutant E. coli strains. It was identified
through its homology to P. aeruginosa (R)-specific enoyl-
CoA hydratase (PhaJ1) [22]. PHAs are polyesters of (R)-
hydroxyalkanoic acids, synthesized by numerous bacteria
as an intracellular carbon and energy storage material in
times of excess carbon sources [23], with intermediates of
fatty acid metabolism such as enoyl-CoA, (S)-3-hydroxya-
cyl-CoA, and 3-ketoacyl-CoA acting as precursors for PHA
biosynthesis [22]. The crystal structure of the (R)-specific
enoyl-CoA hydratase (phaJ) from the Aeromonas caviae has
shown that this enzyme also contains a Hotdog fold/
domain [8]. The E. coli MaoC C-terminal HotDog domain

11 Firmicutes: 11 FapR Transcription factor FapR Q9KA00 HTH Transcriptional 
regulation of fatty 
acid metabolism

11 Metazoa: 10 
Proteobacteria: 1

MSCP Mesenchymal stem cell protein 
DSCD75

Q9NYI2 None Unknown

10 Proteobacteria: 10 YbaW Hypothetical protein ybaW P77712 None Unknown

9 Proteobacteria: 9 AMP-binding 
subfamily

Hypothetical protein RSp0367 Q8XSV0 2 × AMP-bind Unknown

5 Proteobacteria: 4 
Firmicutes: 1

4HBT-I 4-hydroxybenzoyl-CoA 
thioesterase from Pseudomonas 
sp. strain CBS-3 and DJ-12

P56653 3.1.2.23 None 4-chlorobenzoate 
degradation

Gentisyl-CoA thioesterase Q9KBC9 None Degradation of 
aromatic 
compounds?

Table 1: Classifying the HotDog superfamily into subfamilies. (Continued)
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A schematic Figure showing the various domain organizations of proteins with a HotDog domainFigure 2
A schematic Figure showing the various domain organizations of proteins with a HotDog domain. For each dis-
tinct architecture we show an example protein, the species it has come from and its length is shown in parentheses. The key 
identifies all the domains in the Figure and also includes the Pfam accession number or numbers describing each domain.

3) Homo sapiens cytoplasmic acetyl-CoA hydrolase 1, Q8WYK0 (555)

2) Rattus norvegicus cytosolic long chain acyl-CoA thioester hydrolase/ Brain acyl-CoA hydrolase, Q64559 (338)

START

4) Aquifex aeolicus putative translation initiation factor eif-2b, O67879 (456)

IF-2B

5) Bacillus halodurans transcription factor fapr, Q9KA00 (186)

6) Bacteroides thetaiotaomicron haloacid dehalogenase-like hydrolase, Q89YN2 (410)

7) Chlorobium tepidium UDP-3-O-(R-3- hydroxymyristoyl)-N-acetyl glucosaminodeactylase/ (3R)-hydroxymyristoyl-acp dehydratase, Q8KBX0 (467)

8) Agrobacterium tumefaciens (strain c58 / ATCC 33970) 3-hydroxyacyl-CoA dehydrogenase, Q8UJY0 (488)

9) Bacillus halodurans hypothetical protein bh3175, Q9K832 (435)

BKAS N-term BKAS C-term BKAS N-term BKAS C-term

HAD

1) Pseudomonas sp. (strain CBS-3) 4-hydroxybenzoyl-CoA thioesterase, P56653 (141)

10) Photobacterium profundum Omega-3 polyunsaturated fatty acid synthase PfaC, Q93CG6 (1958)

11) Anabaena sp. (strain PCC7120) hypothetical protein all1643, Q8YWH0 (1601)

12) Streptomyces coelicolor SCO0127, Q9S1Z9 (2240)

HTH

Key:

START StAR-related lipid transfer domain (PF01852)

HAD Haloacid dehalogenase-like hydrolase domain

(PF00702)

IF-2B Initiation factor 2 subunit family domain (PF01008)

Acetyltransferase domain (PF00583)

Lpx C UDP-3-O-acyl N-acetylglycosamine deacetylase

DRTGG DRTGG domain (PF07085)

3HCDH_N 3-hydroxyacyl-CoA dehydrogenase, NAD binding domain (PF02737)

3HCDH 3-hydroxyacyl-CoA dehydrogenase, C-terminal domain (PF00725)

Helix-turn-Helix domain (PF01381)

CBS cystathionine-beta-synthase domain (PF00571)

BKAS N-term Beta-ketoacyl synthase, N-terminal domain (PF00109)

BKAS C-term Beta-ketoacyl synthase, C-terminal domain (PF02801)

Acyl-transf Acyl transferase domain (PF00698)

AMP-binding domain (PF00501)

Short chain dehydrogenase (PF00106)

HotDog domain (PF03061/PF01643/PF01575/PF02551)

domain (PF03331)

HTH

cNMP cyclic nucleotide binding domain (PF00027)

HD

HD

HD

HD

3HCDH_N 3HCDH HD

CBSDRTGG CBS HD

Lpx C HD

AMP-bind

AMP-bind

AMP-bind HD

HD

HD HD

HD HD

HD HD

BKAS C-term Acyl-transf HD HD

BKAS N-term BKAS C-term BKAS N-term Acyl-transf HD HD

HD

HD Acyl-transf BKAS N-term BKAS C-term

Aldehyde Dehydrog.

16) Homo sapiens 17 beta-hydroxysteroid dehydrogenase type IV, P51659 (736)

17) Escherischia coli YiiD, P32148 (329)

18) Ralstonia solanacearum RSp0367, Q8XSV0 (563)

HD SCP

Sterol carrier protein domain (PF00188)SCP

ADH short

ADH short

Aldehyde Dehydrog. Aldehyde dehydrogenase (PF00171)

cNMP HD HD

13) Arabidopsis thaliana putative Acyl-CoA thioesterase, Q8GYW7 (427)

14) Mycobacterium bovis fatty acid synthase, Q48926 (2796)

15) E. coli MaoC, P77455 (681)

acetyltransf

acetyltransf

HD
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is most likely responsible for its enoyl-CoA hydratase actv-
ity. MaoC also contains an N-terminal short-chain dehy-
drogenase domain, involved in catalysing
dehydrogenation of a variety of aliphatic and aromatic
aldehydes using NADP as a cofactor. This subfamily also
includes the human 17 β-hydroxysteroid dehydrogenase
(17 β HSD) type 4, one of four different human 17 β
HSDs that catalyze the redox reactions at position C17 of
steroid molecules, one of the final steps in androgen and
estrogen biosynthesis [24,25]. We also include a NodN-
like sub-subfamily here that is found in another cluster
containing several other MaoC proteins. Rhizobium and
related species form nodules on the roots of their legume
hosts, a symbiotic process that requires production of
Nod factors, which are signal molecules involved in root
hair deformation and meristematic cell division [26]. The
nodulation gene products, including NodN, are involved
in producing the Nod factors, however the role played by
NodN is unclear.

YbgC-like subfamily
This subfamily contains a large number of proteins about
which very little is known except for the YbgC protein. The
YbgC protein of the tol-pal cluster in the gamma-proteo-
bacterium Haemophilus influenzae [27] has been shown to
catalyze the hydrolysis of short-chain aliphatic acyl-CoA
thioesters. The tol-pal cluster is present in many Gram-neg-
ative bacteria and is important for the maintenance of cell
envelope integrity [28] and this operon is well conserved
across gram-negative bacteria. Therefore we hypothesize
that uncharacterized members of this subfamily are
thioesterases.

The Asp17 residue is conserved in YbgC from Haemophilus
influenzae and Pseudomonas aeruginosa, along with the
backbone amide NH of Tyr24, suggestive of a nucleophilic
attack mechanism very similar to the Pseudomonas sp.
strain CBS-3 thioesterase mechanism discussed below in
the 4HBT class I section.

FabA-like subfamily
The dehydration of the β-hydroxyacyl-ACP protein inter-
mediate during the third step in each cycle of fatty acid
elongation can be catalyzed by β-hydroxydecanoyl-ACP
dehydratase/isomerase (FabA), as well as by FabZ, to give
trans-2-decenoyl-ACP. FabA is uniquely able to isomerise
trans-2-decenoyl-ACP to cis-3-decenoyl ACP, initiating
unsaturated fatty acid biosynthesis [19] and is specific for
acyl ACPs of 9–11 carbons in length.

Polyketides are a large and structurally diverse class of nat-
ural products, produced mainly by soil-dwelling bacteria
such as Pseudomonas spp. and Streptomyces spp. They
include clinically useful drugs such as the antibiotic eryth-
romycin A and the immunosuppressants FK506 and

rapamycin. The biosythesis of polyketides is very similar
to that of fatty acids [21] and polyketide synthases (PKSs)
have been classified as type I or type II according to fatty
acid synthase (FAS) similarity. Most bacteria and plants
use a highly conserved type II FAS system, which uses a
distinct enzyme for each reaction. This is in contrast to the
mammalian type I system (also used by fungi and some
mycobacteria), which uses one multifunctional polypep-
tide to catalyze all reactions [29,30]. The HotDog domain
is found in type II fatty acid synthesis in bacteria (FabA/
FabZ), but also in a small number of bacterial polyketide
synthases that are of the type I, being composed of several
modules [31] such as β keto-acyl synthases and omega-3
polyunsaturated fatty acid synthase (PfaC). The marine
bacteria Shewanella sp. SCRC-2738, Moritella marina strain
MP-1 and Photobacterium profundum strain SS9 contain an
eicosapentaenoic acid (EPA) biosynthetic cluster (pfaA-
D), responsible for the synthesis of this omega-3
polunsaturated fatty acid (PUFA), [32,33]. The PfaC pro-
tein contains two HotDog domains (see Figure 2 for the
domain organisation found in P. profundum), which are
also found in the eukaryotic marine protist, Schizo-
chytrium, suggesting that the PUFA synthetic cluster has
undergone lateral gene transfer [32].

This subfamily also includes several fatty acid synthase
proteins from bacteria, such as Mycobacterium bovis fatty
acid synthase. This multifunctional protein is capable of
catalysing de novo synthesis and chain elongation of fatty
acids [34] and has a very similar domain architecture to
the polyunsaturated fatty acid synthases, as it contains an
acyl-transferase, β-keto acyl synthase N and C-terminal
domains (see Figure 2).

The catalytic residues of FabA's bifunctional active site are
His70 and Asp84, His70 is conserved in FabZ dehydratase,
but Asp84 is replaced with Glutamate. This replacement
may be responsible for FabZ's inability to catalyze the
isomerization reaction [1].

Fat subfamily Acyl-ACP thioesterases
In plants, fatty acid synthesis occurs in the stroma of plas-
tids, where the acyl chains are bound to the acyl carrier
protein (ACP) during extension cycles [35]. Acyl-ACP
thioesterases terminate fatty acid synthesis in plants by
hydrolysing the thioester bond existing between an acyl
moiety and the ACP [36]. In higher plants acyl-ACP
thioesterases have been classified into two gene classes,
fatA and fatB, based on sequence similarity and substrate
specificities [37,38]. Arabidopsis FatA displays highest
activity towards oleoyl-ACP whereas Arabidopsis FatB is
most active towards palmitoyl-ACP [37]. This subfamily
contains both FatA and FatB members [35]. The proteins
in this subfamily range in length from 240 to 400 amino
acids and therefore we hypothesized that they might con-
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tain two HotDog domains, located at the N and C teminal
halves. By splitting the sequence of proteins from this sub-
family into an N-terminal half and C-terminal half we
were readily able to detect the relationship to other sub-
families using PSI-blast with query proteins such as
Q899Q1 and Q42714, confirming our hypothesis.

TesB-like subfamily
This subfamily contains the E. coli medium chain length
acyl-CoA thioesterase II [5] encoded by the tesB gene [38],
which is a close homolog of the human thioesterase II
(hTE) enzyme. hTE catalyzes the hydrolysis of palmitoyl-
CoA to CoA and palmitate and was identified as a human
T cell protein that binds to the myristoylated HIV-1 Nef
protein, correlating with Nef-mediated CD4 down regula-
tion [39]. hTE could regulate targeting of the cytoplasmic
Nef protein to the plasma membrane, which is dependent
on a lipid modification, i.e. a myristoylation anchor and
recombinant hTE shows maximal activity with myristoyl-
CoA [39]. However further studies have shown that hTE
localizes to peroxisomes [40,41], dependent on a C-termi-
nal peroxisomal targeting sequence, SKL, and coexpres-
sion of Nef and hTE results in relocation of Nef to
peroxisomes, so the role of Nef and hTE during HIV infec-
tion remains unsolved.

The catalytic site of E. coli thioesterase II was identified by
site directed mutagenesis and involves a hydrogen-
bonded triad of Asp204, Thr 228, and Gln 278, which syner-
gistically activate a water molecule for nucleophilic attack
of the carbonyl thioester carbon of medium chain length
acyl-CoA substrates [5]. This is a novel reaction mecha-
nism for a thioesterase and differs from the nucleophilic
mechanisms used by β-hydroxydecanoyl dehydratase and
4HBT thioesterase in both Pseudomonas and Arthrobacter
discussed below. This subfamily is found in bacteria and
eukaryotes.

4HBT class II subfamily
This subfamily includes 4-hydroxybenzoyl CoA thioeste-
rase (4HBT) from Arthrobacter sp. strains SU and TM1
encoded by the fcbC gene [3]. The Pseudomonas thioeste-
rase uses the Asp17 residue to mediate the hydrolysis reac-
tion as discussed below in the 4HBT class I section. Gln58

from Arthrobacter corresponds to the Asp17 residue in Pseu-
domonas but inspection of the Arthrobacter strain SU active
site has revealed the catalytic base (or nucleophile) to be
Glu73, on the opposite side of the substrate binding
pocket to Asp17[3]. Also the Pseudomonas thioesterase
dimers form a tetramer with their long α-helices facing
inwards, in contrast to Arthrobacter thioesterase where the
dimers form a tetramer with their long α-helices facing
outwards [3]. In Pseudomonas and Arthrobacter thioeste-
rases, the 4-hydroxyphenacyl moieties are positioned in
such an orientation that the thioester C = O interacts with

the α-helical N-terminus by means of hydrogen bonding
to a backbone amide NH, on Tyr24 in Pseudomonas and
Gly65 in Arthrobacter, and it is this contact that results in
polarization of the C = O for nucleophilic attack [3].
While the structure of Arthrobacter sp. strain SU thioeste-
rase displays a similar Hotdog-fold topology to the 4HBT
class I Pseudomonas enzyme, the enzymes differ at the level
of catalytic platform, CoA binding site and quaternary
structure [3,42]. This is not an unexpected finding as Todd
et al. have found that 12 of the 31 superfamilies they ana-
lyzed displayed positional variation for residues playing
equivalent catalytic roles [43].

A surprising inclusion in this subfamily is the ComA2 pro-
tein from Bacillus subtilis. ComA is a response regulator
and transcription factor [44] that together with the histi-
dine kinase, ComP, constitutes a two-component signal
transduction system required for the development of
competence. The comA locus is composed of two ORFs.
ComA2 is cotranscribed with ComA1, which is required
for competence while ComA2 is not [45], and so the role
of the HotDog domain in this protein remains a mystery.

PaaI subfamily
The phenylacetic acid (PA) catabolic pathway in E. coli has
been characterised and found to contain 14 genes, allow-
ing catabolism of this aromatic compound into likely
Krebs cycle intermediates [46]. The paa operon in E. coli
encodes PaaI, which is probably a thioesterase involved in
the catabolism of PA. The catabolism of phenylacetic acid
(PA) in E. coli begins with an activation step where Pheny-
lacetyl-CoA ligase, PaaK, converts phenylacetate into Phe-
nylacetyl-CoA. 4-chlorobenzoate-CoA ligase catalyzes a
similar reaction at the first step of the 4-chlorobenzoate-
degradation pathway. The thioesterase, PaaI, may be
involved in a reaction similar to the last step in the degra-
dation of 4-chlorobenzoate (see 4HBT class I below),
however this remains to be demonstrated.

FapR subfamily
This small subfamily is restricted to firmicutes. FapR is a
highly conserved transcriptional regulator found in many
gram-positive organisms, including all species of Bacillus
[47]. It controls expression of genes involved in type II
fatty acid and phospholipid biosynthesis, by binding to a
consensus promoter sequence of the fap regulon and act-
ing as a negative regulator. Malonyl-CoA, an intermediate
in the lipid biosynthetic pathway, controls FapR. The Hot-
Dog domain has likely retained its substrate specificity for
malonyl-CoA, but appears to have lost its catalytic ability,
in common with the ligand binding domain of other tran-
scriptional regulators. FapR contains a helix-turn-helix
motif at the N-terminus (see Figure 2), which is similar to
the DeoR transcriptional regulator family (data not
shown), consistent with its role as a DNA binding protein.
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4HBT class I subfamily
The crystal structure of 4HBT from the soil-inhabiting bac-
terium Pseudomonas sp. strain CBS-3 [2] has helped define
the HotDog domain. A lot of attention has been focused
on this microorganism because of its ability to survive on
4-chlorobenzoate (4CBA) as its only source of carbon
[48]. 4CBA is a by-product of microbial degradation of
industrial pollutants such as DDT and polychlorinated
biphenyl herbicides [49] and this strain of Pseudomonas
may be used as a bioremediation agent for degrading
4CBA. Pseudomonas sp. strain CBS-3 contains an fcb
operon responsible for hydrolytic dechlorination of
4CBA, with 4CBA-CoA ligase (FcbA), 4CBA-CoA dehalo-
genase (FcbB), and 4HBT (FcbC) catalyzing sequential
reactions that result in the degradation of 4CBA to 4-
hydroxybenzoate. The thioesterase catalyzes the third step
in the degradation pathway, which is the hydrolysis of the
4-hydroxybenzoyl-CoA thioester moiety to give 4-
hydroxybenzoate and CoA [50].

4HBT from Pseudomonas sp. strain DJ-12 [51] is also found
in this subfamily. The organization of the fcb operon in
strain DJ-12 is different from that observed in strain CBS-
3. The fcb genes are organised as B-A-C in both strains but
strain DJ-12 has three ORFs between A and C called T1,
T2, and T3 that are unique to this strain. These three genes
are similar to the C4-dicarboxylate transport system in
Rhodobacter capsulatus, suggesting that they may encode
membrane proteins involved in the uptake of 4CBA [51].
This is in contrast to the gene organisation observed in the
4HBT class II, where Arthrobacter sp. strain SU and strain
TM1 have an A-B-C order [51]. There is a duplication of
the cluster in strain SU, where it is found on a plasmid,
whereas only one copy exists in strain TM1, where it is
located chromosomally. Both operons contain a T gene
located at the end of the cluster, possibly involved in
4CBA uptake.

Bacillus halodurans C-125 contains a gene called BH1999,
encoding a novel gentisyl-CoA thioesterase, which cata-
lyzes the hydrolysis of gentisyl-CoA (2,5-dihydroxyben-
zoyl-CoA)[4,52] to yield gentisate (2,5
dihydroxybenzoate). BH1999 is found in a gentisate oxi-
dation pathway gene cluster in B. halodurans. Gentisate
has been implicated as an intermediate in the degradation
of several industrial aromatic compounds [4].

Gentisyl-CoA thioesterase and 4HBT from Pseudomonas
perform different physiological functions but remain in
the same subfamily because they are highly related. The
active site residues Asp16 and Asp31 of gentisyl-CoA
thioesterase align with Asp17 and Asp32 of 4HBT. These are
crucial residues that are proposed to function in nucle-
ophilic catalysis and substrate binding respectively. Loss
of Asp17 in the Pseudomonas enzyme effectively halts catal-

ysis, while loss of the corresponding Asp16 residue to the
Bacillus halodurans enzyme only reduces its catalytic rate
by 230-fold, perhaps indicating that the hydrolysis reac-
tion does not proceed through an Asp16-mediated nucle-
ophilic attack mechanism previously proposed for Asp17

[53,4]. Asp17 in Pseudomonas strain CBS-3 has been sug-
gested to participate in nucleophilic catalysis rather than
general base catalysis based on the following observa-
tions. The Asp17 carboxylate is located at a distance of 3.2
Å from the substrate C = O thioester bond, its aligned tra-
jectory and the absence of a water molecule near the reac-
tion centre are all suggestive of a role for Asp17 as a
catalytic nucleophile [9,53]. Asp32 in Pseudomonas inter-
acts with the benzoyl OH of 4-hydroxybenzoyl-CoA [9]
and perhaps Asp31 plays a similar role.

Other subfamilies/ members
In the above sections we have described the 11 sub-
families that have some functional characterization. In
this section we describe the other 6 subfamilies that have
no functional characterization, except they are associated
with other domains or have been structurally
characterized.

The CBS associated subfamily contains the hypothetical
protein BH3175 from Bacillus halodurans. The BH3175
protein contains two homologous copies of the CBS
domain [54]. Scott et al. have recently shown that tandem
pairs of CBS domains act as sensors of cellular energy sta-
tus by binding AMP, ATP, or S-adenosyl methionine and
mutations in CBS domains impair this binding in several
hereditary disorders [55]. Although we do not know the
substrate or activity of this subfamily of the HotDog
superfamily, we can suggest that this step is regulated in
an energy dependent manner by the CBS domains.

3-hydroxyacyl-CoA dehydrogenase is an enzyme involved
in fatty acid metabolism, catalyzing the reduction of 3-
hydroxyacyl-CoA to 3-oxoacyl-CoA [56]. The hydroxya-
cyl-CoA dehydrogenase-associated subfamily includes 3-
hydroxyacyl-CoA dehydrogenase from Agrobacterium
tumefaciens strain C58, which contains a HotDog domain
at its C-terminus and the two domains (3HCDH_N and
3HCDH) associated with 3-hydroxyacyl-CoA dehydroge-
nase activity are located at the N-terminus and central por-
tion of this protein. The combination of activities may
allow substrate to be passed from one domain to the next.

Other subfamilies in the superfamily include the YiiD
protein from E. coli, where an acetyltransferase domain is
fused. The human mesenchymal stem cell protein
DSCD75 and its counterpart in mouse also contain a Hot-
Dog domain. A Structural proteomics project has shown
that the conserved hypothetical E. coli protein YbaW con-
tains a Hotdog fold [10]. Finally the Ralstonia
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solanacearum hypothetical protein RSp0367, containing a
HotDog domain and two AMP-binding domains, found
in proteins involved in ATP-dependent covalent binding
of AMP to their substrate, is a member of another
subfamily.

Domain fusion events
It has been shown that proteins that are functionally
linked are occasionally found to be fused in various
genomes. These fusion proteins have been termed Rosetta
proteins [57,58] and can be used to predict the functional
linkages of proteins with each other. The HotDog domain
superfamily contains several rosetta proteins where the
fused proteins are also found unfused in other genomes.
In these cases they are adjacent to each other in known
operons. The examples found in the HotDog superfamily
are shown in Figure 3 and are described briefly here.

Within the FabZ subfamily the LpxC deacetylase domain
(UDP-3-O-acyl N-acetylglucosamine deacetylase) is fused
to the FabZ-like HotDog domain in Chlorobium tepidium
(see Figure 3a). LpxC catalyzes the N-deacetylation of
UDP-3-O-acyl N-acetylglucosamine deacetylase, the sec-
ond and committed step in the biosynthesis of lipid A,

which anchors lipopolysaccharide (LPS) in the outer
membranes of most gram-negative bacteria [59]. The
unfused proteins are found adjacent in operons from sev-
eral species of chlamydia and cyanobacteria.

In the 4HBT class II subfamily we observed the order of
the operon is ligase(A)-dehalogenase(B)-thioesterase(C).
In Bacteroides thetaiotaomicron there is a Rosetta protein
that contans a haloacid dehalogenase-like hydrolase
domain (see Figure 3b). This domain architecture is simi-
lar to the fcb operon structure in Arthrobacter, with a dehal-
ogenase-like hydrolase (HAD) domain and a HotDog
domain (see Figure 3) i.e. it represents a fusion of the fcbB
and fcbC gene products to form a novel protein in B.
thetaiotaomicron.

The final domain fusion is in the 3-hydroxyacyl-CoA
dehydrogenase from Agrobacterium tumefaciens strain C58,
which possesses the HotDog domain, 3HCDH_N domain
(3-hydroxyacyl-CoA dehydrogenase, NAD binding) and
3HCDH (3-hydroxyacyl-CoA dehydrogenase, C-terminal
domain) domain (see Figure 3c). This may represent a
fusion of the PaaC and PP3281 proteins in the gamma-

Rosetta fusion proteins in the HotDog domain superfamilyFigure 3
Rosetta fusion proteins in the HotDog domain superfamily. For each fusion event we show an example operon con-
taining the two proteins separate and an example of the fused rosetta protein.
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proteobacterium Pseudomonas putida 2440 phenylacetic
acid degradation operon.

These fusion events suggest that the domain fusion proc-
ess can occur in a simple scheme with two distinct phases.
Firstly, two proteins are recombined into adjacent posi-
tions in an operon. Secondly, the two genes are then fused
by a process of mutation that removes the stop codon at
the end of the first gene and maintains reading frame
through the second gene [60,61].

Sequence motifs
The MASIA program [62] was used to search for HotDog
domain motifs in the aligned sequences of the 17 sub-
families. The various motifs are found in Additional file 5.
It must also be noted that the PROSITE database release
18.29 [63] contains a consensus sequence motif
(PS01328), called the 4-hydroxybenzoyl-CoA thioesterase
family active site, and this is found in 29 Swiss-Prot,
TrEMBL and TrEMBL-NEW entries cross-referenced with
PS01328. This consensus pattern, [QR]-[IV]-x(4)-[TC]-D-
x(2)-G [IV]-V-x-[HF]-x(2)-[FY], where D is the active site
residue, is found in the YbgC-like subfamily and in the
4HBT-I subfamily. 19 of the 29 members are found in the
YbgC-like group and 3 in the smaller 4HBT-I group. The
remaining 7 proteins are scattered in various clusters con-
sisting of hypothetical or unknown proteins. We have
found, using MASIA, that this motif is found in the entire
YbgC and 4HBT-I subfamilies, extending the number of
proteins containing this motif to 107. We have also iden-
tified a HGG motif in the 4HBT-II and PaaI subfamilies.
This motif is HGGAS-x-ALAE in the 4HBT-II subfamily
and HGG-x-IF-x-LAD in PaaI members. The active site res-
idue, Glu73, is known for 4-hydroxybenzoyl-CoA thioeste-
rase from Arthrobacter sp. Strain SU, however the active
site for E. coli PaaI is not known and we suggest that it is
Asp61 in the HGG motif above, which is 100 % conserved
in all members of this subfamily (see Additional file 6).

Conclusions
We have defined and analyzed the HotDog domain super-
family and in our analysis of this superfamily we have
found 18 different domain architectures and defined 17
subfamiles. We have also investigated the domain organ-
isation and the role that this plays in generating function-
ally diverse enzymatic and nonenzymatic functions based
on the HotDog fold. Domain duplication, domain
recruitment and incremental mutation have been key to
the evolution of this superfamily. We have also looked at
gene context and operon structures and found many
examples of fusion proteins, in which the HotDog
domain has been fused to another protein to generate
functional diversity. The large number of subfamilies we
have found, the diverse range of activities these proteins
participate in and the taxonomic distribution of the Hot-

Dog domain indicates an ancient superfamily that has
diverged substantially to fulfil numerous roles in the cell.

Our analysis may help with further experimental investi-
gation of members of this superfamily. Some members of
this superfamily, such as the P. falciparium FabZ enzyme
have been proposed as a target for new anti-malarial drugs
[64] as FabZ homologues are not found in humans.
Finally our analysis identified hundreds of novel proteins
such as human mesenchymal stem cell protein DSCD75
and the Ralstonia solanacearum hypothetical protein
RSp0367 as probable enzymes potentially involved in
lipid metabolism. Given that the large majority of pro-
teins in this family are involved in bacterial lipid metabo-
lism we suggest that the HotDog domain evolved in
bacteria first and may then have been transferred to
eukaryotes and archaea on several occasions. Since this
time duplication and mutation has allowed it to fill a vari-
ety of roles.

Methods
Sequence analysis
All PSI-BLAST searches were carried out using default
inclusion thresholds and searched against the Swiss-Prot
and TrEMBL sequence database (SWISS-PROT release
42.12 and TrEMBL release 25.12).

To define subfamilies we clustered the results of an all-
against-all search of the 1357 HotDog domain proteins
using NCBI BLASTP and single linkage clustering at an E-
value of 10-15.

Operon analysis
Gene context/operon analysis was carried out with the
GeConT tool (Gene Context Tool) [65] available at the
GeConT Home Page [66].

Domain analysis
Protein domain analysis was carried out using Pfam [13]
(release 12.0) available at the Pfam Home Page [67].

Motif analysis
Consensus motif sequences were identified in the sub-
family alignments using the MASIA program [62] availa-
ble at the MASIA 2.0 Home Page [68].
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Additional File 1
A network showing the unification of the HotDog superfamily using 
PSI-BLAST searches. Each yellow oval represents a query sequence used 
to seed a PSI-blast search. We compared each PSI-BLAST output to all the 
others and connected them with a line if they shared any sequences in 
common. There are only two connections in the graph that were not made 
(Image is in EPS format).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-5-109-S1.eps]

Additional File 2
A complete list of the 1357 HotDog domain containing proteins.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-5-109-S2.doc]

Additional File 3
The HotDog domain superfamily. This xml-like file contains 1293 
(95%) of the HotDog domain containing sequences, grouped into 85 
clusters, which permits investigators to immediately identify HotDog 
domain(s) in their 'unknown' protein of interest and allow them to infer 
some functionality.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-5-109-S3.xml]

Additional File 4
A HotDog domain HMM library. This library can be used in conjunction 
with the HMMER program to search for HotDog domains in any protein 
sequence.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-5-109-S4.txt]

Additional File 5
A list of motifs identified in each subfamily. Motifs were identified 
using the MASIA program [62]. A motif starts when at least 3 of 4 con-
secutive positions are more than 40% conserved and extend until at least 
2 amino acids in a row are less than 40% conserved [71]. Motifs corre-
sponding to PROSITE motif PS01328, [QR]-[IV]-x(4)-[TC]-D-x(2)-G 
[IV]-V-x-[HF]-x(2)-[FY] are underlined and in bold. Motifs highlighted 
in red and green are conserved between the respective subfamilies.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-5-109-S5.DOC]

Additional File 6
Subfamily alignments. These alignments were constructed using the 
MAFFT alignment program [72] and rendered using the CHROMA soft-
ware package [73]. Known active site residues are indicated below the 
subfamily alignments. The highly conserved Asp residue in the PaaI sub-
family is proposed as an active site residue based on motif similarities 
between the 4HBT-II subfamily and the PaaI subfamily. Jpred predicted 
consensus secondary structures are indicated above the alignments [74].
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-5-109-S6.DOC]
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