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ABSTRACT The increasing consumption of ducks and
chickens in China demands characterizing carcasses of
domestic birds efficiently. Most existing methods, however,
were developed for characterizing carcasses of pigs or cat-
tle. Here, we developed a noncontact and automated
weighing method for duck carcasses hanging on a produc-
tion line. A 2D camera with its facilitating parts recorded
the moving duck carcasses on the production line. To esti-
mate the weight of carcasses, the images in the acquired
dataset were modeled by a convolution neuron network
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(CNN). This model was trained and evaluated using 10-
fold cross-validation. The model estimated the weight of
duck carcasses precisely with a mean abstract deviation
(MAD) of 58.8 grams and a mean relative error (MRE)
of 2.15% in the testing dataset. Compared with 2 widely
used methods, pixel area linear regression and the artificial
neural network (ANN) model, our model decreases the
estimation error MAD by 64.7 grams (52.4%) and 48.2
grams (45.0%). We release the dataset and code at
https://github.com/RuoyuChen10/Image_weighing.
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INTRODUCTION

As the world economy develops, the production and
consumption of meat have been increasing significantly.
From 1961 to 2018, the production of meat increased 4
folds worldwide and more than 34 folds in China
(Ritchie et al., 2017). Though most meat from pigs and
cattle, China consumes and produces most of the chick-
ens and ducks in the world (Li et al., 2017). In 2018,
China produces 20.12 million tons of poultry and more
than 3 million tons of ducks (Ritchie et al., 2017).

For quality control and monitory evaluation, the fac-
tories characterize the animal carcasses during produc-
tion. Among all the characteristics of animal carcasses,
weight is a key feature for daily management (Brown et
al., 2014; Jones and Dawkins, 2010). According to its
weight, the carcass is processed using, different methods
for a better economic outcome (Adamczak et al., 2018).
However, most production lines for handling duck car-
casses do not have an automated section for automatic
weighing. Factories often require manual weighing or
use an additional conveyor to assist in weighing. The
widely used conveyor scales require transferring car-
casses between the conveyor scale and the production
line (Jørgensen et al., 2019), which is labor-intensive
and time-consuming. While some modern systems
enable efficient carcass quality grading, for most facto-
ries, upgrading existing production lines is cumbersome
and costly. It is important to develop a low-cost and effi-
cient weighing method.
Noncontact weighing methods were developed to

improve the weighing efficiency (Scollan et al., 1998;
Oviedo-Rond�on et al, 2007; Jørgensen et al., 2019).
Oviedo-Rond�on et al. (2007) developed a real-time ultra-
sound system to estimate the breast muscle weight of
broiler chickens. Scollan et al. (1998) developed a
nuclear magnetic resonance imaging (MRI) system to
estimate the weight of the Pectoralis muscle of chickens.
These methods require cumbersome instruments and
hard to fit into the production line.
In contrast, cameras can be easily installed and suit-

able for the production line. Two types of computer-
vision enabled noncontact weighing methods have also
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Figure 1. The image acquisition setting and site environment.
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been extensively studied: classification and regression
(Lotufo et al., 1999; Nyalala et al., 2021; Teimouri et al.,
2018). In classification methods, the carcass weight is
classified into one of the evenly divided grades (weight
ranges) (Chen et al., 2017; Koodtalang and Sangsuwan,
2019; Qi et al., 2019). The prediction accuracy of this
method, however, was limited by the size of the weight
range. For example, Qi et al. (2019) divided the carcass
of chickens into 5 grades each with 300 grams range.

The current image weighing methods are based on
regression models using 3D images (Adamczak et al.,
2018; Jørgensen et al., 2019) or 2D images (Lotufo et al.,
1999; Nyalala et al., 2021). In these methods, a weight
prediction model was built based on several manually
extracted features. Based on machine vision, Lotufo
et al. (1999) proposed a real-time broiler carcasses
weighing system. They split an image of a chicken into 5
parts and used their pixel area to estimate the weight of
this chicken. Teimouri et al. (2018) separated and sorted
the chicken body parts using geometrical, color, and tex-
ture features. Integrating 2D and 3D features, Jørgensen
et al. (2019) predicted the weight of a single carcass bet-
ter than the ones using 2D features. Obtaining 3D fea-
tures of carcasses, however, requires multiple cameras
and more facilitating devices; meanwhile, simultaneous
3D reconstruction algorithms are often computational
and time consuming. It thus is still attractive to estimate
the weight of small animals using 2D images. Nyalala
et al. (2021) segmented the depth images of broiler car-
cass into 5 parts, extract 2D features, and estimated the
weights of different parts using different regression mod-
els. We found that most methods require handcrafted
features which will determine the upper bound of the
model performance (Chen et al., 2021). Because of the
hidden relationship between the weight and features, it’s
difficult to manually design high-quality features.
Though the rising consumption of ducks, most methods
were developed for estimating the weights of the chicken
carcasses. Few methods have been developed to predict
the weights of duck carcasses.

In this paper, we proposed a convolutional neural net-
works (CNN) regression model to estimate the weights
of white Pekin duck carcasses. Using CNN, our method
avoids the biases caused by human-involved feature
selection. We developed an image acquisition system
integrated with the duck carcasses production line.
Using this system, we further collected a dataset includ-
ing 150 images from 50 ducks. The developed CNN
regression model was trained and validated using 10-fold
cross-validation. For the testing dataset, our model
achieved a MAD of 58.8 grams and a MRE of 2.15%,
decrease the estimation error compared to the pixel area
linear regression model (MAD of 123.5 grams and MRE
of 4.60%) and the artificial neural network (Kashiha
et al., 2014) model (MAD of 107.0 grams and MRE of
3.79%).

To sum up, our method is mainly oriented to duck
carcass production lines without an automatic weighing
function. These production lines can easily incorporate
our measurement methods at a low cost. Our method
can also be a powerful tool for facilitating carcass sorting
by weight, which is a routine procedure in duck process-
ing lines. This was achieved by a new image-based
weighing method. Compared with previous methods,
our method automatically abstracts features and greatly
improves the accuracy of white Peking duck weight esti-
mation.
MATERIALS AND METHODS

Data Collection

The dataset was collected in the food processing
department of a duck husbandry factory (Shandong
Hongye Food Co. Ltd., Shandong, China). The working
environment and camera setting are shown in Figure 1.
A monocular visible-light camera was mounted on a tri-
pod two meters away from the production line. The cam-
era was set to keep the white Pekin ducks in its focal
plane and the center of its vision. To reduce noise, the
background of the production line was set to blue by a
piece of cloth. The production line ran at 0.5 meters per
second. To ensure image quality, the camera shot at 30
frames per second. These ducks were weighed using an
electronic balance to evaluate our model.
The dataset included 50 ducks, each with 150 images

from different angles (Approximately §30 degrees), the
shooting scene of the photo is shown in Figure 2A. The
bodyweight distribution of 50 duck carcasses is shown in
Figures 2B and 2C depicts the statistics of the dataset.
Images of 45 randomly selected ducks were set as the
training set. For the remaining 5 ducks, 20% of their
images were randomly selected as the validation set, and
the remaining 80% of images were used as the test set.
The training set was used to optimize the parameters of
the network, the validation set was used to validate the
accuracy and generalization ability of the network in the
training process, and the test set was used to test the
accuracy of the network after training and to ultimately
evaluate the accuracy and generalization ability of the
network.



Figure 2. Description of the collected dataset. (A) Photos taken from a real camera perspective. (B) Weight distribution map of 50 collected
white Pekin duck carcasses. (C) The descriptive statistics of the measured weight of white Pekin duck carcasses.
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Data Preprocessing

To weigh individual ducks, the shapes of the ducks
were extracted from their images. This step, however,
was limited by several characteristics of the images, such
as background noises and overlap between ducks. To
accurately estimate the weight of ducks, the images
were preprocessed as follows. As shown in Figure 7 in
the appendix, the R (red) channel of the images had the
best contrast between the ducks and the blue back-
ground (see Figure 7 in the appendix). The R channel of
each image was thus extracted for further analysis to
reduce the computing level in our model. To reduce the
low-level background noise, pixel values below 40 were
set to 0, and those above 40 were set to 255, the maxi-
mum value. The information other than that in the duck
area was removed by an open operation using a 5 £ 5
kernel with the value of 1. The ducks’ feet were of essen-
tially the same weight, so their feet were excluded from
the images (additional experimental results are shown in
in Figure 9 in the appendix). The section of 300 pixels
below the iron frame was used as the duck images. To
reduce the computational cost and the number of
parameters to optimize, the extracted images of individ-
ual ducks were scaled from 1,015 £ 321 down to
253 £ 80 pixels and labeled with their weights. The pixel
values were further normalized to [0, 1].
CNN Regression Model

Our model was developed using Python (Version 3.7)
and TensorFlow (Version 1.15.0) on a computer with a
GTX 1080Ti graphics card. The two comparative mod-
els, the area-based linear regression model, and the arti-
ficial neural network (Kashiha et al., 2014) model were
developed using MATLAB (Version 2019A).

Our model was built based on CNN for regression
tasks. The architecture of this CNN model is illustrated
in Figure 3. The input of this model was an image with
253 £ 80 pixels. The model included three convolutional
layers, 2 fully connected layers, and one output layer.
The kernel size of each convolutional layer was 3 £ 3,
and the convolution stride was set to 1 without padding.
Each convolution operation was followed by a softplus
activation function (Dugas et al., 2000) and a pooling
layer with a 2 £ 2 pooling window and 2 strides with no
padding. The two fully connected layers contained 32
nodes and 16 nodes, respectively. Both layers had a
dropout rate of 10% during training and were equipped
with the softplus activation function. The output layer
had no activation function. During the validation and
testing process, no dropout was performed.
The model was trained using mini-batch gradient

descent with the Adam optimization method (Kingma
and Ba, 2015), and the loss function for the optimizer
was a mean squared error (MSE), as given in the follow-
ing formula:

L ¼
PNB

i¼1 yi � yið Þ2
NB

; ð1Þ

where ŷ i and yi denote the predicted and real weight of
the duck in the ith image, respectively, and NB refers to
the batch size. To converge faster during training, the
decay learning rate was used as described in the follow-
ing formula:

lr ¼ lrinitial � dr
gs
ds½ �; ð2Þ

where lrinitial denotes the initial learning rate (10�5), dr
denotes the decay rate (0.99), and ds and gs denote the
decay steps (1,000) and global steps, respectively. The
initial learning rate and decay rate were selected based
on the authors’ experiences.
RESULTS AND DISCUSSION

Estimating the Weight of Ducks

We evaluated the proposed CNN model for estimating
the weight of ducks. The input images were grouped based
on ducks. In each test set of the 10-cross-validation, we
randomly selected 45 ducks as the training set and the
remaining 5 ducks as the testing set (20% of images for the
ducks from the testing set were selected as the validation
set). In this way, the different images of the same duck will
not exist in the training set and the testing set at the same
time. The estimated weights from each of the 150 images
of the same duck are shown in Figure 4A. For a stable and



Figure 4. Result of the model test. (A) The estimated weight of one duck in different angles. (B) The estimated results against the original
weight of 50 samples. (C) PE distribution of the individual images of 50 samples, 7,500 images in total.

Figure 3. The scheme of the convolutional neural network for white Pekin duck carcass weight estimating.

4 CHEN ET AL.
accurate estimation of the weight, the mean of these 150
results was used as the final estimation weight (Luo et al.,
2018). The predicted error was defined as the difference
between the estimated and the true weight of the duck.
The relative error (Teimouri et al., 2018) was defined as
the ratio of the predicted error PE to the ground truth y.
Mean Relative Error (MRE) was defined by the average
of RE in the test set. The accuracy of the model was evalu-
ated by the Mean Absolute Deviation (Kashiha et al.,
2014) and Mean Relative Error (MRE), as represented by
the following formula,

MAD ¼ 1
N

XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EWi � yið Þ2

q
; ð3Þ
MRE ¼ 1
N

XN
i¼1

����EWi � yi

����
yi

� 100%; ð4Þ

where N refers to the number of weighed ducks, EWi is
the estimated weight, and yi is the true weight of the i-
th duck. The MAD of the proposed model was 58.8 g.
The MRE was 2.15%. The estimated results of the 50
ducks against the ground truth are shown in Figure 4B.
The distribution of the predicted error (Picouet et al.,
2010) of all the testing images is shown in Figure 4C.
We also evaluate our model on some other metrics

including R2, RMSE, and CVe (coefficient of variation
of the residual standard), as shown below,
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R2 ¼ 1�
PN

i¼1 EWi � yið Þ2
PN

i¼1 yi � 1
N

PN
i¼1 yi

� �2 ; ð5Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

EWi � yið Þ2
vuut ; ð6Þ

CVe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1 EWi � yið Þ2

q

1
N

PN
i¼1 yi

� 100%; ð7Þ

where EWi is the estimated weight, and yi is the ground
true weight of the i-th animal carcass. R2, RMSE and
CVe were 0.8804, 63.6 grams, and 2.33%, respectively.
Comparison With Other 2D Based Methods

To accurately evaluate the performance of our CNN
model, we compared it with the other 2 image-based
weighing methods. The first was a linear regression
model between the weight and the 2D pixel area of a
duck (Mollah et al., 2010; Balaban et al., 2010a,b;
Kashiha et al., 2014). The process of capturing the duck
area and building the model is illustrated in Figure 5A.
To reduce the complexity caused by different imaging
angles, the ducks’ images in the center of the camera
field of view were captured. These images were used to
extract features in this section, which contribute to high
weighing accuracy for the method (Lotufo et al., 1999).
After the 50 ducks’ areas were extracted, we estimated
the weights of the ducks from their area using linear
regression. As shown in Figure 5C, The MAD was
123.5 grams, the MRE was 4.60%, and the R2 was
0.7714. These results suggested that the accuracy of this
Figure 5. (A) The linear regress model by pixel area. (B) The ANN m
weight was regressed with ANN. (C) The linear regress results from the linea
the training set and testing set in Bayesian regulation training algorithm. (E
method is less than optimal for weighing ducks on the
production line.
The second method compared was an artificial neural

network (Kashiha et al., 2014) model. The ANN model
regressed the weight through features extracted from the
duck’s image, as illustrated in Figure 5B. This method
has been used by Amraei et al. (2017) for estimating the
weights of broilers. In their work, the limb, neck, and
head were not included in the area to capture the main
features of the broiler’s weight. Here, we similarly cap-
tured the area for the convenience of comparison. The cir-
cular kernel of 1 value in size of 39� 39 was used by a
morphological open operation to segment the back of the
duck as a binarized image. Five features, including area,
perimeter, convex area, major axis length, and minor axis
length, were captured from the segmented image. The
ANN model with one hidden layer was trained using the
nntool toolbox in MATLAB. Default parameters were
adopted for the training: sigmoid as the transfer function
for the hidden layer, MSE as the loss function, and learn
gradient descent with momentum backpropagation as
the adaption learning function. Table 1 shows the config-
uration and the estimated weight results of the ducks and
the broilers. The model with nine hidden neurons and a
Bayesian regulation training algorithm achieved the low-
est MAD of 107.0 grams and an MRE of 3.79%.
Figure 5D shows the estimated results against the original
weight of the training set and testing set in the Bayesian
regulation training algorithm. This is similar to the per-
formance of this ANN method in estimating the weight of
broilers.
Comparing the results of these three methods, the

CNN model outperformed the other methods in estimat-
ing the weight of ducks from 2D images, as shown in
Figure 5E. The estimation error of the ANN method was
about 2 times higher than that of the CNN model. In
addition, the CNN model could automatically extract
odel. Five features were extracted from the duck’s back area and the
r regress model. (D) The estimated results against the original weight of
) Comparison among the three methods.



Table 1. Results in different configurations and training algorithms.

Training
algorithm

Number of
neurons

TrainingMAD
(gram)

Training
RMSE (gram)

Broilers training
RMSE (gram)

(Amraei, et al.,
2017)

TestingMAD
(gram)

Testing RMSE
(gram)

Broilers
testing

RMSE (gram)
(Amraei, et al.,

2017)

Gradient descent 7 129.4 161.76 150.66 183.7 217.87 157.12
Levenberg
−Marquardt

10 70.9 89.65 89.63 149.7 209.87 91.59

Scaled conjugate
gradient

11 114.4 137.59 115.10 113.6 131.55 121.63

Bayesian
regulation

9 88.5 109.48 80.68 107.0 121.59 82.37

Figure 6. The learning curves (smoothed by smooth spline method) and the predicted error distribution of the CNN models with different
hyperparameters. (A) The cross-validation MSE in different convolution layers. (B) The cross-validation MSE in different kernel sizes. (C) The
cross-validation MSE in different activation functions. (D) The predicted error distribution for different activation functions. (E) The training MSE
and (F) the cross-validation MSE in different dropout rates. (G) The training MSE and (H) the cross-validation MSE in different optimization meth-
ods.
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Table 2. The structure of eight types of CNN models. Each convolution layer and fully connected layer followed a softplus activation
function, except the output layer. The size of each convolution kernel was 3 £ 3, and the stride was 1 without padding. For the max-pool-
ling operation, the pool window was 2 £ 2, and the stride was 2 without padding. The convolutional layer parameters are denoted as
“Conv-(numbers of kernels)”, and the fully connected layer parameters are denoted as “Dense-<number of nodes>”.

2 layers 3 layers 4 layers 5 layers 10 layers 10 (2) layers 13 layers 16 layers

Input (253£80£1)
Conv-4 Conv-4 Conv-4 Conv-4 Conv-4

Conv-4
Conv-4
Conv-4

Conv-4
Conv-4

Conv-4
Conv-4
Conv-4
Conv-4

Max Pool
Conv-8 Conv-8 Conv-8 Conv-8 Conv-8

Conv-8
Conv-8
Conv-8

Conv-8
Conv-8
Conv-8

Conv-8
Conv-8
Conv-8
Conv-8

Max Pool
\ Conv-16 Conv-16 Conv-16 Conv-16

Conv-16
Conv-16

Conv-16
Conv-16
Conv-16

Conv-16
Conv-16
Conv-16
Conv-16

Conv-16
Conv-16
Conv-16
Conv-16

Max Pool
\ Conv-32 Conv-32 Conv-32

Conv-32
Conv-32

Conv-32
Conv-32
Conv-32

Conv-32
Conv-32
Conv-32
Conv-32

Conv-32
Conv-32
Conv-32
Conv-32

Max PoolMax Pool
Conv-64

Max Pool Max Pool
Dense-32 (dropout rate 0.1)
Dense-16 (dropout rate 0.1)
Dense-1
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features, avoiding the insufficiency of features due to
artificial extraction while offering more convenience.
Hyperparameter Optimization

Here, we discuss the effects of hyperparameters on the
performance of the model. The hyperparameters
included depth of layers, kernel size, activation function,
dropout rate, and optimization method. We found that
activation function and optimization method are the
most influential factors. The effects of activation func-
tion were demonstrated using the error distribution on
the test dataset. The Adam optimization method was
the only method that fits the training dataset well. Its
effects on model accuracy were demonstrated using
learning curves. We found that softplus (Dugas et al.,
2000) activation function and Adam (Kingma and Ba,
2015) optimization method can fit the datasets effec-
tively. The effects of depth of layers, kernel size, and
dropout rate on model accuracy were presented using
learning curves. The learning curves shown in Figure 6
were smoothed by smooth spline method.
Depth of Convolutional Layers The number of con-
volutional layers is a crucial factor for the CNN model
(Simonyan and Zisserman, 2015). To optimize the
regression results, we tested eight different CNN struc-
tures (Table 2). The first convolutional layer had 4 ker-
nels. For the following convolutional layers, this number
doubled relative to the previous one. The normal distri-
bution initialization method was used for the initial con-
volution kernel. All the convolutional layers were
activated using a softplus activation function. Max-pool-
ing was performed on these layers. In all these 8 models,
the fully connected layers had the same structure. The
learning curves for the training dataset, as shown in
Figure 8A in the appendix, demonstrated that all net-
works fit the training dataset well. The learning curves
for the validation dataset were shown in Figure 6A. The
3-layer CNN model and 5-layer CNN model achieved
the lowest MSE on the validation set (Figure 6A).
Though the 3-layer and 5-layer CNN models converged
at a similar number of epochs, the 3-layer CNN model
converged faster because its epoch is shorter than that
of the 5-layer model. Meanwhile, the 3-layer model has
fewer parameters. We thus selected the 3-layer CNN
model.
Kernel Size The kernel size of CNN is crucial for model
performance. Therefore, we evaluated 5 kernel sizes
based on the accuracy of weight estimation. During the
experiment, the number of convolution kernels was fixed
and the kernel size was set to be the same across all the
convolutional layers in a model. The learning curves for
the training dataset, as shown in Figure 8B in the appen-
dix, demonstrated that all networks fit the training
dataset well. Figure 6B shows the learning curves of
models with different kernel sizes on the validation data-
set. We selected the 3 £ 3 kernel, as it had the lowest
MSE in the validation dataset (Figure 6B).
Activation Function The activation function affects
the backpropagation of the CNN model. We tested 5
activation functions: tanh, relu, elu (Clevert et al.,
2016), selu (Klambauer et al., 2017), and softplus
(Dugas et al., 2000). The learning curves for the training
dataset, as shown in Figure 8C in the appendix, demon-
strated that all networks fit the training dataset well.
The model using softplus got the lowest MSE in the vali-
dation dataset (Figure 6C) as well as the smallest
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predicted error (Picouet et al., 2010) (Figure 6D). We
thus selected softplus as the activation function.
Dropout To avoid overfitting, 4 dropout rates were
examined using models having the same parameters and
structure. The learning curves of these dropout rates
were compared in Figures 6E and 6F. In Figure 6E, only
the dropout rates of 0 and 0.1 fit the training dataset
well, so we only considered these dropout rates. In
Figure 6F, the dropout rate of 0.1 got the lowest MSE
on the validation dataset. Therefore, the dropout rate
was set to 0.1 during training.
Optimization Method Adam optimizer has been
viewed as the default for overall choices (Ruder, 2016).
Here, using the same model, we compared three optimi-
zation methods: Mini-batch gradient descent (Ruder,
2016), Momentum (Qian, 1999), and Adam (Kingma
and Ba, 2015). In the Momentum optimization method,
the momentum term g was set to 0.9. Figures 6G and
6H show the learning curves of the three optimization
methods in the training dataset and the validation data-
set. For both datasets, the Adam optimization method
achieved the lowest MSE. We, thus, selected Adam as
the optimization method.
CONCLUSIONS

Here, we proposed a low-cost 2D image weighing
method to estimate the weight of ducks based on end-to-
end deep learning methods. Since most factories do not
have automatic carcass weighing devices like modern
systems, our method enables low-cost weighing of exist-
ing production lines. Our image weighing method can
accurately estimate the body weight of white Peking
duck carcasses on a working production line. It thus sig-
nificantly increases the efficiency of meat processing. By
using a 10-fold cross-validation method to estimate the
model, we achieved a testing MAD of 58.8 grams and an
MRE of 2.15%. We also compared our CNN model with
a pixel area linear regression model and an ANN model
based on the same dataset. The results demonstrated
that the CNN model outperformed the other 2D image
weighing methods. The ability to estimate the weight of
white Pekin duck carcasses in a noncontact and accurate
manner makes our proposed CNN method a suitable
solution for weighing duck carcasses on the production
line of slaughter factories.
1https://github.com/RuoyuChen10/Image_weighing
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