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Abstract

A long-standing practice in the treatment of cancer is that of hitting hard with the maximum

tolerated dose to eradicate tumors. This continuous therapy, however, selects for resistant

cells, leading to the failure of the treatment. A different type of treatment strategy, adaptive

therapy, has recently been shown to have a degree of success in both preclinical xenograft

experiments and clinical trials. Adaptive therapy is used to maintain a tumor’s volume by

exploiting the competition between drug-sensitive and drug-resistant cells with minimum

effective drug doses or timed drug holidays. To further understand the role of competition in

the outcomes of adaptive therapy, we developed a 2D on-lattice agent-based model. Our

simulations show that the superiority of the adaptive strategy over continuous therapy

depends on the local competition shaped by the spatial distribution of resistant cells. Intratu-

mor competition can also be affected by fibroblasts, which produce microenvironmental fac-

tors that promote cancer cell growth. To this end, we simulated the impact of different

fibroblast distributions on treatment outcomes. As a proof of principle, we focused on five

types of distribution of fibroblasts characterized by different locations, shapes, and orienta-

tions of the fibroblast region with respect to the resistant cells. Our simulation shows that the

spatial architecture of fibroblasts modulates tumor progression in both continuous and adap-

tive therapy. Finally, as a proof of concept, we simulated the outcomes of adaptive therapy

of a virtual patient with four metastatic sites composed of different spatial distributions of

fibroblasts and drug-resistant cell populations. Our simulation highlights the importance of

undetected metastatic lesions on adaptive therapy outcomes.

Author summary

Tumors are composed of different cancer cells with varying degrees of treatment resis-

tance, which compete for a shared resource. Adaptive therapy exploits this competition.

The paradigm employs patient-specific on and off treatment schedules or lower doses to

permit a significant number of drug-sensitive cells to survive. The surviving sensitive cells

can suppress the growth of drug-resistant cells via intratumor competition. This
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competition can be modulated by the spatial structure of tumors. For example, resistant

cell configuration, carrying capacity, or migration rate may change local spatial competi-

tion between drug-resistant cells or between drug-sensitive and drug resistant cells. In

addition, the presence of growth factors produced by stromal cells such as fibroblasts pro-

motes the proliferation of cells, enhancing the competition. To understand the impact of

forenamed factors on the outcomes of adaptive therapy, we developed a computational

model, 2D on-lattice agent-based model. Our findings show that the spatial factors regu-

late the local competition and may hold back the benefit of adaptive therapy. Further, the

impact of fibroblast depends on the respective positioning of fibroblast to the resistant

cells. Finally, we simulated the outcomes of adaptive therapy on multiple metastatic

lesions of mixed spatial configuration on a virtual patient. In the simulation, we highlight

the importance of undetected metastatic lesions on therapy outcomes.

Introduction

The current standard of care for the treatment of cancer patients is based on continuous ther-

apy using the maximum tolerated dose (CT-MTD) of cancer drugs with the aim of eradicating

drug sensitive cancer cell populations in tumors. Despite the impressive initial tumor

responses under CT-MTD, drug resistance inevitably develops in advanced metastatic solid

cancers because CT-MTD often selects for drug-resistant cell populations [1, 2]. For example,

the majority of patients with metastatic melanomas treated continuously with a BRAF-MEK

inhibitor develop resistance over 11–15 months [3, 4]. Drug resistance is known to be a com-

bined consequence of the responses from factors that include intratumor heterogeneity [5, 6],

limited drug penetration due to physical barriers [7], and the tumor microenvironment [8–

10]. The exploitation of the intratumor competition between heterogeneous cancer cells and

the modulation of the tumor microenvironment to bias the selective pressure towards the sen-

sitive cells might have the potential to delay the emergence of resistance.

From an ecological and evolutionary perspective, the net growth rate of a population com-

posed of multiple species is determined by the intrinsic growth rate, death rate, and density-

dependent limitations—when multiple species compete for the same resources in a closed

environment [11]. This ecological principle implies that the net growth of a tumor cell popula-

tion can be modulated by inhibiting the intrinsic growth rate of drug-sensitive cells, by

increasing sensitive cell deaths, and by modulating the density-dependent growth limitations

of drug-resistant cell populations. Because drug resistance often comes with a fitness cost [12,

13], treatment breaks may provide sensitive cells with a higher net growth rate than the resis-

tant cell population. When the intrinsic growth rates of both cell populations are the same, the

only way to modulate the growth of resistant cells is to increase density-dependent limitations.

Adaptive therapy (AT) is based on this ecological principle of competition between drug sensi-

tive and drug resistant cell population [14]. If kept in a tolerable range, tumor burden is not

always lethal [14, 15]. Thus, the objective of AT is to maintain a tolerable tumor burden as

long as possible by using treatment holidays or reduced dosing [14]. For example, under AT, a

patient is treated with therapy from the diagnosis until the tumor burden falls to a fraction of

the initial cell population (e.g., 50% of the initial burden [16]). The goal is to reduce the cell

population to an acceptable level that has sufficient sensitive cells to maintain density-depen-

dent competitive stress on the growth of resistant cells. Then, a treatment break is scheduled to

allow the remaining sensitive cells to grow and to limit the growth of the resistant cell popula-

tion by leveraging competition. Once the total cell population is back to the initial level, a
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treatment is administered again. This on–off treatment cycle is repeated until the tumor pro-

gresses. This adaptive therapy strategy has been shown to have some degree of success in both

preclinical experiments [17, 18] and a clinical trial [16]. In particular, a clinical trial for pros-

tate cancer therapy showed that adaptive therapy can delay disease progression for 27 months

by using only a 53% cumulative drug rate compared to CT-MTD [16].

Several mathematical and computational models have been developed to compare AT with

CT-MTD in various scenarios, utilizing two quantification metric, time to relapse and tumor

progression (TTP) and time gain (TG). TTP is the time at which the tumor progresses. The

time gain (TG) quantifies how many days gained by AT from CT-MTD (TG = TTP in AT—

TTP in CT-MTD). Gallaher et al. developed an off-lattice agent-based model to simulate the

impact of cancer cell heterogeneity and space on AT outcomes. They reported an extension of

TTP of about one year under AT compared to CT-MTD (CT-MTD: 400 days vs. 700 days)

[19]. Gatenby et al. developed a model consisting of five types of cells with differential drug

responses and showed that tumor cells under CT-MTD grow to a carrying capacity by about

2400 days, while under AT, the tumor burden was kept under control at 20% of the carrying

capacity [14]. A mathematical model in [16] showed that the on–off cycling rate of treatments

depends on cell–cell competition and initial tumor cell population composition [16], where

the threshold for treatment breaks was 50% of the initial tumor burden. A different threshold

for treatment breaks was considered by Hansen and Read [20, 21]. This study further demon-

strated that a 20% reduction threshold resulted in more delayed progression than a 50% reduc-

tion for different degrees of initial resistance [20, 21]. Kim et al. identified predictive factors

that determine the benefit of AT. In the case of melanoma, the initial tumor burden, growth

rate, switching rate, and competition coefficient were identified as crucial parameters for

deciding the TG of AT by using CT-MTD [21]. The initial proportion of resistance is another

contributing factor. Strobl et al. showed that an 1% initial resistance delayed the progression

by up to 211 days for an initial burden of 75%, while 10% resulted in almost no TG [22]. A

game-theoretical model was used to propose a combination of strategy for AT [23, 24].

Recently, Viossat and Noble [25] provided theoretical conditions for the maximization of the

benefits of AT. In particular, they provided an explicit formula for TG under AT, which

included the intensity of competition between drug-sensitive and drug-resistant cells, the most

critical factor. A couple of spatial models have investigated the consequences of spatial hetero-

geneity on tumor growth and treatment outcomes. Agent-based models have shown that even

lower doses can limit tumor growth if resistant cells are spatially restricted by sensitive cells

[19, 26]. Tumors with randomly spread resistant cells were reported to grow much faster than

tumors with resistant cells that were clustered together [26, 27].

Tumor microenvironment can modulate tumor progression and treatment outcomes. For

example, cancer associated fibroblasts (CAFs), a group of activated fibroblasts in tumors, are

known to promote individual cancer cells’ growth and migration by producing growth factors

and an extracellular matrix [28–33]. Recent experimental studies have reported the impact of

spatial location of CAFs on treatment outcomes. Marusyk et al. demonstrated that physical

proximity to CAFs determines tumor cell survival under therapy [30]. Tumor cells that are

close to CAFs can survive longer under therapy due to the fibroblast-mediated elevation of the

threshold of drug concentration required for cell death and the lower rate of drug activity due

to the physical barrier against drug penetration (i.e., collagen) generated by fibroblasts. The

analysis of the geospatial distribution of cancer-associated fibroblasts in metastatic clear cell

renal cell carcinoma suggested that proximity clustering of tumor cells with the fibroblasts

resulted in worse overall survival and resistance to targeted therapy [34].

The impact of CAFs, in particular its spatial distribution, on AT outcomes has yet to be

investigated. Here, we developed a 2D on-lattice agent-based model (ABM) to simulate the
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effects of the different distribution of CAFs and resistant cell populations on the therapy out-

comes. Specifically, we considered three different initial cell configurations of resistant cell

populations, namely, clumped, random, and uniform. The spatial distribution of CAFs appears

to be diverse. For example, in the ovarian tumor, clumps of tumor cells surrounded by fibro-

blasts were observed (Fig 1 in [35]). Also, side-wise alignment of fibroblasts to tumor cells was

observed in ovarian cancer (Fig 2 in [35], Fig 1 in [36]). A random scattering of fibroblasts

throughout the tumor was observed in prostate cancer(Fig 3 in [32]). Random scattering of

clumps of fibroblast was found in lung cancer (Fig 2 in [37]) as well. For simplicity, we consid-

ered five different spatial arrangements of CAFs, which may represent a fibroblast distribution

in a tumor. In addition, we simulated the outcomes of AT on a virtual patient with four meta-

static sites composed of different spatial distributions of fibroblasts and resistant cell

populations.

Materials and methods

We developed a 2D on-lattice agent-based model, representing a small primary tumor or a

metastatic lesion. For simplicity, we assume that a tumor cell population can be classified into

two types of cells: drug-sensitive (S-cell) and drug-resistant (R-cell). We denote the total cell

population, S-cell population, and R-cell population at time t with N(t), S(t), and R(t), where

N(t) = S(t) + R(t).

Initial and boundary conditions

We assume that a percentage f0 of the initial cells (N(0)) is resistant (i.e., Rð0Þ ¼ f0
100
Nð0Þ and

Sð0Þ ¼ 1 �
f0

100

� �
Nð0ÞÞ. Initially, a total of S(0) cells is randomly dispersed over the domain,

while a total of R(0) cells is placed in three different dispersion patterns—random (r), uniform

(u), or clumped (c)—in the domain Fig 1 [38]. In the clumped case, all of the R-cells were ran-

domly dispersed in a square centered in the middle of the domain, where the same number of

R-cells were randomly dispersed over the whole domain in the random case. On the other

hand, in the uniform case, all of the R-cells were manually placed to maximize the distance

between R-cells over the whole domain. The boundary is assumed to be closed (no cell leaving

the boundaries).

Spatial allocation and the mechanism of modulating tumor growth by CAFs is a complex

and multifaceted phenomenon [31, 39]. To gain a theoretical understanding while keeping the

problem simple, we consider the following five different CAF configurations (Fig 2).

Fig 1. Initial cell configurations. Three types of initial cell configurations. Orange dots: R-cells, blue dots: S-cells, white dots: empty sites. Clumped R

cells (first), random R-cells (center), and uniform R-cells (right).

https://doi.org/10.1371/journal.pcbi.1009919.g001
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• NoF: No fibroblast.

• FC: Fibroblast over a 32 × 32 square overlapping with the R-cell clump at the center.

• FCp: Fibroblast partially overlapping with the R-cell clump at the center, diagonally located

between the sites (17, 35) and (49, 66).

• FSq: Fibroblast over a hollow square with an outer dimension of 55 and inner dimension of

45, diagonally situated between the sites (23, 23) and (77, 77), with a wall thickness of five lat-

tices. In this case the fibroblast completely surrounds the R-cell clump.

• FSp: Fibroblast over a “L” shaped region with vertices (21, 25), (30, 25),(30, 71),(75, 71),(75,

80) and (21, 80). In this case, the fibroblast partially surrounds the R-cell clump.

• FR: 10 Fibroblast clumps of size 10 × 10 randomly placed in the domain.

In all the cases defined above, we assumed that CAF comprises of about 10% of the domain.

Fibroblasts are observed to promote cancer cell growth up to about 5 times [32, 33] We assume

fibroblast-mediated cell proliferation rate riF = αri, where i 2 {S, R}, and simulate our model

for α = 2, 4 [32, 33]. In this study, we assume that cancer cells in the fibroblast location have

CAF-mediated growth promotion for simplicity.

Cell-cycle decision

Each cell occupies a lattice point in a square domain of size l × l. In every time step, each cell

may stay stationary, or it can move, divide, or die. The S-cells and R-cells divide at a constant

rate of rS or rR, respectively. In this study, we considered the von Neumann neighborhood

(VNHD), which is composed of the sites on the east, west, south, and north of each cell. The

death rate of both types of cells is dT. The drug concentration D(t) is homogeneous in the

domain, and a drug-induced death rate (δD) is applicable to S-cells only. A sensitive cell under-

going mitosis can be killed by a drug with a probability of δDD(t). Both S-cells and R-cells fol-

low the rules described in the flow chart in Fig 3. A brief explanation of the flow chart (Fig 3) is

provided in the following.

• Step 1: If t< T, where T is the end time, go to Step 2; otherwise, go to Step 12.

• Step 2: Decide whether the cell will move. Pick a random number from a uniform distribu-

tion (xm* U[0, 1]). If xm<mrS, where mrS is the probability of cell migration, then go to

Step 3. If not, go to Step 5.

Fig 2. Fibroblast distribution. The pink shaded regions show the five types of representative CAF distribution (FC, FCp, FSq, FSp and FR). The orange

square at the centre is the clump of R-cells. The dimensions have been provided in the text.

https://doi.org/10.1371/journal.pcbi.1009919.g002
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• Step 3: Is one of its VNHDs empty? If yes, go to Step 4. If not, go to Step 11.

• Step 4: Randomly move the cell to one of the empty sites in the VNHD. Go to Step 11.

• Step 5: Decide whether the cell will divide or die. Pick a random number from a uniform dis-

tribution (xpd*U[0, 1]). If xpd< rj + dT with j 2 {S, R}, where rj is the j-cell proliferation

rate and dT is the normal cell death rate, then go to Step 6. If not, go to Step 11.

• Step 6: Decide whether the cell will divide. Pick a random number from a uniform distribu-

tion (xp*U[0, 1]). If xp <
rj

rjþdT
, then go to Step 7. If not, go to Step 8.

• Step 7: Decide whether the cell will die due to the drug. If (xd*U[0, 1]) and if x< δDD(t),
where δD is the probability of cell death (for R-cells, δD = 0), go to Step 8. If not, go to Step 9.

• Step 8: Remove the cell, make the site empty, and go to Step 11.

• Step 9: Is one of its VNHDs empty? If yes, go to Step 10. If not, go to Step 11.

• Step 10: Randomly put a new cell of the same type in VNHD. Go to Step 11.

• Step11: t t + 1. Go to Step 1.

• Step12: The simulation ends.

Number of cells in the neighborhood

To quantify local cell–cell competition, we introduce the following notation.

N i
jkðtÞ ¼ number of j‐cells around a k‐cell at time t with i initial cell configuration

where, j 2 {R(R-cells), S(S-cells), E(Empty site)}, k 2 {R, S} and i 2 {c(Clumped), r(Random), u
(Uniform)}. To denote the mean over all of the k-cells in the domain at time t, we write N i

j�kðtÞ.

We denote the number of empty sites by N i
Ek (0 � N i

Ek � 4). A cell can move to any unoc-

cupied sites in its VNHD provided that 1 � N i
Ek � 4. During cell proliferation, one parent cell

Fig 3. Cells’ life cycle. Flow chart of the cells’ life cycle. In each time step, all of the cells follow the steps in the flow

chart.

https://doi.org/10.1371/journal.pcbi.1009919.g003
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divides into two daughter cells of the same type. To accommodate the daughter cell, at least

one empty site is required (1 � N i
Ek � 4) in the parent cell’s von Neumann neighborhood. If

N i
Ek ¼ 0, the proliferation was not executed. Upon cell division, one daughter cell is placed in

the parent cell’s location, and the other is randomly placed in one of the empty sites in the

VNHD. Upon the availability of an empty site in the VNHD (i.e., 1 � N i
Ek � 4), while

attempting to divide, the mother S-cell may die with a probability of dD due to the drug, but

the R-cells do not experience drug-induced death. Dead cells are immediately removed from

the respective sites.

Model parameters

As a representative structure, we assume a square domain of 100 × 100 lattice points. We simu-

late our model for N(0) = 5000, 7000 and f0 = 10%, 1%. The S-cells are assumed to be randomly

dispersed over the domain. In the clumped case, all of the R-cells are randomly dispersed in a

40 × 40 clump. The parameters employed in this study are summarized in Table 1.

Treatment schedules

We consider two treatment strategies: continuous administration of maximum tolerated dose

(CT-MTD) and adaptive therapy (AT). In a CT-MTD therapy, the maximum tolerated dose is

applied to the domain over the entire simulation time. In an AT simulation, the treatment is

provided from the beginning of the simulation until the cell population is reduced to ρN(0).

The treatment is stopped until the total population, N(t), reaches N(0) again. Then, the treat-

ment is re-applied. In this study, we assume that the MTD is applied during the treatment

cycle and that ρ = 0.5 [16]. In mathematical notation, drug concentration can be written as fol-

lows. We consider the time when the total population reaches 120% of N(0) as the time to

tumor progression (TTP).

CT � MTD : DðtÞ ¼ MTD for t � 0

AT : DðtÞ ¼
maximum tolerated dose until NðtÞ < rNð0Þ; r ¼ 0:5;

0 until NðtÞ � Nð0Þ

(

Table 1. The parameter values are listed in the following table.

Parameter Description Value Reference

N(0) Initial number of cells 5000, 7000 Assumed

K Carrying capacity of each lattice point 1, 2 Assumed

f0 Initial percentage of the resistant cell population (R(0)/N(0)) 1%, 10% [40]

rS Sensitive cell proliferation rate 0.027 per day [16]

rR Resistant cell proliferation rate (1–0.3)rS [19]

dT Cell death rate 0.3rS [22]

m Migration rate [0, 4rS] Assumed

D(t) Drug concentration at time t 0, 1

δD Drug-induced death rate of S-cells 0.75 [23]

ρ AT threshold for treatment break 0.5 [16]

rSF Fibroblast-mediated sensitive cell proliferation rate 2rS, 4rS Assumed

rRF Fibroblast-mediated resistant cell proliferation rate 2rR, 4rR Assumed

https://doi.org/10.1371/journal.pcbi.1009919.t001
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Simulation

The model was implemented on the JAVA platform using the Hybrid Automata Library

(HAL) [41]. The generation of the initial cell configuration, the data analysis, and the visualiza-

tion were performed by using MATLAB. To keep the results unbiased, the sequence of cells in

the simulation was shuffled at the beginning of every time step. For each simulation scenario,

we simulated 30 virtual tumors (i.e., 30 realizations of the model simulation), unless otherwise

noted. To denote the average over the 30 simulations, we used over-bars, such as �NðtÞ and

�N i
jkðtÞ.

Statistical analysis

To investigate the consequences of a parameter change in the results of the 30 realizations, we

used a two-sample t-test. Significant differences with p-value< 0.001, 0.01, and 0.05 are repre-

sented by triple asterisk(���), double asterisk(��), and asterisk(�), respectively. For non-signifi-

cant differences, we use “n.s.”.

Results

Impact of the initial R-cell configuration on the TTP under CT-MTD

First, we simulated CT-MTD on the three types of initial cell configurations for a time span of

2000 days. In this simulation, we assumed the carrying capacity of each lattice point to be

K = 1 and the cell migration rate to be m = 0. Under the therapy, the S-cells died out quickly,

and the remaining R-cells started to grow and fill the model domain. The representative spatial

distributions of the tumor cells are shown in Fig 4A on the 1st, 120th, and 2000th day. The cell

configuration in the clumped case was significantly different from those in the random and

uniform cases, between which the difference seemed to be negligible. On the 120th day, slightly

larger patches of resistant cells are observed in the random case than in the uniform case. By

the end of the simulation, the whole domain was captured by R-cells in both cases. On the

other hand, in the clumped case, the R-cells grew in a patch in the center. By the end of the

2000 days, a huge clump of R-cells captured almost the entire domain (S1 Movie).

The temporal dynamics of different types of cells are presented in Fig 4B. The TTP (time to

progression) in the three cases were 1662 day, 372 day, and 345 day, respectively. The dynam-

ics of the S-cells were almost the same for all three types of initial configurations (S1A Fig), as

they were initially similarly sparse and had the same growth parameters in all cases. The

growth dynamics of R-cells in clumped case is different from both random and uniform cases,

resulting in different TTP. To examine the reason for why the TTP was significantly different

in the clumped case compared to the random and uniform cases, we investigated the local R–S

and R–R spatial competition. Specifically, we calculated the numbers of S cells, R cells, and

empty sites of each R-cell VNHD in the three spatial patterns.

To compare the local growth potential of R-cells in the three spatial patterns, we calculated

the number of empty sites in the VNHD of each R-cell. The average number of empty sites in

the neighborhood of an R-cell was lower in the clumped case than in both the random and

uniform cases (N c
E�R < N r

E�R ;N
u
E�R). Fig 4C shows that the number of empty sites around each

R-cell increased from day 1 to day 60 in the random and uniform cases (N r
E�R and N u

E�R

increased from day 1 to 60) because the treatment-induced deaths of S-cells freed up space in

the neighborhood of each R-cell, leading to a reduction in R–S spatial competition.

We next compared the R–R local competition by quantifying the average number of R-cells

in the VNHD of each R-cell. During CT-MTD, the number of R-cells in the neighborhood of

each R-cell increased over time in all three cases due to growth of R-cells. In the clumped case,
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the R-R competition was significantly higher than the competition in the random or uniform

case (N c
R�R > N r

R�R ;N
u
R�R) (Fig 4D: blue boxes vs. yellow and orange boxes), resulting in a

delayed TTP.

Impact of the initial R-cell configuration on the TTP under AT

Next, we investigated the effect of the initial R-cell distribution on the AT outcomes. Fig 5A

and S1 Movie shows a representative cell configuration at different times for AT with three

Fig 4. Effects of initial R-cell distribution on the TTP under CT-MTD. (A) The cell configurations on days 1, 120, and 2000 are shown.

The blue, orange, and white dots are S-cells, R-cells, and empty sites, respectively. (B) The average temporal evolution of the average

number of S-cell and R-cell populations over 30 realizations with clumped (upper panel), random (middle panel), and uniform (bottom

panel) initial cell configurations (blue: S-cell, orange: R-cell). Black solid line: average total cell population ( �N ðtÞ ¼ �SðtÞ þ �RðtÞ). Vertical

cyan line: TTP in each case; horizontal cyan line: the 120% level of the initial tumor volume (tumor progression threshold). The average

numbers of empty sites (N i
E�R ) and R-cells (N i

R�R ) in the VNHD of an R-cell in the 30 realizations are shown as boxplots in (C) and (D),

respectively, for i = c, r, u. The blue, orange, and yellow boxes are for the clumped (c), random (r), and uniform (u) cases, respectively.

https://doi.org/10.1371/journal.pcbi.1009919.g004
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different initial R-cell distributions. The cell population growth presented in Fig 5B shows that

the TTP values were 1776, 392, and 362 days in the clumped, random, and uniform cases,

respectively. The total cell population went through four on–off treatment cycles until the TTP

in the clumped case. In the other two cases, only one on–off treatment cycle was allowed until

the TTP. To understand the mechanism by which AT caused a more delayed TTP in the

clumped case compared to the random or uniform case, we first investigated the local growth

potential on days 1, 35, and 95. We chose the 35th day (when the first cycle had yet to finish)

Fig 5. Effect of the initial R-cell distribution on the TTP under AT. (A) Cell configurations on days 1, 120, and 2000. The square

signifies the domain representative of the tumor. The blue, orange, and white dots are S-cells, R-cells, and empty sites, respectively.

(B) Average temporal evolution of the S-cell and R-cell populations for the clumped (upper panel), random (middle panel), and

uniform (bottom panel) cases of the initial cell configurations (blue dots: S-cells, orange dots: R-cells). Black solid line: the total

population (N(t) = S(t) + R(t)). Vertical solid cyan line: TTP; horizontal solid cyan line: 120% level of the initial tumor volume.

Vertical dotted cyan line: time for the R-cells to reach 50% of the initial tumor volume (TR50); horizontal dotted cyan line: 50% level

of the initial tumor volume. The average numbers of empty sites (N i
E�R ), S-cells (N i

S�R ), and R-cells (N i
R�R ) in the VNHD of an R-cell

in the 30 realizations are shown as boxplots in (C), (D), and (E), respectively, for i = c, r, u. The blue, red, and yellow boxes are for

the clumped (c), random (r), and uniform (u) cases, respectively.

https://doi.org/10.1371/journal.pcbi.1009919.g005

PLOS COMPUTATIONAL BIOLOGY Spatial heterogeneity of resistant cells and fibroblasts, and cancer treatment response

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009919 March 9, 2022 10 / 33

https://doi.org/10.1371/journal.pcbi.1009919.g005
https://doi.org/10.1371/journal.pcbi.1009919


and the 95th day (after which the second cycle started) for all the cases. The average numbers

of empty sites (Fig 5C) and S-cells (Fig 5D) in each R-cell neighborhood were lower in the

clumped case than in the other two cases (N E�RðtÞ
c
< N r

E�RðtÞ,N
u
E�RðtÞ (Fig 5C). The number of

empty sites in the neighborhood of a each R-cell (N c
E�R) did not significantly change from day 1

to day 35, although the numbers in both the random and uniform cases (N r
E�R and N u

E�R)

increased remarkably. During the first treatment break (from day 35 to day 95), the S-cells

divided, filling up empty sites in the neighborhoods. This resulted in a reduction of N E�RðtÞ
c;r;u

(Fig 5C: boxplots on day 95 vs. boxplots on day 35).

Next, we compared the intensity of the spatial competition between the S-cells and R-cells.

The average number of S-cells in each R-cell neighborhood was higher in the random and uni-

form cases than in the clumped case (N S�RðtÞ
c
< N r

S�RðtÞ,N
u
S�RðtÞ) (Fig 5D: yellow/orange box-

plots vs. blue boxplots). The difference between the average number of S-cells in a

neighborhood in the clumped case and those in the other two cases decreased from the 1st day

to the 35th day (i,e.,

N c
S�Rð1Þ � N r

S�Rð1Þ > N c
S�Rð35Þ � N r

S�Rð35Þ,N c
S�Rð1Þ � N u

S�Rð1Þ > N c
S�Rð35Þ � N u

S�Rð35Þ). The

higher number of S-cells in the VNHDs of the R-cells allowed the drug to free up sites more in

the random and uniform cases than in the clumped case. In the first treatment break (from

day 35 to day 95), the number of S-cells in the neighborhoods increased in all three cases due

to the proliferation of S-cells during the “off” part of the treatment cycle (Fig 5D). Thus, the

inhibition of growth of R-cells by S-cells was higher in the random and uniform cases than in

the clumped case.

Finally, we quantified the strength of inter-species spatial competition (i.e., competition

between R-cells). The average number of R-cells in a neighborhood in the clumped case was

always higher than the numbers in the random and uniform cases (N R�RðtÞ
c
> N r

R�RðtÞ,N
u
R�RðtÞ)

(Fig 5E). Interestingly, the number of R-cells in each R-cell neighborhood in all three cases

increased irrespective of drug administration because R-cells can proliferate regardless of drug

administration. A greater number of R-cells in the neighborhood implies a stronger inhibition

of R-cell growth by R-cells, leading to a slower rate of cell population growth (Fig 5B: slope of

the total population growth in the clumped case< slope of the total population growth in the

random and uniform cases).

In summary, in the random and uniform cases, the number of R-cells increased more

quickly due to the space available in the neighborhoods, and it reached the level of 50% of the

initial total cell population during the end of the second drug administration after the first

“off” part of the treatment cycle (Fig 5B: dotted cyan line). Once the number of R-cells reached

the level of 50% of the initial cell population, the ongoing (additional) cycle of treatment could

not reduce the total population below the 50% level, leading to continuous treatment and a

quicker progression (Fig 5B). Under CT-MTD, inter-species competition (R–R competition)

was solely responsible for determining the TTP (higher competition leading to delayed TTP).

Under AT, however, a combination of R–R competition and R–S competition seemed to

determine the TTP. In other words, a more significant reduction in the growth inhibition of

R-cells by S-cells combined with the increase in R–R competition drove a faster TTP in the

random and uniform cases. In the clumped case, the R–R competition is the main determining

factor of TTP.

Clumped initial distribution results in higher clinical time gain (TG)

So far, we explored the impact of the initial R cell distribution on the AT and CT-MTD out-

comes and investigated how the treatments modulate the inter- and intra-species competition

(R–S and R–R, respectively), resulting in different treatment outcomes. During CT-MTD, the
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drug is supplied consistently without considering the response, which causes a prompt decline

in the S-cell population and facilitates R-cell growth by lowering the local R–S spatial competi-

tion. On the other hand, during AT, the drug is supplied in short cycles to keep a tolerable

number of S-cells, which are required in order to limit the R-cells’ growth by maintaining spa-

tial competition. Therefore, AT is expected to maintain total cell growth for longer than

CT-MTD. We quantified the benefits of AT over CT-MTD in terms of the TG (= Time to

Tumor Progression(TTP) in AT—Time to Tumor Progression(TTP) in CT-MTD).

Fig 6 displays comparison of the two treatment outcomes of two different initial resistance

(f0 = 10% and 1%) for two different initial number of cells (N(0) = 5000 and 7000) in three dif-

ferent initial R-cell configurations. Both for f0 = 10% (Fig 6A) and 1% (Fig 6B), we observe that

TTP is longer for N(0) = 7000 than for N(0) = 5000, which is because the number of total cell

population is higher for N(0) = 7000 that for N(0) = 5000. It is worth noting that in this study

TTP is defined as the time when the total cell population reaches 120% of the initial cell

Fig 6. Role of the initial R-cell distribution on the benefit of AT over CT-MTD. (A) The blue and red bars show the TTP for N(0) =

5000 and 7000 respectively under both treatment strategies and different initial R-cell configurations of c (clumped), r(random) and u

(uniform) for f0 = 10%. (B) Similar results to those in A are shown for f0 = 1%. (C) The boxplots show the TG in the 30 realizations for the

clumped, random, and uniform initial cell configurations for f0 = 10% (���: p − value< 0.001; n.s.: not significant). The blue shaded and

orange shaded regions show results for N(0) = 5000 and 7000 respectively. (D) Similar results to those in C are shown for f0 = 1%.

https://doi.org/10.1371/journal.pcbi.1009919.g006
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population. Further, the average TTP is larger under AT than under CT-MTD for all initial

settings, which shows that clumped initial cell configuration results in higher TG than the

other types of cell configuration. However, AT extends the TTP 8.3, 5.4, and 5.1% for clumped,

random, and uniform cases respectively concerned to the TTP under CT-MTD in the case of

N(0) = 5000, f0 = 10%. A similar percentage-wise increase is observed for other initial condi-

tions as well.

On the other hand, in terms of absolute change, the benefit of AT is greater if a smaller frac-

tion of resistance was present initially (Fig 6C vs. Fig 6D). Comparing the effect of initial R-cell

configuration, a clump (c) initial distribution results in significantly higher TG in all the cases

(Fig 6C and 6D, p – value < 0.001). Interestingly, its expected time gain relative to the random

configuration is longer for higher initial resistance. For f0 = 10%, clumped initial R-cell distri-

butions result in more than 6 times higher TG compared to random R-cell distributions. For f0
= 1%, clump distributions lead to about 2 − 3 times higher TG.

Tumor carrying capacity [42, 43] and migration rates [44] may relax the competition and

promote the tumor growth. An increasing carrying capacity leads to reduced local competition

between cancer cells. Thus, the benefit of adaptive therapy decrease (S2 Fig). In addition,

CAFs provide growth factors for tumor cells, leading to local competition alteration [30]. In

the next two subsections, we discuss the consequence of cancer cell migration and fibroblast-

mediated growth on the treatment outcome. The uniform and random cases did not show sig-

nificant differences in terms of TG. Furthermore, the clumped case and random case were two

extreme versions of similar types of distributions. Thus, we focused on the case of clumped R-

cell distribution in the next two subsections.

Increased cell migration lead to less benefit of AT over CT-MTD

To investigate the impact of cell migration on therapeutic responses, we simulated our model

for different values of migration rates, m. In this study, the simulation time unit is cell doubling

time (1 day). For simplicity, cell growth rates and death rates were assumed to be multiple of

growth rate of the drug-sensitive cell population (rS) [16, 27]. To be consistent, we assume can-

cer cell migration rates as multiple of cell growth rate (m = 0, rS, 2rS, 3rS or 4rS) as well [45, 46].

Under both AT and CT-MTD, temporal changes of tumor volume are shown in Fig 7A and

7B for N(0) = 5000, f0 = 10% and N(0) = 7000, f0 = 1% respectively. Increased cell migration

promoted faster cell population growth, leading to a shorter TTP. Fig 7A shows that for N(0) =

5000, f0 = 10% the time to progression without cell migration was 1667 days under CT-MTD.

The TTP decreased to 884 days when the cell migration increased to 2 times, and further

decreased to 712 days when the rate was 4 times. On the other hand, the time to progression

without cell migration was 1803 days under AT. The TTP decreased to 933 days when the cell

migration increased to 2 times, and further decreased to 757 days when the rate was 4 times.

Similar scenario is observed for N(0) = 7000, f0 = 1% (Fig 7B).

To understand the mechanism by which migration causes a faster relapse, we investigated

the temporal evolution of the local growth capacity (number of empty sites in the VNHD of

each R-cell; �N c
E�RðtÞ) (Fig 7C and 7D). The figure shows that �N c

E�RðtÞ was smaller for m = 0

than for m = 2rS and 4rs under CT-MTD. We observed a similar impact of cell migration on

the AT response. During the “on” period of the treatment, the S-cells died, resulting in an

increase in the number of empty sites in the VNHD of each R-cell in all of the migration rate

cases. The lowest increase, however, was observed in the absence of migration. This increase in

empty sites in each R-cell’s neighborhood as a result of cell migration implies a higher growth

potential for each R-cell, leading to a faster treatment failure. Therefore, cell migration reduces

the local spatial competition, leading to a rapid increase in the total cell population.
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Fig 7. Effects of cell migration on treatment responses. (A) The time evolution of the mean of the total cell population ( �N ðtÞ) in the 30

simulations is shown for m = 0 (blue), 2rS (red), and 4rS (yellow) under AT (dashed line) and CT-MTD (solid line) with N(0) = 5000, f0 =

10%. The vertical solid lines show the time to tumor progression (TTP) under CT-MTD. The vertical dashed line shows the TTP under AT.

The horizontal cyan line shows the 120% level of the initial cell population (progression threshold). (B) The same result as in A is shown for

N(0) = 7000, f0 = 1%. (C) The time evolution of the mean of the average number of empty sites in the VNHD of each R-cell in the 30

realizations ( �N i
E�R ðtÞ) is shown with the same line styles as in A. (D) The same result as in C is shown for N(0) = 7000, f0 = 1%. (E) The

boxplots of the TG for m = 0, rS, 2rS, 3rS, 4rS are shown. (F) The same result as in D is shown for N(0) = 7000, f0 = 1%.

https://doi.org/10.1371/journal.pcbi.1009919.g007
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During the first treatment cycle on AT (Fig 7A and 7B), a higher cell migration delays the

treatment vacation, which allows the R-cell population to grow more than it grows in the

absence of migration. Similar delays in subsequent treatment vacations due to a higher migra-

tion rate allows R-cells to grow further due to relaxed cell competition and results in a fewer

number of treatment cycles (e.g., 4 cycles of blue dashed line vs. 2 cycles of yellow dashed line

in Fig 7A). Therefore, a higher cell migration relaxes competition and shortens the TTP under

AT more than that under CT-MTD, which results in a reduction in the time gain due to migra-

tion. Fig 7E and 7F show the TG for N(0) = 5000, f0 = 10% and N(0) = 7000, f0 = 1% respec-

tively. The result shows that the effect of a higher cell migration is more significant when

initial resistance is low (statistically significant between m = 2rS and m = rs, between m = 3rS
and m = 2rs in Fig 7F).

Cancer associated fibroblast-mediated drug resistance

So far, we investigated the role of initial R-cell distribution, carrying capacity, and cell migra-

tion on the therapeutic responses. Cancer-associated fibroblasts (CAF) are known to promote

cancer cell growth and drug resistance [29–33]. In particular, recent studies revealed the

impact of fibroblast location on the outcomes of continuous therapy [30, 34, 47]. The distribu-

tion of CAFs in real tumor tissues is diverse, which is difficult to categorize [32, 35–37]. As a

proof of principle, we simply considered five representative distributions of fibroblast (defined

in the section Initial and boundary conditions), which though cannot be exactly mapped to a

real tumor micro-environment, could help gain a theoretical understanding and infer plausible

outcomes in real-life scenario. To be more specific, we compared the cases of FC (CAFs over-

lapping with the R-cell clump in the center) and FCp (CAFs partially overlapping with the R-

cell clump) with NoF (no CAFs) to understand the impact of the relative positioning of the

CAFs with the R-cell clump. Next, we compared FSq (CAF surrounding the R-cell clump) and

FSp with FCp (CAFs over a “L” shaped region, partially surrounding the R-cell clump) to

explore the impact of shape and orientation of CAFs with respect to the R-cell clump. Finally,

we compared FR (randomly distributed CAFs) with FCp to understand the impact of segre-

gated CAF region.

Fig 8 shows the temporal change of cell configuration with different type of CAF distribu-

tions under CT-MTD, assuming the growth promotion rate by CAF to be two-fold (riF = αri,
where i 2 {S, R}, where α = 2). Here, we explain the impact of each CAF configuration com-

pared with the no fibroblast case (row 1). In row 1 (NoF), temporal change in cell configura-

tion is shown in absence of fibroblast. In row 2 (FC), most of the R-cells reside in the CAF

region. On days 60 and 165, we observe cell density is slightly higher in the case of FC than in

the case of NoF. In both cases, the growth of the R-cell clump is almost radially symmetric

(Please refer to column 1 and 2 of S2 Movie). Comparing row 3 (FCp) with row 1 (NoF), we

observe that the cell growth is skewed towards the left due to the CAF location(Please refer to

column 3 of S2 Movie). In row 4 (FSq), the outer cells in all directions grow at a faster rate due

to the CAF-mediated advantages, which are almost radially symmetric as the CAF fuel the

growth from all directions (Please refer to column 4 of S2 Movie). However, in the case of FSp

(row 5), cells in the left and upper directions get the benefit of CAF-mediated growth. We

observe that on days 165 and 250 cells are growing more in the direction of CAF than in the

other two directions (Please refer to column 5 of S2 Movie). In the case of FR (row 6), the

three clumps of fibroblast near the center accelerated the tumor growth initially. As the R-cell

clump grows, it gets access to other clumps momentarily (Please refer to column 6 of S2

Movie).
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Fig 8. Cell configurations for CAF-mediated tumor growth. Cell configurations at different times under CT-MTD

(continuous MTD therapy) for all type of fibroblast configurations. Each row shows results for one type of fibroblast

configuration. The blue and orange dots show the S-cells and R-cells respectively and the purple shaded areas show the

fibroblast regions. Specification of the fibroblast region is shown in the section Initial and boundary conditions.

https://doi.org/10.1371/journal.pcbi.1009919.g008
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To get a comprehensive understanding of tumor cell growth dynamics, we consider tempo-

ral evolution of total tumor cell populations for all CAF-distributions (Fig 9A) under

CT-MTD. For all the distributions, the total cell population decrease to a minimum and then

grows back. To explore the impact of the relative positioning of the CAFs, first, we compare

the cases FC and FCp with NoF. The total cell population decreases to the minimum (137, 154,

and 177 cells in the cases of FCp, NoF, and FC, respectively (Fig 9A and S2 Movie)). In the

Fig 9. Consequences of CAF-mediated resistance with clumped initial R-cell distribution. (A) The time evolution of the average of

the total cell population ( �N ðtÞ) in the 30 simulations is shown for CT-MTD for all types of fibroblast configurations. NoF: no fibroblast,

FC: fibroblast overlapping with the R-cell clump at the center of domain, FCp: fibroblast partially overlapping with the R-cell clump at

the center, FSq: fibroblast completely surrounding the R-cell clump. FSp: fibroblast over a “L” shaped region, partially surrounding the

R-cell clump, FR: fibroblast clumps randomly placed in the domain. (B) Boxplot of the time to progression (TTP) in the 30 realizations

under CT-MTD. (C) Boxplot of the time to progression (TTP) in the 30 realizations under AT is shown. (D) Correlation of TTP with

the area of impact is shown. The circles and the asterisks (the colors are similar to the legend in A) show the TTP under CT-MTD and

AT respectively. The solid and dashed lines are the respective regression lines (sold line: CT-MTD, dashed line: AT). The p − values for

AT and CT-MTD indicate significance of the correlation. (E) Time gain (TG) is shown as boxplots for all six types of fibroblast

distributions.

https://doi.org/10.1371/journal.pcbi.1009919.g009
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first 100 days the average decreasing rates of cell population are about 31.5, 32.5, and 34.7 cells/
day for FC, FCp and NoF respectively, which follow the order of the initial number of R-cells

in CAF region. Higher the number of R-cells in the CAF region initially, lower the decreasing

rate. For FC, almost all of the R-cells initially reside in the CAF region (Fig 8: row 2), while in

the case of FCp, it is a fraction (less than 50%) of the R-cells. Thus, the growth of more R-cells

is promoted by the CAFs, and the cell population decreases less rapidly with FC than in the

other two cases.

Once all of the sensitive cells are eradicated by CT-MTD and more resistant cells grow and

saturated the CAF-region, the growth dynamics of the total cell population in NoF and FC

become similar because of the elevated growth rate due to the presence of the CAF at the cen-

ter had no significant impact due to higher R-R spatial competition (Fig 8: column 3,4), which

results in no significant change in TTP (TTP in NoF vs. TTP in FC in Fig 9B). It is worth not-

ing that when the effect of CAF was increased (α = 4), TTP with FC significantly decreased

from TTP in NoF case (p − value< 0.01, S4B Fig). In the case of FCp, the R-cells on the leading

edge of the clump keeps getting benefited until the population pass over the CAF region (Fig 8:

row 3). The average growth rates of the tumor between the day 200 to 550 are 2.9 and 2.2 cells/
day for FCp and FC respectively, i.e., the partially overlapping position of the CAF in the case

of FCp promoted the tumor growth at a slightly higher rate. This is also visible in the third row

of Fig 8, that on the day 550, the R-cell clump is larger than that in the case of FC and skewed

towards the location of the CAFs. Tumor cells with FCp distribution results in a quicker pro-

gression than the other two cases (p − value < 0.001, Fig 9B and S4B Fig).

Second, we compare the cases FSp and FSq with FCp, to explore the scenario when the

CAF region is stretched out and aligned with the boundary of the R-cell clump. Initially, none

of the R-cells is in the CAF region in the cases of FSp and FSq (unlike FCp). The total cell pop-

ulation decreases more rapidly in these cases than in the case FCp (Fig 9A). The average

decreasing rates until day 100 are 35.2, 34.5 and 32.5 cells/day respectively for FSq, FSp and

FCp respectively. Once the growing R-cell clump reaches the CAF region, the leading R-cells

start growing at a higher rate due to the CAF-mediated growth advantage and scarce local

competition. The average growth rates of the tumor between the day 200 to 550 are 4.6, 4 and

2.9 cells/day respectively for FSq, FSp and FCp respectively, resulting in significant decrease in

TTP in both the cases(p − value< 0.001, Fig 9B and S4B Fig). Since leading cells from two

directions gain CAF mediated benefit in FSp, the cell population grows faster (Fig 8: row 5)

than in the case FCp. For FSq, the leading R-cells of four sides start receiving the benefit of the

CAF. When the CAF-mediated effect was increased, we observed similar growth dynamics in

the S4B Fig.

Finally, we compare the cell population growth in the case of FR with FCp. Our simulation

shows that the cell population grows steadily at a slightly higher rate than in the case of FCp

(Fig 9A). The average growth rate from day 200 to day 1400 is 3.1 and 3.2 for FCp and FR

respectively. For FR, a fraction of the leading cells get access to the randomly scattered CAF

regions momentarily and gain the CAF-mediated growth advantages in absence of R-R or R-S

competition (Fig 8: row 6). Consequently, FR results in lower TTP than FCp (Fig 9B and S4B

Fig).

A similar type of comparative scenario is observed for tumor growth under AT for α = 2

and 4 (Fig 9C and S4C Fig respectively). From the above results, we observe that CAFs outside

the central R-cell clump could accelerate tumor progression. However, if the CAFs are located

so far from the central clump that the cells reach the CAF region after progression, the CAF

will not have any impact on TTP. In this study, we assume that tumor progression occurred

when the total cell population reaches 120% of the initial number of cells. The progression

occurred when tumor cells reaches 10 lattice points inside from the boundary in our
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computational domain (solving for P in (L − 2 × P)/N(0)� 1.2, where L = 100 and N(0) =

5000, then P = 10). We name the area of the CAFs in this region as the Area of Impact. The

area of impact for each type CAF distribution is shown in S3 Fig. Fig 9D and S4D Fig shows

that the TTP is highly correlated with the area of impact under both type of treatment strategy

for α = 2 and 4 respectively. However, in terms of TG, no significant impact was observed.

Heterogeneity of CAF distributions does not significantly enhance the performance of AT

over CT-MTD.

To explore the impacts of both cell migration and fibroblast location on therapeutic out-

comes, we additionally simulated the model with the clumped R-cell distribution and a cell

migration rate of m = 1 (Fig 10). The result was similar to that of the case with the clumped ini-

tial distribution and m = 0 (Fig 9). However, as we observed before (Fig 7), due to the reduc-

tion in R–R competition as a result of cell migration, tumor progression occurred earlier for

all types of CAF-configurations and treatment strategies of adaptive therapy (AT) and contin-

uous MTD therapy (CT-MTD).

Adaptive therapy on a virtual patient with multiple metastatic lesions:

Three detected lesions and one undetected lesion at the beginning of

therapy

In the sections above, we investigated the treatment response with a single tumor lesion (either

a primary or metastatic site). Patients with advanced cancers who undergo the systematic ther-

apy that we consider in this study typically present with multiple metastases. To understand

the impact of the spatial heterogeneity of R-cells and CAF on treatment outcomes, we simu-

lated AT and CT-MTD in a virtual patient with four metastatic lesions, each of size 200 × 200.

Each metastatic lesion had its own independent domain, in which the cells were subject to

space constraints. However, all metastatic lesions were subjected to the same systemic treat-

ment, which was guided by a systematic biomarker that was represented by the total number

of cells in all metastatic lesions. The characteristics of the local microenvironments were signif-

icantly different. For instance, the numbers of CAFs were different among the metastatic sites.

Due to the different compositions and densities of extracellular matrix, tumor cell migration

can be different. As a proof of concept, we considered four combinations, which are shown in

Fig 11, and considered a tumor consisting of four metastases that held the four different bio-

logical combinations. In addition, we assumed that one of the metastases was invisible (con-

tained too few cells to be detected initially). We assumed that the number of tumor cells in the

invisible metastatic site was 10% of number of cells in the other metastases. Therefore, we

modeled four different cases of tumors with four metastases, of which one metastatic lesion

was invisible (presented by the red color in Fig 11). For the visible metastases, we assumed a

clumped initial R-cell distribution. We also assumed that the total number of cells was 10

times the number of R-cells (N(0) = 10R(0)) in each of the metastases. The S-cells were ran-

domly distributed over each metastatic lesion’s domain. The locations of the CAFs were

assumed to be scattered. We simulated these four metastatic tumor models for two types of

invisible metastases: (i) All the tumor cells belonged to a 60 × 60 grid centered with the metas-

tases (clumped), or (ii) all of the tumor cells were sparse over the all of the metastases (ran-

dom). In both cases, the R-cells made up 10% of the total cell population and were dispersed

randomly over the respective areas. Figs 12 and 13 show the initial cell configurations of the

four metastatic lesions in the four cases mentioned (in Fig 11) for the clumped and random

invisible metastases.

In these simulations, we use two different criteria for tumor progression: emergence time

(ET) and TTP. ET was defined as the time for a new metastatic site to be detected, which was
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assumed to be the time when the total cell population was 50% of the overall domain’s carrying

capacity in the respective metastasis. The TTP was defined as the time when the total cell popu-

lation of the four metastases reached 120% of the total initial cell population.

We observed that both cell migration and CAFs can promote faster relapses (shorter TTP)

in Sections “Increased cell migration lead to less benefit of AT over CT-MTD” and “Cancer

associated fibroblast-mediated drug resistance”. Similar consequences were observed here. For

instance, in case I with the clumped invisible metastatic lesion (Fig 14, first graphs in the left

column), the total cell population grew faster in metastatic lesion 2 than in metastatic lesion 1

(Fig 15) due to the higher cell migration probability in metastasis 2. The total cell population

Fig 10. CAF-mediated growth with clumped initial R-cell distribution and cell migration (α = 2, m = 1). (A) The time evolution of

the average of the total cell population ( �N ðtÞ) under CT-MTD in the 30 simulations is shown for all types of CAF configurations. (B)

Boxplot of the time to progression (TTP) under CT-MTD in the 30 realizations. (C) Boxplot of the time to progression under AT in the

30 realizations. (D) Correlation of TTP with the perimeter of impact. The circles and the asterisks (the colors are similar to the legend in

A) show the TTP under CT-MTD and AT respectively. solid line: CT-MTD and dashed line: AT regression line. The p − values for AT

and CT-MTD indicate significance of the correlation. (E) Time gain (TG) is shown as boxplots for all type of CAF distributions.

https://doi.org/10.1371/journal.pcbi.1009919.g010
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grew faster in metastasis 1 than in metastasis 3 (Fig 15) due to the fibroblasts in metastasis 1.

The invisible metastasis (metastasis 4) become noticeable on day 2632 under CT-MTD and on

day 2633 under AT (Fig 15, rows 2 and 3, respectively) when the total number of cells in the

fourth lesion reached 50% of the domain carrying capacities of those specific metastases. The

ET was almost the same for CT-MTD and AT (vertical solid cyan line vs. vertical dashed cyan

line), but the TTP in CT-MTD was shorter than that in AT (solid (CT-MTD, 2076 days) and

dashed (AT, 2302 days) red lines). The cell configurations are shown in the fourth and fifth

rows of Fig 15. Most importantly, when tumor progression had already occurred, the invisible

metastasis had not yet reached a detectable tumor size. Please refer to S3 Movie for a continu-

ous illustration of the phenomena discussed above. We observed a similar order in the growth

of the tumor cell population in metastases 1 to 3 in Case I, as well with the random invisible

metastasis (Fig 14, left vs. right figures). The cell configurations at crucial times are shown in

Fig 16 and a continuous illustration is provided in S4 Movie. The cell growth in the random

invisible metastasis was much faster than in all other metastases, in agreement with the results

in sections “Impact of the initial R-cell configuration on the TTP under CT-MTD” and

“Impact of the initial R-cell configuration on the TTP under AT”. Importantly, the resistant

cell populations in this metastatic lesion experienced less competition with the sensitive cell

population because the duration of the systematic therapy determined by the sum of all meta-

static lesions was so long that most sensitive cells in the lesion were killed off by the first cycles.

The random distribution imposed less competition between the resistant cell populations,

resulting in the rapid growth of resistant cells. The fourth invisible metastasis became the larg-

est on day 399 under CT-MTD and on day 574 under AT.

For Cases II, III, and IV, similar results were obtained (S5 Fig). A comparison of the ET and

TTP in the four cases is shown in Fig 17. The ET was more delayed in Case II than in Case I, as

the higher cell migration in Case I led to a faster expansion of the tumor. The growth of the

invisible metastasis was the fastest in Case III due to presence of CAFs and the higher cell

migration rate. The growth of the invisible metastasis in Case IV was slower than in Case III

due to the lack of migration. However, the TTP did not follow this ordering, as the TTP

depends on the total number of cells in all of the metastatic sites.

Discussion

Adaptive therapy has been shown to offer delayed progression with a lower cumulative dose

rate by exploiting competition between tumor cells [16]. Within tumor tissues and throughout

Fig 11. Combinations of the four metastasis scenarios. The green and red colors correspond to detected and

undetected metastases, respectively. F and NF correspond to the existence and absence of fibroblasts, respectively.

https://doi.org/10.1371/journal.pcbi.1009919.g011
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normal tissues, cells compete for space and survival with their neighbors. As recent studies

have demonstrated, the spatial structure can shape a tumor’s evolution [19, 26, 27, 48]. This

spatial competitive aspect has been further experimentally investigated [26, 49], but more

work needs to be done to better understand how pre-existing tumor resistance emerges and is

maintained in different spatial structures of tumors and under different treatment strategies.

Different initial distributions of resistant cell populations can cause different outcomes.

Depending on the locations of fibroblasts, some cancer cells can survive under therapy. To

Fig 12. Initial cell configurations for the four cases with an invisible clumped metastasis. The red, blue, and white dots correspond to R-cells, S-cells,

and empty sites. The gray dots shows the sites accompanied by CAFs.

https://doi.org/10.1371/journal.pcbi.1009919.g012
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examine how the effects of the spatial structures are governed by these factors, we developed a

2D agent-based model in which the sensitive cells were randomly distributed over the domain

and the resistant cells were clumped near the center of the domain, randomly distributed over

the domain, or uniformly distributed over the domain. It is reported in the literature that high

time gain is associated with initial density and low resistance [22, 27]. Our results are inclined

with this conclusion. In addition, our simulations showed that a clumped distribution of resis-

tant cells forces high intra-species competition (R–R), leading to delayed tumor progression

under therapy. The combination of high R–R competition and sustained R–S competition

Fig 13. Initial cell configurations for the four cases with a random invisible metastasis. The red, blue, and white dots correspond to R-cells, S-cells,

and empty sites. The gray dots show the sites that are accompanied by CAFs.

https://doi.org/10.1371/journal.pcbi.1009919.g013
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under adaptive therapy leads to an even longer time gain under adaptive therapy compared to

continuous therapy.

The role of initial cell configuration in modulating the preference of adaptive therapy to

continuous therapy is correlated with the initial fraction of resistance. Unlike the results of

Strobl et al. [22, 27], Gallaher et al. [19] reported a significant delay in the progression under

adaptive therapy even for high initial resistance. The reason for the discrepancy, in conclusion,

lies in the modeling assumption of treatment strategy and the degree of resistance. In the for-

mer two studies, during the “on-treatment” period of adaptive therapy maximum tolerated

dose is administered. In the latter study, a fraction of the maximum tolerated dose is adminis-

tered. In the case of low resistance, Gallaher et al. [19] speculate, by the time tumor volume

reduces to 50% of the initial volume, resistant cells remain sparse over the tumor domain with

the low spatial competition. Alike the random and uniform cases we discussed, the tumor then

grows back abruptly during the treatment holidays and relapses quicker than it does under

continuous therapy. Therefore, we conclude that adaptive therapy is beneficial when the resis-

tance is not spatially dispersed.

Our analysis of the effects of the CAF distributions suggested that fibroblasts located in the

non-overlapping regions with R-cell clumps play the central role for faster progression. For

resistant cells that are already competing (overlapping R-cells and CAFs), the fibroblast-medi-

ated advantages of tumor progression are not significant. On the other hand, if fibroblasts are

non-overlapping to resistant cells, resistant cells on the leading edge that experience less com-

petition can exploit fibroblast-mediated growth, leading to much faster tumor progression in

both continuous and adaptive therapy. In our simulations, fibroblasts promoted sensitive cell

proliferation, which unexpectedly increased the chance of drug-induced cell death because

only proliferating sensitive cells can engage in cell death. During the “off” treatment in the

Fig 14. Complex dynamics of multiple metastases under AT and CT-MTD. The time evolution of the total cell population in the four metastases is

shown in the sub-figures for Case I. The first and second columns show the results for the initial clumped and random cell configurations in the

invisible metastasis, respectively. In each sub-figure, the blue, red, yellow, and black colors show the total cell populations in metastasis 1, metastasis 2,

metastasis 3, and metastasis 4, respectively; the vertical cyan lines show the emergence time (ET) of the invisible metastasis, and the red line shows the

TTP. The solid and dashed lines show results under CT-MTD and AT, respectively.

https://doi.org/10.1371/journal.pcbi.1009919.g014
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Fig 15. Cell configurations at the ET and TTP under CT-MTD and AT for Case I with the clumped invisible metastasis. The red, blue, and white

dots correspond to R-cells, S-cells, and empty sites. The gray dots show the sites that are accompanied by fibroblasts.

https://doi.org/10.1371/journal.pcbi.1009919.g015
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Fig 16. Cell configurations at the ET and TTP under CT-MTD and AT for Case I with the random invisible metastasis. The red, blue, and white

dots correspond to R-cells, S-cells, and empty sites. The gray dots show the sites that are accompanied by fibroblasts.

https://doi.org/10.1371/journal.pcbi.1009919.g016
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adaptive therapy cycles, both cell types gained the same promotion by fibroblasts. Thus, the

competition between the resistant cells and sensitive cells was unexpectedly reduced, resulting

in a negligible benefit of adaptive therapy compared to continuous therapy. Based on our sim-

ulations, fibroblast distribution is not a crucial factor responsible for deciding the preference

of AT over CT-MTD, though it is strongly associated with faster relapse (shorter TTP).

The differential characteristics of metastatic lesions drive the evolution of tumors and the

success of treatments [50–53]. A new metastatic lesion can be detected in spite of the adminis-

tration of therapy. Our simulation on a virtual patient with four metastatic lesions—with one

being initially undetected—predicted complex interactions between the tumor cells and fibro-

blasts within each metastatic lesion. Surprisingly, we demonstrated that invisible metastatic

lesions can cause a rapid failure of treatments, highlighting the importance of tracking meta-

static lesions during therapy. The release of a serological marker for monitoring advanced

tumors, such as LDH (lactate dehydrogenase for melanoma) [54] or PSA (prostate-specific

antigen for prostate cancer) [55], may be different between primary and metastatic sites or

between metastatic sites [56]. Novel imaging technologies need to be developed in order to

allow for frequent non-invasive monitoring of tumor burdens. Such new technologies could

offer the opportunity to better understand tumors’ spatial structures.

The model presented here is an abstract representation of what might be happening in

actual tumors; it focuses on spatial variations, but not how the variations arise. For example,

we did not consider different microenvironmental factors, such as oxygen levels, or growth

factors. The model rests on the assumption that two key tumor cell populations—drug-sensi-

tive and drug-resistant cell populations—compete. We also assumed a uniform drug distribu-

tion, but in reality, the diffusion of a drug through a tumor tissue could result in a spatially

heterogeneous drug response [7]. The adaptive strategy for the therapy used in this study con-

siders the initial tumor volume and one threshold for stopping treatment in order to deter-

mine the on–off cycles of the treatment. However, in several studies, the maintenance and

reduction of the critical volume (not necessarily the initial volume) at different levels have

been reported to be beneficial [20, 21, 25]. We chose our modeling approach as a starting

Fig 17. Bar chart of the ET and TTP under CT-MTD and AT for Cases I to IV. (A) clumped invisible metastases, (B) random invisible metastases.

https://doi.org/10.1371/journal.pcbi.1009919.g017
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point in order to better understand how the spatial distributions of resistant cells and fibro-

blasts impact the outcomes of adaptive therapy.

In future studies, a few other dimensions, such as sequential dosing, alternating dosing, or

fibroblast inhibitors, could be incorporated into adaptive treatment strategies [57]. Multidrug

therapy was recently found to be promising by West and colleagues [23, 24], but they did not

consider the spatial aspects of tumors. Our simulations demonstrated that fibroblasts can

cause a faster failure of adaptive therapy. In tumors, fibroblasts influence the growth of the

tumor cells in a spectrum of ways [58–61]. For example, in breast cancer, fibroblasts increase

the growth by secreting epidermal growth factor (EGF); furthermore, the transforming growth

factor-β (TGF-β) produced by the tumor cells converts fibroblasts into myofibroblasts, which

increase the secretion of EGF and thus cause even more rapid tumor progression [62]. In

colon cancer, TGF-β1 was found to promote tumor growth by helping fibroblasts to influence

tumor cells [63]. Therapies designed to target fibroblasts have been proven to be successful in

cases such as liver cancer [64] and prostate cancer [65]. An adaptive therapy that combines

these drugs may prolong survival with lower cumulative dose rates.

Supporting information

S1 Fig. S-cell dynamics under CT-MTD. (A) The temporal evolution of the average number

of S-cell (�SðtÞ) populations under continuous therapy with initial clumped, random, and uni-

form cell configurations is shown in a log plot, which shows very similar growth patterns

among the different cases. (B)The average numbers of S-cells in the VNHD of an R-cell in the

30 realizations are shown as boxplots.

(TIF)

S2 Fig. Increased carrying capacity reduces the benefit of adaptive therapy by reducing

spatial competition. (A) The blue and red boxplots show the TG from the 30 couple realiza-

tions (for both AT and CT-MTD) with respect to carrying capacities of K = 1 and 2, respec-

tively. The triple asterisk (���) signifies that increasing the carrying capacity significantly

reduced the TG (p − value< 0.001). (B) The time evolution of the mean of the average number

of empty sites in the VNHD of each R-cell in the 30 realizations ( �N i
E�RðtÞ) is shown for both

CT-MTD (solid lines) and AT (dashed lines); K = 1 (blue) and 2 (red). K = 2 offers a greater

number of empty sites in the VNHDs of R-cells than K = 1.

For the clumped initial cell distribution, we investigated the effect of the spatial carrying

capacity on the TG. The spatial carrying capacity was characterized as K = 1 (each lattice point

could hold one cell) or K = 2 (each lattice point could hold, at most, two cells, regardless of

their sensitivity or resistance). When K = 1 was used, a total of four cells could occupy the

VNHD of each cell (i.e., N c
SkðtÞ þN c

RkðtÞ þN c
EkðtÞ ¼ 4). For each cell in K = 2, a total of eight

cells could occupy a VNHD, and one additional cell could be located in the respective cell’s

site (i.e., N c
SkðtÞ þN c

RkðtÞ þN c
EkðtÞ ¼ 9). S2A Fig shows that increasing the carrying capacity

significantly decreased the TG (p − value< 0.001) from a median of 139 days to a median of 7

days. Increasing the carrying capacity provided additional room for accommodation of the

daughter cells, which is observed in S2B Fig. Initially, the number of empty sites in each R-cell

�N c
E�RðtÞ was above 5 for K = 2, whereas it was below 2 for K = 1. Due to this ample space in

their neighborhoods, R-cells hardly experienced any spatial competition and grew at a higher

pace when K = 2 under both AT and CT-MTD. As the total cell population grew, �N c
E�RðtÞ

decreased abruptly and tended to settle below 1. For K = 1, a similar trend was observed; how-

ever, the number of empty sites was lower than that for K = 2 ( �N c
E�R ;K¼1

ðtÞ < �N c
E�R ;K¼2

ðtÞ). Com-

paring the number of empty sites in each R-cell’s VNHD ( �N c
E�RðtÞ) for AT in the case of K = 1
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with that in the case of K = 2 (S2B Fig, dotted lines)), we observed that, for K = 1, �N c
E�RðtÞ went

through ups and downs several times, which suggested spatial competition with neighboring

cells. On the other hand, for K = 2, this value monotonically decreased, and there was a very

slight difference due to AT and CT-MTD. Therefore, we concluded that the short TG with

K = 2 was due to the lack of spatial competition. We observed that the probabilities of having a

negative TG were 0.03 and 0.4 for K = 1 and 2, respectively, i.e., an increase in carrying capac-

ity reduces the benefit of AT over CT-MTD.

(TIF)

S3 Fig. Area of impact. The gray square shows the region 10 sites inside from the boundary.

The orange square depicts the initial location of the R-cell clump. The pink lines (both solid

and dashed) show the fibroblast region. Fibroblast regions bounded by the solid pink lines

shows the area of impact.

(TIF)

S4 Fig. Fibroblast mediated growth for α = 4 with clumped initial R-cell distribution. (A)

The time evolution of the average of the total cell population ( �NðtÞ) under CT-MTD in the 30

simulations is shown for all types of fibroblast configurations. (B) Boxplot of the TTP (time to

progression) under CT-MTD in the 30 realizations. (C) Boxplot of the time gain under AT in

the 30 realizations. (D) Correlation of TTP with the area of impact is shown. The circles and

the asterisks (the colors are similar to the legend in A) show the TTP under CT-MTD and AT

respectively. And the solid and dashed lines are the respective regression lines. The p − values
for AT and CT-MTD indicate significance of the correlation. (E) Time gain (TG) is shown as

boxplots for all type of fibroblast structures.

(TIF)

S5 Fig. Complex dynamics of multiple metastases under AT and CT-MTD. The time evolu-

tion of the total cell population in the four metastases is shown in the sub-figures. The first,

second, and third rows show the results for Cases II, III, and IV, respectively. The first and sec-

ond columns show the results for clumped and random initial cell configurations in the invisi-

ble metastasis, respectively. In each sub-figure, the blue, red, yellow, and black colors show the

total cell populations in metastasis 1, metastasis 2, metastasis 3, and metastasis 4, respectively;

the vertical cyan lines show the emergence time (ET) of the invisible metastasis, and the red

line shows the TTP. The solid and dashed lines show the results under CT-MTD and AT,

respectively.

(TIF)

S1 Movie. Temporal change of tumor configurations for different initial R-cell configura-

tions. The video shows the evolution of tumor for clumped (first column), random (second

column), and uniform (third column) initial cell configurations with time under CT-MTD

(first row) and AT (second row). The red, blue, and white dots correspond to R-cells, S-cells,

and empty sites respectively.

(MP4)

S2 Movie. Temporal change of cell configuration for different fibroblast distributions. The

video shows the evolution of tumor for different fibroblast structures (column wise) for

clumped initial cell configuration under CT-MTD (first row) and AT (second row). The red,

blue, and white dots correspond to R-cells, S-cells, and empty sites respectively.

(MP4)

S3 Movie. Temporal change of cell configuration of different metastatic lesions for case I

(Fig 11) with clumped invisible metastasis. The red, blue, and white dots correspond to R-
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cells, S-cells, and empty sites respectively. The gray dots show the sites that are accompanied

by CAFs. The first and second row show results for CT-MTD and AT respectively.

(MP4)

S4 Movie. Temporal change of cell configurations of different metastatic lesions for case I

(Fig 11) with random invisible metastasis. The red, blue, and white dots correspond to R-

cells, S-cells, and empty sites respectively. The gray dots show the sites that are accompanied

by CAFs. The first and second row show results for CT-MTD and AT respectively.

(MP4)
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