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Osteoclasts (OCs) have been the unique cell type exhibiting the bone-resorption activity in body. It is important to identify drugs
to resist osteoclastogenesis to manage the bone-loss disorders. Huangqi Sanxian decoction (HQSXD) is utilized for the treatment
of postmenopausal osteoporosis (PMOP) for a long history in East Asia. -is work aimed to examine HQSXD’s activity in OC
differentiation. Based on staining with tartrate-resistant acid phosphatase (TRAP), it was found that HQSXD suppressed OC
generation under the induction of RANKL produced in the bone marrow-derived monocytes/macrophages (BMMs), with no
cytotoxic effect. Later analysis like molecular exploration and network pharmacology (NP) suggested the role of HQSXD in
suppressing genes associated with osteoclastogenesis via PI3K/Akt-mediated mechanism dose-dependently. -is work might
illustrate the molecular pharmacological mechanism involved in HQSXD’s effect on treating OC-associated disorders. Moreover,
NP was found to modernize traditional Chinese medicine (TCM) research.

1. Introduction

Bone is constituted by minerals and proteins. In a mature
skeletal system, the dynamically balanced bone formation-
bone resorption can maintain persistent bone tissue meta-
bolism, thereby maintaining bone elasticity and stiffness
[1,2]. Osteoclasts (OCs) are the unique cells that allow for
bone resorption in body, and bone marrow monocytes/
macrophages (BMMs)-derived OCs have critical effects on
bone remodeling [3]. However, when OCs have excessively
high activity, it may result in various osteopathic disorders,
like osteoporosis (OP), rheumatoid arthritis (RA), and bone
tumor [4–6].

Macrophage colony stimulating factor (M-CSF) and
receptor activator of nuclear factor-κB (NF-κB) ligand
(RANKL) can be generated via osteoblasts (OBs) or addi-
tional bone cells, which have critical roles in OC generation
[7,8]. Of them, M-CSF can activate the corresponding re-
ceptors on the BMM surface and offer the signals required by
precursor OC growth [9]. On the other hand, RANKL can

combine with the receptor activator of NF-κB (RANK), and
it has the major functions of inducing myeloid precursor
differentiation to mature OCs [10]. -e BMMs-derived
mature OCs under the induction of M-CSF and RANKL are
recognized through staining with tartrate-resistant acid
phosphatase (TRAP) in vitro, which can produce resorption
pits onto bone fragment surfaces for achieving bone re-
sorption [11,12]. Additionally, RANKL can trigger diverse
transcription factors (TFs), like nuclear factor of activated
T-cells, cytoplasmic 1 (NFATc1) as well as c-Fos, thus up-
regulating various specific gene expression like matrix
metalloproteinase-9 (MMP-9), TRAP, cathepsin K, and
ATPase H+ transporting V0 subunit d2 (ATP6v0d2)
[13–15]. -e abovementioned genes and TFs are tightly
associated with OC generation and activity, which are thus
extensively utilized for assessing osteoclastogenesis.

In the theory of traditional Chinese medicine (TCM), the
kidney is suggested to regulate bone activities. A potent
“kidney” is indicated to nourish the bones, on the contrary,
an impotent “kidney” may aggravate bone degeneration
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[16]. Blood stasis and kidney deficiency have laid the major
pathological foundation for OP. Huangqi Sanxian decoction
(HQSXD) consists of 8 herbal medicines, among which,
Radix notoginseng and Radix salviae miltiorrhizae can
promote blood circulation, whereas Cistanche herba and
Epimedii folium have kidney-strengthening activity. -e
above herbal medicines account for a superb combination
that can highlight the corresponding superiority in treating
OP [17].

In this study, the findings provide a rationale for using
HQSXD to treat OP in clinic.

2. Materials and Methods

2.1. Animals. -is work obtained 50 Sprague-Dawley (SD)
rats (females), weighing approximately 100–150 g in the
Animal Experiment Center of Guangdong Medical uni-
versity (Dongguan, China). Afterwards, each rat was raised
under 24± 0.5°C and 12 h/12 h light dark cycle conditions
(light on: 08 : 00–20 : 00), with free access to water and food
throughout the experiment. After 7 days of acclimatization,
we randomized these rats in 5 groups, including blank
control, raloxifene-treated positive control, and Huangqi
Sanxian decoction (containing high and middle and low
concentrations)-treated experimental groups. -e present
work gained approval from Laboratory Animal Manage-
ment Committee. Each experiment was carried out fol-
lowing relevant regulations and rules.

2.2. Preparation of HQSXD. HQSXD consisted of 8 plant
extracts, namely, Radix astragali (Huang-Qi in Chinese
herbal name; root), Epimedii folium (Yin-Yang-Huo; leaf ),
Cistanche herba (Rou-Cong-Rong; succulent stem), Radix
notoginseng (San-Qi; rhizome and root), Radix salviae
miltiorrhizae (Dan-Shen; rhizome and root), Corydalis
rhizoma (Yan-Hu-Suo; rhizome), Radix angelicae Sinensis
(Dang-Gui; root), as well as Radix clematidis (Wei-Ling-
Xian; rhizome and root) at the 15 :10 :10 : 5 :10 :10 : 8 :10
ratio [6].-is work acquired these 8 extracts fromDongguan
Sinopharm (Dongguan, China). Meanwhile, Professor Zhou
(Department of Pharmacy, Guangdong Medical College,
Dongguan, China) was invited to identify these extracts. All
the abovementioned 8 extracts were mixed to yield a 270 g
mixture, which was later ground into powders, followed by
2 h boiling with water (1000mL) twice. -ereafter, at re-
duced pressure, we concentrated the filtrates to 200mL and
maintained them under 4°C.

2.3. Drug Administration and Sample Collections. -is work
randomized female rats as 5 groups, with 10 in each group.
Mice were given oral administration of HQSXD solution
(High: 27.501 g/kg; Middle: 9.167 g/kg; Low:3.056 g/kg) and
Raloxifene solution (6.25 g/kg) once daily for 7 consecutive
days, whereas those in normal group were given oral ad-
ministration of distilled water and monitored at the same
time of those in experimental groups. At 60min post the
final treatment, each rat was anesthetized to collect blood
through heart puncture aseptically. After 15min

centrifugation of blood, sera were obtained from rats of the
above 3 groups, followed by 30min inactivation under the
56°C water bath as well as filtration with the 0.22 μm
membrane, so as to obtain HQSXD (H)-S, HQSXD (M)-S,
HQSXD (L)-S, Ral -S, as well as Normal-S, separately, which
were preserved under −80°C.

2.4. Primary Osteoclast Culture and CCK-8 Assay.
Primary rat osteoclast cells were obtained from bone
medullary cavity of 1-Month-old neonatal Sprague-Dawley
rats with 20 ng/mL M-CSF Induced. For investigating how
HQSXD toxicity affected BMMs’ viability, this work culti-
vated BMMs (1× 106/well) into the 96-well plate, followed by
M-CSF incubation. On day 2, HQSXD at specific doses was
utilized for 24-, 48-, and 72-h cell treatment. Cell viability
was detected by CCK-8 assay. Afterwards, all wells were
added with CCK-8 solution (10 μl), followed by another 1-h
plate incubation. -e infinite F200 PRO absorbance
microplate reader (Tecan Group Ltd., Mannedorf, Swit-
zerland) was employed for measuring the absorbance (OD)
values at 450 nm (OD450). Finally, this work determined cell
viability based on control.

2.5. TRAP Colorimetric Assay. -is work inoculated BMMs
(3×106/well) into the 24-well plate, followed by cultivation
with complete ɑ-MEM that contained RANKL, M-CSF, as
well as HQSXD at specific doses for a 5-day period. After cell
lysis, the TRAP activity assay kit was utilized for measuring
TRAP activity in line with specific protocols. In brief, after
removing the medium, PBS was used to rinse cells thrice,
followed by 15-min lysis using a passive lysis buffer under
37°C. -ereafter, this work harvested supernatants for in-
cubation using the para-nitrophenyl phosphate (p-NPP) for
a 45-min period along with disodium tartrate. -e sodium
hydroxide solution was then added to terminate the reac-
tion. -e Infinite F200 PRO absorbance microplate reader
(Tecan Group Ltd., Mannedorf, Switzerland) was employed
to measure OD45 value for quantifying TRAP activity.

2.6. In Vitro Assay on Osteoclast Genesis. -is work inocu-
lated BMMs (3×106/well) into the 24-well plate, followed by
cultivation with complete ɑ-MEM that contained RANKL,
M-CSF, as well as HQSXD at specific doses for a 5-day
period with medium change at 2-day intervals. Later, cells
were stained with TRAP by adopting the leukocyte acid
phosphatase kit (Sigma-Aldrich) in line with specific pro-
tocols. Finally, the Olympus microscope (Waltham, MA,
USA) was utilized to visualize TRAP-positive cells with
multiple nuclei (>3) and to take photographs under 40×

magnification.

2.7.WesternBlotAssays. To conduct SDS-PAGE, a SDS lysis
buffer was used to lyse BMMs-derived whole-cell lysates.
Immunoblots were later analyzed using specific primary
antibodies (1 :1000) overnight under 4°C, followed by sec-
ondary antibody incubation with the Immobilon Western
kit (Millipore, Billerica, MA, USA). Later, photographs were
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taken using the Image Quant LAS 500 imager (GE
Healthcare, Waukesha, WI, USA). ImageJ (National Insti-
tutes of Health, Bethesda, MD, USA) was adopted for
measuring protein levels.

2.8. Network Pharmacology (NP)-Based Analysis

2.8.1. Data Collection. Chemical structure information of
HQSXD was collected from the Traditional Chinese Med-
icine Systems database (https://tcmspw.com/tcmsp.php). In
addition, osteoclastogenesis-related genes were identified
from Gene Cards (https://www.genecards.org/), OMIM
(https://omim.org/), and UniProt (https://www.uniprot.org/
) with the keywords “osteoclast differentiation”, and
“osteoclastogenesis”. -e UniProt database was applied in
confirming gene data like name as well as gene IDs.

2.8.2. Network Construction and Topology Analysis. After
importing the common targets into the STRING network
platform (https://string-db.org/), the protein species was set
to “Homo sapiens” and “Multiple proteins” was selected,
followed by the highest interaction score (0.7). -is work
acquired network relation information regarding HQSXD-
OC target interactions with the highest confidence level
(0.7). -e network relationship data were optimized for PPI
network graphs using Cystoscape 3.8.8 software.

2.8.3. Enrichment Analysis. -is work utilized the R soft-
ware clusterProfiler package for converting HQSXD-oste-
oclast target gene symbol into gene ID. Later, biological
processes (BPs) as well as related pathways with significant
differences in the intervention of HQSXD in osteoclast were
selected by KEGG pathway analysis, upon the P< 0.05
threshold.

2.9. Statistical Analysis. Results were represented by
mean± SD from 3 separate assays. Differences were com-
pared by one-way ANOVA or unpaired Student’s t-test
(two-sided). ∗p< 0.05, ∗∗p< 0.01 and ∗∗∗p< 0.001 stood for
statistical significance.

3. Results

3.1.HQSXDSuppressedM-CSF-MediatedOCFormationwith
No Cytotoxic Effects. According to CCK-8 assay, HQSXD
produced an inhibitory effect on BMMs (Figure 1). Addi-
tionally, HQSXD markedly suppressed OC’s TRAP activity
dose-dependently (Figure 2). For verifying HQSXD’s inhi-
bition on OC formation, mature OCs under the induction of
M-CSF and RANKL along with HQSXD at specific doses
were visualized by TRAP staining. Expectedly, control
BMMs were induced differentiation to mature OCs, whereas
HQSXD markedly suppressed TRAP-positive, multinucle-
atedOC generation dose-dependently (Figures 3 and 4).-is
inhibition was effectively alleviated by the PI3K/Akt acti-
vator: 740Y-P (Figures 5–7). As a result, HQSXD suppressed

BMM differentiation and activation, which was achieved via
the PI3K/Akt pathway.

3.2. HQSXD Inhibited RANKL-Mediated OC-Related Protein
Levels. After 2-day HQSXD treatment at diverse doses, the
OCs-related protein levels in OCs were analyzed. As a result,
HQSXD markedly suppressed the expression of related
proteins (MMP-9, cathepsin K, NFATc1, Atp6v0d2) dose-
dependently (Figure 8). -is inhibition was effectively
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Figure 1: Effect of HQSXD on BMM proliferation. HQSXD at
increasing doses was incubated with BMMs for 24, 48, and 72 h.
Cell viability was then determined by CCK-8 assay.∗P< 0.05, vs.
Normal-S; △P< 0.05, vs. Ral-S; n� 6.
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Figure 2: Effect of HQSXD on osteoclast precursor TRAP activity.
HQSXD at the indicated concentrations was incubated with
BMMs, the proliferation of which was sustained by M-CSF and
RANKL for 5 days.-en, TRAP colorimetry was applied to identify
the activity of osteoclast precursors. ∗∗∗P< 0.001, ∗∗P< 0.01,
∗P< 0.05; n� 6.
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alleviated by PI3K/Akt activator: 740Y-P (Figure 9). Based
on the above findings, HQSXD suppressed the expression of
proteins related to the differentiation process of osteoblasts,
which was modulated via PI3K/Akt pathway.

3.3. Network Pharmacology Study

3.3.1. Data Preparation. Based on the search of TCMSP and
deriving the results, 189 active ingredients were obtained,
and 170 active ingredients were obtained after removing
duplicate ingredients. By searching the database, there were
3707 drug targets corresponding to the active ingredients of

HQSXD, and 232 remained after removing duplicates. After
searching the three databases with the keyword “osteoclast
differentiation”, a total of 1835 disease targets were obtained,
with 1823 remaining after removing duplicates. After
searching the three databases with the keyword “osteo-
clastogenesis”, a total of 689 disease targets were obtained,
with 686 remaining after removing duplicates. Subsequently,
the targets of “osteoclast differentiation” and “osteoclasto-
genesis” were intersected to obtain 1858 total targets of

Normal-S Ral-S

HQSXD (L)-S HQSXD (M)-S HQSXD (H)-S

Figure 3: Effect of HQSXD on osteoclast differentiation. HQSXD at the indicated concentration was incubated with BMMs, which were
induced into osteoclasts by M-CSF and RANKL. TRAP staining was applied to identify TRAP-positive multinucleated cells. Images are
shown at 40× magnification.
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Figure 4: Calculated and graphical representation of area of TRAP-
positive in Figure 3 multinucleated cells following different
treatments. Calculation formula: area of positive cells/total field of
view under the microscope; ∗P< 0.05; ∗∗∗P< 0.001; n� 3.
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Figure 5: Effect of 740 Y-P intervention with HQSXD on TRAP
activity of osteoclast precursors. HQSXD was incubated with
BMMs at the indicated concentrations and the proliferation of
BMMs was maintained by M-CSF and RANKL for 5 days. Con-
currently, 740 Y-P was added for intervention. -en, TRAP col-
orimetric assay was applied to identify the activity of osteoclast
precursors. ∗∗∗P< 0.001, ∗∗P< 0.01; n� 6.
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osteoclast differentiation, of which 651 were intersected by
the two keywords. -ere were 651 intersecting targets in the
two keywords.

3.3.2. Construction of the PPI Network and Identification of
the Key Network. -e PPI network between Huangqi
Sanxian Decoction and osteoclast differentiation/production
targets had 126 targets and 4662 interaction lines between
the targets with an average degree of 37 (Figure 10).

3.3.3. KEGG Signaling Pathway Analysis. -e above-
mentioned hub genes were conducted KEGG pathway
analysis for revealing the candidate mechanism by which
HQSXD affected OC formation, and 20 pathways were
enriched (Figure 11). After literature retrieval, this work
chose PI3K/Akt pathway (KEGG:04151), since it had great
relativity whereas low p-value for OC formation (Figure 12).

3.4. HQSXD Mitigated RANKL-Triggered PI3K/Akt Pathway
Activation. Based on KEGG analysis results, WB assay was
conducted to analyze short-run protein phosphorylation
mediated by RANKL, for the sake of verifying the mecha-
nism of HQSXD in inhibiting OC generation and activity.
BMMs were exposed to RANKL treatment with/without 2-
day HQSXD pretreatment, and the phosphorylation of Akt
was detected. Consequently, Akt phosphorylation elevated
following RANKL treatment. Nonetheless, HQSXD pre-
treatment markedly suppressed phosphorylation of those
aforementioned in comparison with controls (Figure 13).

4. Discussion

Bone accounts for the organ undergoing constant renewal
and remodeling in one’s life. OCs have been identified as the
necessary part for maintaining bone health, since they have
characteristic bone-resorption activity [18]. Actually, the
existing agents used to manage osteopathic disorders mostly
focus on bone resorption through modulating OC activity,
apoptosis and differentiation [19]. Bisphosphonates have
been commonly applied in the treatment of bone resorption

Normal-S Ral-S

HQSXD (H)-S HQSXD (H)-S
+740 Y-P

Figure 6: Effect of 740 Y-P intervention of HQSXD on osteoclast differentiation. HQSXD was incubated with BMMs at the indicated
concentrations and the BMMs were induced to osteoclasts by M-CSF and RANKL.-e 740 Y-P intervention was also added. TRAP staining
was applied to identify TRAP-positive multinucleated cells. Images are shown at 40× magnification.
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Figure 7: Calculated and graphical representation of area of TRAP-
positive in Figure 6 multinucleated cells following different
treatments. Calculation formula: area of positive cells/total field of
view under the microscope; ∗∗∗P< 0.001; n� 3.
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clinically [20]. But they are still associated with certain side
effects like mandibular osteonecrosis [21], atypical femoral
fractures [22], as well as renal toxicity [23]. Great
achievements have been attained by menopausal hormone
therapy (MHT) for the treatment of postmenopausal oste-
oporosis (PMOP), but it also leads to increased risks of
breast cancer (BC) endometrial cancer (EC), cardiovascular
events, and blood clots [24,25].

-is work evidenced that HQSXD suppressed the
RANKL-mediated OC formation in vitro, and first revealed
the underlying molecular mechanisms. Cell growth and vi-
ability have important effects on discovering agents against
OC formation, since adverse reactions related to the fre-
quently applied agents bisphosphonates are partially associ-
ated with their activity in OC viability [26,27]. As observed
from Figures 1 and 2, HQSXD produces an inhibitory effect
on BMMs. Additionally, TRAP staining and WB assays were
conducted to analyze HQSXD’s impact onOC differentiation.
As a result, HQSXD totally suppressed the differentiation of

BMMs to mature OCs with TRAP-positivity (Figures 3 and
4). Furthermore, the RANK/RANKL pathway is identified to
be an important pathway for regulating OC genesis and
absorption. NFATc1 is a TF with strongest induction after
RANKL treatment, which modulates many OC-related
proteins like cathepsin K, TRAP,MMP-9, and Atp6v0d2 [28].
HQSXD treatment inhibits the role of proteins associated
with the differentiation of BMMs (Figure 8).

Natural medicines can synergistically affect several tar-
gets, components as well as pathways [29]. -e complexity
has added to the difficulty in analyzing components with
pharmacological activity as well as natural products’ mo-
lecular mechanism. NP, first put forward by the British
pharmacologist Hopkins [30], has been extremely appro-
priate for illustrating natural products’ potential in treat-
ment and mechanism at molecular level [31]. For
investigating the mechanism of HQSXD in inhibiting OC
differentiation, hub targets obtained from core PPI network
were conducted enrichment analysis (Figures 10 and 11).
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Figure 8: HQSXD inhibits RANKL-induced osteoclastogenesis-related protein expression in a dose-dependent manner. BMMs were
stimulated with M-CSF and RANKL for 48 h in the presence of HQSXD; levels of MMP-9 (b), cathepsin K (c), NFATc1 (d), and Atp6v0d2
(e). Results were normalized to GAPDH expression. ∗∗∗P< 0.001, ∗∗P< 0.01, ∗∗P< 0.05; n� 3.
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Combining the core PPI network with the results of the
enrichment analysis, after reviewing the literature, the PI3K/
Akt pathway was determined to be the possible molecular
mechanism related to HQSXD’s role in suppressing OC
formation. -e PI3K/Akt signaling is frequently involved in
multiple signaling molecules in osteoclasts, including Akt,
GSK3β, and CCL2, which are all in the core PPI network
(Figure 10). CCL2, as an upstream signaling factor of the
PI3K/Akt signaling pathway, activates the PI3K/Akt sig-
naling pathway upon binding to its most potent receptor
CCR2 [32]. GSK3β as a downstream signaling factor of
PI3K/Akt signaling pathway can regulate NFATc1 expres-
sion, and the PI3K/Akt/GSK3β/NFATc1 signaling pathway
is important in osteoclast differentiation and formation [33].

-erefore, we selected Akt, a core protein in the PI3K/
Akt signaling pathway, for a WB assay to test the above
hypothesis. As a result, HQSXD remarkably suppressed
Akt’s short-time phosphorylation (Figure 13). For better

verifying PI3K/Akt pathway’s effect on the suppressed OC
formation by HQSXD, this work found that, 740-Y-P, the
activator of PI3K/Akt pathway, could alleviate HQSXD
treatment after being inhibited in TRAP-positive mature
osteoblasts (Figures 5–7 and 9). More importantly, the PI3K/
Akt signaling pathway activator (740-Y-P) could attenuate
the effect of HQSXD treatment that inhibited proteins as-
sociated with the differentiation of BMMs. In addition, Akt,
the core factor of PI3K/Akt signaling pathway, and
NFATC1, the transcription factor of osteoclast differentia-
tion, were both inhibited under the intervention of Huangqi
Sanxian decoction.

-erefore, we suggest that Huangqi Sanxian Tang can
inhibit osteoclast differentiation by inhibiting PI3K/Akt
signaling pathway, and the network pharmacology results
show that CCL2 and GSK3β are most likely the upstream
and downstream signaling factors that exert their inhibitory
effects. -is is the first study demonstrating HQSXD’s
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Figure 9: 740 Y-P interferes with HQSXD to inhibit RANKL-induced osteoclastogenesis-related protein expression. BMMs were stimulated
with M-CSF and RANKL for 48 h in the presence of HQSXD with the simultaneous addition of 740 Y-P; levels of MMP-9 (b), cathepsin K
(CcNFATc1 (d), and Atp6v0d2 (e). Results were normalized to the expression of GAPDH. ∗∗∗P< 0.001, ∗∗P< 0.01, ∗∗P< 0.05; n� 3.
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Figure 10: Results of the core PPI network. -e core PPI network consists of 126 nodes and 4662 edges. -e size of the nodes is arranged
from the largest to smallest by degree, with a larger size indicating that the node is more “central”.
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Figure 12: Enriched hsa04151 PI3K/Akt signaling pathway; predicted intervention pathway proteins are in red.
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Figure 13: HQSXD impairs RANKL-induced Akt phosphorylation. (a) BMMs were pretreated with HQSXD for 2 day and then stimulated
with RANKL for the indicated times. Cell lysates were then subjected to western blot analysis for p-Akt, Akt and GAPDH. (b) Quantification
of p-Akt protein expression levels was normalized to total Akt levels. ∗∗∗P< 0.001; n� 3.
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inhibition on RANKL-induced OC differentiation into
BMMs as well as the related mechanisms. It might help to
interpret the molecular mechanism related to HQSXD
within OC-associated disorders. Moreover, NP analysis was
consistent with molecular mechanism study, which indi-
cated the possibly of NP in modernizing TCM.

5. Conclusion

In this work, HQSXD shows toxicity to OBs and inhibits
osteoclast differentiation. -e inhibitory effect was corre-
lated with the PI3K/Akt signaling pathway and the network
pharmacology results show that CCL2 and GSK3β are most
likely the upstream and downstream signaling factors that
exert their inhibitory effects. Further studies are needed to
investigate how HQSXD exerts its effect on osteoclast dif-
ferentiation via suppressing the PI3K/Akt pathway and thus
osteoclast differentiation.
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