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A B S T R A C T   

This study evaluates the skills of 30 CMIP5 GCMs and the Multimodel Ensemble (MME) in 
reproducing the characteristics of observed precipitation (Pr), minimum (Tmin), and maximum 
(Tmax) temperature over the Middle Awash sub-basin (MASB) in Ethiopia. The MME of the climate 
variables was generated using the simple arithmetic mean method. The entire analysis was per-
formed on the raw historical GCM simulations (before bias correction) and observed data for the 
periods 1981–2005 based on monthly and annual time series data over the annual and seasonal 
temporal resolutions. This study considered two approaches. The first one was an evaluation of 
GCMs employing five statistical performance metrics (SPMs), i.e., mean, CV, PBIAS, RSR, and r. 
The second approach involves the application of multicriteria decision-making (MCDM) analysis, 
adopting three SPMs (PBIAS, RSR, and r). The relative weights of the three metrics were deter-
mined by the entropy method. Besides, the weighted average and compromise programming 
techniques were employed to rank and select the best-performing GCMs. The findings from the 
first approach using five SPMs demonstrate that, for a given variable of interest, a GCM that 
performs well for one SPM may fail to produce the same for another SPM on the same temporal 
scale. Likewise, for the same SPM at different resolutions, a GCM may perform well for a one-time 
scale but poorly for another. These suggested that the results of GCM skills relied mainly on the 
SPM, time scale, and data formats chosen for analysis. Hence, it is critical to comprehensively 
evaluate the skill of GCMs using multiple performance metrics over a range of spatial and tem-
poral settings and data formats. In addition, results of the MCDM analysis proved that the 
ensemble of GCMs, which provide adequate performance in simulating the salient features of Pr, 
Tmin, and Tmax concomitantly across the MASB, encompass CMCC-CMS, BCC-CSM1.1(m), CMCC- 
CM, BNU-ESM, CanESM2, and MPI-ESM-MR. However, it was observed that different GCMs 
performed much differently in characterizing various variables over a range of temporal scales 
and data formats. The MME also proved its superior potential in duplicating the climate of the 
study area over several individual GCMs. The overall findings attested that instead of aggregating 
the ranks from the three variables into one, it is recommended to treat each variable indepen-
dently while developing a subset of best-performing GCMs for ensembling since each GCM re-
sponds differently to each variable under a set of conditions. Finally, the approaches and findings 
from this study will be valuable input for subsequent climate and hydrologic studies in the study 
area and beyond.  
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1. Introduction 

Precipitation and temperature are among the decisive climate variables while studying the effects of climate change on multiple 
sectors [1]. Climate change-induced alterations in the patterns of precipitation and temperature cause variations in the hydrological 
cycle and ecological system, apart from their impact on socioeconomic development and human health [2]. Research made so far has 
verified increases in the severity and frequency of droughts [3], floods [4], and heat waves [5], and decreases in the severity and 
frequency of cold snaps [6] in recent years, which are signs of abrupt variations in the precipitation and temperature regimes. 
Therefore, climate change has been posing severe challenges for humans that considerably threaten their existence and development. 
Thus, climate change impact assessments have been conducted through simulations of precipitation and temperature, and the mea-
sures for climate change impacts have appeared to be significant [2]. 

The study of past, current, and future climate variability and trends has been made possible with the help of valuable tools called 
global climate models (GCMs) [7,8]. GCMs are 3-D numerical models operating on the principles of fluid dynamics, thermodynamics, 
and radiative heat transfer that have been capable of simulating and predicting past, current, and future climate in response to diverse 
emission scenarios [9]. Also, GCMs represent various atmospheric processes of the global climate system, and they are the primary 
tools for estimating future climate patterns and studying variations in precipitation and temperature patterns [10]. GCMs are mainly 
developed to simulate and project climate on a global scale [11]. To date, many GCMs have been crafted and used for the simulation 
and projection of the Earth’s climate. 

However, uncertainties in developing and applying GCMs like initial and boundary conditions, representation of the atmospheric 
and other processes in the GCMs, parameter and model structures, imperfect conceptualizations, parameterization schemes, cali-
bration procedures and data, pertinent assumptions, emission scenarios, spatial resolution, and so on significantly affect their output 
[11–13]. Hence, all GCMs cannot be used directly to project future climate effects for a particular area. To reduce the uncertainty 
related to the GCMs, a limited number of GCMs should be chosen to get rid of those models that do not match the climate of the selected 
area [14]. 

The Intergovernmental Panel on Climate Change (IPCC) brought the Coupled Model Intercomparison Project Phase 5 (CMIP5) 
through the World Climate Research Program (WCRP), with a set of GCMs available from various institutions, to complete the 
preparation of the Fifth Assessment Report (AR5) [15]. The CMIP5 models showed considerable improvements in climate simulations, 
in contrast with its previous generation of CMIP3 GCMs [16–19]. Currently, above 50 GCMs are available in the CMIP5 collection with 
different model characteristics and spatial resolutions [20]. However, human and computational resources pose a restriction on the 
size of the subset of GCMs used in a climate change impact assessment [21]. Hence, evaluation and ranking of suitable GCMs or a set of 
GCMs before their selection are very crucial in climate change impact studies given the large number of available GCMs. In addition, 
the selection of credible GCMs is considered one of the effective ways to reduce uncertainty in climate change projections [22–24]. 

The choice of a climate model can vary depending on the purpose and future projections. Different approaches could be adopted for 
model selection, such as (a) taking all the models or ensembles with available data and simply calculating the mean of all predicted 
outcomes [25], (b) using a past performance approach, which relies on the capability of GCMs to reproduce past climates without 
taking future forecasts into account [26,27], (c) the envelope approach, which selects GCMs based on their agreement with future 
climate projections without considering the GCMs potential to replicate the past climate [28], (d) the hybrid approach, combines the 
envelope approach with the past performance approach [29,30] and takes past performance and future climate projections of GCMs 
into account, and e) the multicriteria decision-making approaches [23,31]. 

Different studies have attempted to evaluate the ability of the CMIP5 GCMs and CORDEX Africa RCMs in simulating precipitation 
and temperature at the global scale [2,9,10,13,14,17,21,22,24,26,28,30], regional scale [23,29,32–38], and sub-regional (national) 
scale [39–46]. So far, the multimodel ensembles of the CMIP5 GCMs for the projection of climate variables have been effectively used 
[47], and some authors have confirmed the superiority of these ensembles over individual GCMs [48]. However, other studies have 
suggested that multimodel ensembles are deficient in their projection [49,50], and thus it may be essential to consider acceptable 
GCMs for specific assessments rather than simple multimodel ensembles [51]. Further investigations have suggested various ensemble 
methods to be used for the best-performing GCMs [52]. Hence, assessing the skill of GCMs would also provide valuable information for 
future climate change studies on the application of multimodel ensembles. 

Given the above discussion, the following research gaps were identified: (a) none of the available investigations were able to 
holistically assess the performance of several CMIP5 GCMs, in simulating both precipitation and temperature, at various temporal 
resolutions over the Middle Awash sub-basin (MASB) except for [41] which evaluated 24 CMIP5 GCMs in Northwest Ethiopia and the 
entire Awash basin based on the annual cycle, seasonal bias, trend, and variability; (b) available studies lack the benefit of multiple 
statistical performance metrics (SPMs) to evaluate the skill of models, in simulating both precipitation and temperature, and hence to 
rank and select the best GCMs in the sub-basin; and (c) the application of MCDM analysis to evaluate, rank, and select a suitable GCM 
or a subset of GCMs was totally missing in the MASB. 

Therefore, the primary aim of this study is to comprehensively assess the skill of 30 CMIP5 GCMs, including the MME, in simulating 
historical precipitation, minimum, and maximum temperatures under various temporal scales over the MASB. The Multimodel 
Ensemble (MME) or ensemble mean of the simulations from 30 GCMs was also computed and compared with individual GCMs in the 
evaluation process to identify and confirm any added value that is achieved by the combination of individual GCMs. Observed pre-
cipitation and temperature datasets for the 1981–2005 baseline periods were considered for the evaluation. Moreover, three SPMs, i.e., 
correlation coefficient (r), ratio of Root Mean Square Error (RMSE) to the standard deviation of observed data (RSR), and Percent of 
Bias (PBIAS) were used to evaluate the skill of GCMs with MCDM analysis techniques. 
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The findings from this study will answer which of the CMIP5 GCMs adequately represents the observed precipitation and tem-
perature over the MASB during the reference period. The outputs will also help guide modeling institutions to refine subsequent model 
developments through the identification of the weaknesses and strengths of the models evaluated as part of this study. Besides, it will 
assist researchers interested in extending investigations for future climate and hydrologic modeling studies in the MASB. 

The remaining sections of this paper are organized and presented as follows: Section two describes the study area, data sources, 
datasets employed, and materials and methods adopted, whereas the third section provides the findings, followed by the discussion 
and recommendations in the fourth section. The fifth section highlights the conclusion part. 

2. Materials and methods 

2.1. Description of the study area 

One of Ethiopia’s important river basins is the Awash River Basin (ARB). It starts in the Central Ethiopian Highlands and moves 
northeast until emptying into Lake Abe. The river has a total length of over 1200 km and a drainage area of close to 114,000 km2 [53]. 
The three distinct zones of the ARB are the Upper, Middle, and Lower Awash sub-basins [54]. The Middle Awash sub-basin (MASB) is 
found in the middle part of the ARB between the Upper and Lower Awash sub-basins. It is geographically located between latitudes of 
8◦36′52.4’’ - 10◦48′8.0″ N and longitudes of 39◦42′46.4’’ - 41◦36′0.6″ E (Fig. 1). The total sub-basin area is estimated at 30,882.3 km2. 
The altitude of the MASB ranges from 462 to 3670 m above mean sea level (amsl), with an average elevation of 1061 m amsl. 

Extreme variations in temperature and precipitation characterize the ARB, which stretches from cold mountainous parts to semi- 
desert regions. The magnitude and timing of precipitation (Pr) and the movement of the Intertropical Convergence Zone (ITCZ) 
produced three distinct seasons in the MASB [55]. These are Kiremt (summer), Bega (winter), and Belg (autumn), with Kiremt being 
the major wet season (June–September), Bega being the dry season (October–January), and Belg being the minor rainy season 
(February–May). Hence, the Pr was classified as having a bimodal pattern (Fig. 2). Besides, the average annual Pr varies from 1646 mm 
in the elevated areas to 430 mm in the lowland parts, with a mean annual Pr of 695 mm in the sub-basin (Table 1). In the same way, the 
average annual minimum (Tmin), mean (Tmean), and maximum (Tmax) temperatures of the sub-basin are 17.4 ◦C, 25.5 ◦C, and 33.5 ◦C, 
respectively (Fig. 2). 

2.2. Data sources 

The input data for this study includes observed meteorological data, historical GCM simulations, and the Digital Elevation Model 
(DEM) of the sub-basin. As described below, the data was gathered from a variety of sources. 

2.2.1. Observed data 
Initially, the National Meteorological Agency (NMA) of Ethiopia provided historical observed climate data (1981–2015) for 49 

stations in and surrounding the MASB. The data was often marked by a broad range of data lengths (1–34 years) and missing values 
(5–96%), at least for the key meteorological variables (Pr, Tmin, and Tmax). The majority of these data had record lengths that were too 
short (often less than 15 years) with too many missing values (generally greater than 10%), making them unfit for climate and 
environmental studies and analysis. Hence, high-resolution (4 km) spatially and temporally complete gridded historical climate data 
(precipitation and temperature) were received from the NMA on a daily temporal resolution over the 1981–2015 periods. The gridded 
dataset was developed by blending the available observed and proxy datasets, both from satellite and reanalysis products. The In-
ternational Research Institute (IRI) for Climate and Society at Columbia University provided considerable support for the NMA in the 
development of the gridded data through its Enhancing National Climate Services (ENACTS) initiative [56]. Table 1 shows the 
summary of precipitation and temperature data extracted from the gridded datasets for seventeen (17) climate stations in the study 
area. 

The selection of stations was triggered by data length, percent of missing values, availability of at least 3 important climate var-
iables (Pr, Tmin, and Tmax), recently observed data for grid (merged) data validation, and also to ensure a fair distribution of stations in 
the sub-basin. For a better understanding, the term “observed” in the subsequent sections of the paper was utilized to mean the merged 
(gridded) dataset given the inherent limitations in the observed stations data over the sub-basin. 

2.2.2. Global climate models data 
The fifth phase of the Coupled Model Intercomparison Project (CMIP5) is a joint effort with the aspiration to improve scientific 

knowledge related to climate change [9], and it involves 20 climate modeling or research groups around the world with over 40 GCMs. 
The outputs from CMIP5 contain historical climate simulations (1850–2005) and climate projections for near-term and long-term 
timeframes with four Representative Concentration Pathways (RCPs). 

To evaluate the skill of 30 GCMs, their daily averages of minimum near-surface air temperature (Tmin), daily averages of maximum 
near-surface air temperature (Tmax), and daily surface precipitation (Pr) for the 1981–2005 baseline periods were taken. The atmo-
sphere, ocean, land, and sea surface temperature conditions were taken to initialize historical simulations from these GCMs and forced 
by observed natural and anthropogenic CO2 and aerosol concentrations to project future outputs [57]. The detailed description of the 
GCMs considered for this evaluation, coupled with their modeling centers, GCM acronyms, complete model names, spatial resolutions, 
and the number of ensemble members, is shown in Table 2 below. For each GCM, historical simulations from one ensemble member 
were considered for the evaluation. Yet, the MMEs of these 30 GCMs were estimated with the simple arithmetic mean method to assess 
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the capability of the MMEs as well. 
The 30 GCMs were chosen for evaluation because of the availability of both historical and future climate simulations under the 

commonly used emission scenarios of RCP 4.5 and RCP 8.5 in the CMIP5 project. Daily Pr, Tmin, and Tmax data from these models were 
captured in Network Common Data Format (NetCDF4) from the Global Earth System Grid Federation (ESGF) web portals, which are 
accessible to the general public at https://esgf-index1.ceda.ac.uk, 

2.3. Methods 

2.3.1. Data extraction and quality control process 
The location information of meteorological stations was used to extract point data from the gridded dataset received from the NMA 

Fig. 1. Location map of the study area1.  

1 The high-resolution (12.5 × 12.5 m) Radiometric Terrain Corrected (RTM) ALOS PALSAR DEM data was supplied by the Alaska Satellite Facility 
(ASF), a division of the University of Alaska Fairbanks’ Geophysical Institute [[84]]. 
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of Ethiopia. However, by contrasting the extracted historical climate data with the corresponding observed data at each station, the 
trustworthiness of the gridded data was validated. The Pr, Tmin, and Tmax data were considered satisfactory in most of the stations, with 
coefficients of determination (R) and correlation coefficient (r) values above 0.64 and 0.80, respectively. Additionally, utilizing the 
stations’ location data and the nearest neighbor interpolation technique, the Pr, Tmin, and Tmax data from each GCM were extracted 
using a Python script. 

Through the use of algorithms and techniques detailed in the programs – (OutlierFlag [58] and XLSTAT 2018 [59]), the quality of 
the data, the treatment of outliers, and the verification of the homogeneity of the data values were assessed. The validity and 
dependability of the data can be verified using homogeneity tests. Four techniques (Petitt, Standard Normal Homogeneity Test 
(SNHT), Buishand, and von Neumann) were used in this investigation to confirm the homogeneity of the data [59]. These methods 
have been used to demonstrate that a series is homogeneous throughout a specific period. After being verified, the inhomogeneous 
series were corrected appropriately, and then they were made homogeneous by adjusting them statistically according to the in-
structions provided in the AnClim software [60]. 

2.3.2. Areal precipitation and temperature analyses 
The point-observed data from each station was converted into spatial data with the Thiessen polygon method [61] using ArcGIS 

10.8 software. This method was utilized to partition the study area into smaller areas (polygons) based on the area of influence of the 

Fig. 2. Mean monthly precipitation and temperature in MASB (1981–2005).  

Table 1 
Mean annual precipitation and temperature of meteorological stations in the MASB (1981–2005).  

No. Meteorological 
Stations 

Latitude 
(DD) 

Longitude 
(DDa) 

Elevation 
(m) 

Class Region Mean Annual Pr 
(mm) 

Mean Temperature 
(◦C) 

Missing Datab 

(%) 

1 Abayater 9.65 40.05 862 3 Amhara 883.6 22.9 18.0 
2 Afdem 9.45 40.98 1056 3 Somali 638.0 25.8 34.6 
3 Artuma 10.58 40.02 1880 3 Amhara 962.3 21.6 27.3 
4 Asebe Teferi 9.07 40.87 1792 3 Oromia 888.4 21.4 15.3 
5 Awash 7 Kilo 8.98 40.15 923 3 Afar 865.8 25.1 15.7 
6 Awash Sheleko 9.33 40.25 737 3 Afar 430.2 28.0 25.1 
7 Bora 10.68 40.05 1500 4 Amhara 853.1 22.4 17.7 
8 Debre Sina 9.87 39.75 2800 4 Amhara 1645.7 14.2 8.6 
9 Efeson 10.03 39.95 1500 3 Amhara 1193.4 22.7 11.5 
10 Erer 9.56 41.38 1088 1 Somali 563.3 26.9 49.8 
11 Gedamaytu 9.73 40.46 792 3 Afar 445.2 28.1 53.5 
12 Gewane 10.15 40.63 568 1 Afar 488.9 29.0 19.2 
13 Hardium 8.83 40.43 1649 4 Oromia 967.0 21.6 64.7 
14 Jara 10.31 39.99 1960 4 Amhara 1005.4 21.9 6.1 
15 Kora 9.10 40.53 1530 4 Oromia 655.2 24.6 18.1 
16 Majete 10.50 39.85 2000 1 Amhara 889.8 20.9 5.1 
17 Mieso Aviation 9.23 40.75 1400 1 Oromia 577.2 23.6 10.5  

a DD means Degree Decimal. 
b Percent of missing data for precipitation. 

E. Tesfaye et al.                                                                                                                                                                                                        



Heliyon 9 (2023) e20320

6

Table 2 
Detailed description of GCMs considered in this study.  

Modeling 
Center 
(Group) 
Acronym 

Modeling Center (Group), Country GCM 
Acronym 

GCM Name Atmospheric 
Horizontal 
Resolution (lon x 
lat) 

Number of 
Ensemble 
Members 

CSIRO-BOM Commonwealth Scientific and Industrial 
Research Organization and Bureau of 
Meteorology, Australia 

ACCESS1.0 Australian Community Climate and 
Earth-System Simulator version 1.0 

1.88◦ × 1.25◦ 2 

CSIRO-BOM Commonwealth Scientific and Industrial 
Research Organization and Bureau of 
Meteorology, Australia 

ACCESS1.3 Australian Community Climate and 
Earth-System Simulator version 1.3 

1.88◦ × 1.25◦ 3 

BCC Beijing Climate Center, China 
Meteorological Administration, China 

BCC-CSM1.1 
(m) 

Beijing Climate Center - Climate 
System Model version 1.1(m) 

1.12◦ × 1.12◦ 3 

BCC Beijing Climate Center, China 
Meteorological Administration, China 

BCC-CSM1.1 Beijing Climate Center - Climate 
System Model version 1.1 

2.8◦ × 2.8◦ 3 

GCESS-BNU College of Global Change and Earth System 
Science, Beijing Normal University, China 

BNU-ESM Beijing Normal University - Earth 
System Model 

2.8◦ × 2.8◦ 1 

CCCma Canadian Center for Climate Modeling and 
Analysis, Canada 

CanESM2 Canadian Earth System Model - 
second generation 

2.8◦ × 2.8◦ 5 

NCAR National Center for Atmospheric Research, 
USA 

CCSM4 Community Climate System Model 
version 4 

1.25◦ × 0.94◦ 6 

NSF-DOE- 
NCAR 

National Science Foundation, Department of 
Energy, National Center for Atmospheric 
Research, USA 

CESM1-BGC Community Earth System Model - 
Biogeochemical Model 

1.25◦ × 0.94◦ 1 

NSF-DOE- 
NCAR 

National Science Foundation, Department of 
Energy, National Center for Atmospheric 
Research, USA 

CESM1- 
CAM5 

Community Earth System Model - 
Community Atmosphere Model 
version 5 

1.25◦ × 0.94◦ 3 

CMCC Centro Euro-Mediterraneo sui Cambiamenti 
Climatici, Italy 

CMCC-CM Centro Euro-Mediterraneo sui 
Cambiamenti Climatici -Climate 
Model 

0.75◦ × 0.75◦ 1 

CMCC Centro Euro-Mediterraneo sui Cambiamenti 
Climatici, Italy 

CMCC-CMS Centro Euro-Mediterraneo sui 
Cambiamenti Climatici -Climate 
Model with a resolved Stratosphere 

1.88◦ × 1.87◦ 1 

CNRM- 
CERFACS 

Centre National de Recherches 
Meteorologiques/Centre Europeen de 
Recherche et Formation Avancees en Calcul 
Scientifique, France 

CNRM-CM5 National Center of Meteorological 
Research – Coupled Model version 5 

1.4◦ × 1.4◦ 10 

CSIRO-QCCCE Commonwealth Scientific and Industrial 
Research Organization, Queensland Climate 
Change Centre of Excellence, Australia 

CSIRO-Mk3- 
6-0 

Commonwealth Scientific and 
Industrial Research Organization – 
Mark version 3.6.0 

1.8◦ × 1.8◦ 10 

ICHEC EC-EARTH consortium published at Irish 
Centre for High-End Computing, 
Netherlands/Ireland 

EC-EARTH European Consortium – Earth system 
model 

1.13◦ × 1.12◦ 14 

LASG-CESS Institute of Atmospheric Physics, Chinese 
Academy of Sciences, China; and CESS, 
Tsinghua University 

FGOALS-g2 Flexible Global Ocean-Atmosphere- 
Land System Model - Grid-point 
version 2 

2.8◦ × 2.8◦ 5 

NOAA-GFDL Geophysical Fluid Dynamics Laboratory, 
USA 

GFDL-CM3 Geophysical Fluid Dynamics 
Laboratory - Coupled Model version 
3 

2.5◦ × 2.0◦ 5 

NOAA-GFDL Geophysical Fluid Dynamics Laboratory, 
USA 

GFDL- 
ESM2G 

Geophysical Fluid Dynamics 
Laboratory - Earth System Model 
version 2G 

2.5◦ × 2.0◦ 1 

NOAA-GFDL Geophysical Fluid Dynamics Laboratory, 
USA 

GFDL- 
ESM2M 

Geophysical Fluid Dynamics 
Laboratory - Earth System Model 
version 2 M 

2.5◦ × 2.0◦ 1 

MOHC Met Office Hadley Centre, UK HadGEM2- 
CC 

Hadley Center Global Environment 
Model version 2 – Carbon Cycle 
model 

1.88◦ × 1.25◦ 3 

MOHC Met Office Hadley Centre, UK HadGEM2- 
ES 

Hadley Center Global Environment 
Model version 2 – Earth System 
model 

1.88◦ × 1.25◦ 4 

INM Russian Academy of Sciences, Institute of 
Numerical Mathematics, Russia 

INMCM4.0 Institute for Numerical Mathematics 
Coupled Model version 4.0 

2.0◦ × 1.5◦ 1 

IPSL Institut Pierre Simon Laplace, France IPSL-CM5A- 
LR 

Institut Pierre Simon Laplace – 
Climate Model version 5A – Low 
Resolution 

3.75◦ × 1.8◦ 6 

IPSL Institut Pierre Simon Laplace, France IPSL-CM5A- 
MR 

Institut Pierre Simon Laplace – 
Climate Model version 5A – Medium 
Resolution 

2.5◦ × 1.25◦ 3 

(continued on next page) 
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stations to calculate areal Pr, Tmin, and Tmax. The method calculates areal values for each polygon based on the area of the polygon in 
proportion to the total area of the sub-basin. Similarly, the Thiessen polygon method was considered to determine the areal Pr, Tmin, 
and Tmax of each GCM and the MME in the MASB [62]. After the observed, GCMs and the MME data were changed into areal average 
(spatial) data, different SPMs were employed to assess the GCMs’ skill in simulating the characteristics of Pr, Tmin, and Tmax in the 
sub-basin. 

2.3.3. Performance evaluation of climate models 
Prominently, two approaches were followed to measure the skill of models at simulating the characteristics of the three variables in 

the sub-basin. The first approach considers the evaluation of GCMs using five statistical metrics, including mean, coefficient of 
variation (CV), percentage of bias (PBIAS), ratio of root mean square error to the standard deviation of observed data (RSR), and 
Pearson correlation coefficient (r). 

An analysis of the variability of annual and seasonal Pr, Tmin, and Tmax data about the mean was conducted utilizing the CV. It is 
obtained by dividing the standard deviation by the mean. A larger CV value indicates more variable data, with values less than 20% 
attesting to low variability, between 20% and 30% attesting to moderate variability, and values over 30% attesting to high variability 
in the series [63]. 

PBIAS is the deviation of the data being evaluated, expressed as a percentage, and used to measure the difference between GCM 
simulations and observed data. A PBIAS close to 0 attests to a minor systematic difference between observed data and GCM simu-
lations, whereas a PBIAS far away from 0 indicates a deviation. It could be positive or negative. A positive value signals an over-
estimation of model bias, and the reverse is true for negative values [62]. 

PBIAS=

∑N

i=1

(
XGCM

i − XObs
i

)

∑N

i=1
XObs

i

x100 [1] 

The advantages of error index statistics are incorporated into RSR, and a scaling or normalizing factor is also included so that the 
resulting statistic and reported values can be extended to a variety of constituents. RSR ranges from a big positive value to an ideal 
value of 0, which represents zero residual variation, or RMSE, and hence a perfect model simulation. The quality of the model 
simulation improves with decreasing RSR and RMSE [62]. 

RSR=
RMSE

STDEVObs
=

[
∑N

i=1

(
XGCM

i − XObs
i

)2
]

[
∑N

i=1

(
XGCM

i − XObs
)2
] [2] 

Table 2 (continued ) 

Modeling 
Center 
(Group) 
Acronym 

Modeling Center (Group), Country GCM 
Acronym 

GCM Name Atmospheric 
Horizontal 
Resolution (lon x 
lat) 

Number of 
Ensemble 
Members 

MIROC Atmosphere and Ocean Research Institute 
(The University of Tokyo), National Institute 
for Environmental Studies, and Japan 
Agency for Marine-Earth Science and 
Technology, Japan 

MIROC5 Model for Interdisciplinary Research 
on Climate version 5 

1.4◦ × 1.4◦ 1 

MIROC Atmosphere and Ocean Research Institute 
(The University of Tokyo), National Institute 
for Environmental Studies, and Japan 
Agency for Marine-Earth Science and 
Technology, Japan 

MIROC5- 
ESM 

Model for Interdisciplinary Research 
on Climate version 5 – Earth System 
Model 

2.8◦ × 2.8◦ 3 

MIROC Atmosphere and Ocean Research Institute 
(The University of Tokyo), National Institute 
for Environmental Studies, and Japan 
Agency for Marine-Earth Science and 
Technology, Japan 

MIROC5- 
ESM-CHEM 

Model for Interdisciplinary Research 
on Climate version 5 - Earth System 
Model - An atmospheric Chemistry 
coupled version 

2.8◦ × 2.8◦ 3 

MPI-M Max Planck Institute for Meteorology, 
Germany 

MPI-ESM-LR Max Planck Institute - Earth System 
Model – Low Resolution 

1.88◦ × 1.87◦ 3 

MPI-M Max Planck Institute for Meteorology, 
Germany 

MPI-ESM- 
MR 

Max Planck Institute - Earth System 
Model – Medium Resolution 

1.88◦ × 1.87◦ 3 

MRI Meteorological Research Institute, Japan MRI-CGCM3 Meteorological Research Institute – 
Coupled Global Climate Model 
version 3 

1.1◦ × 1.1◦ 5 

NCC, NMI Bjerknes Centre for Climate Research, 
Norwegian Meteorological Institute, 
Norway 

NorESM1-M Norwegian Climate Center’s Earth 
System Model - core version 

2.5◦ × 1.9◦ 3  
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The correlation is usually utilized to evaluate the linear relationship between the GCM simulation and the observed area-averaged 
values. Values close to 1.0 signal a better relationship among the variables, and a value away from 1.0 demonstrates less agreement 
[62]. 

r=

∑N

i=1

(
XGCM

i − XGCM
)(

XObs
i − XObs

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

(
XGCM

i − XGCM
)2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

(
XObs

i − XObs
)2

√ [3]  

where Xi
GCM is the Pr, Tmin, and Tmax of a given GCM at time step i, Xi

Obs is the observed Pr, Tmin, and Tmax of the sub-basin at time step i, 
the bar over the variables denotes the average over a period of 1981–2005, and N represents the number of data values over the 
analysis period. 

The second method involves the use of MCDM analysis to measure the performance of models at replicating the observed Pr, Tmin, 
and Tmax. This study would employ two MCDM techniques, i.e., weighted average (WA) and compromise programming (CP). These 
methods will enable one to rank all the GCMs and identify the best GCMs on the basis of three SPMs (PBIAS, RSR, and r) at a sub-basin 
scale. Below is a detailed presentation of the MCDM analysis and selected approaches. 

2.3.4. Ranking of climate models with multicriteria decision-making (MCDM) tools 
MCDM can be perceived as a process of evaluating real-world situations based on various qualitative or quantitative criteria in 

certain or uncertain environments to suggest a suitable course of action or choice among the available alternatives (models). The 
problem will become more complex with multiple conflicting and non-commensurable criteria, different units of measurement among 
the criteria, the presence of quite different alternatives, and the involvement of a range of decision-makers [64]. In this performance 
assessment, the concept of MCDM was applied to rank all GCMs and select the most suitable models, among others, based on SPMs 
(criteria) having conflicting and non-commensurable characters. The following sections are devoted to presenting formal procedures 
to rank and choose the most suitable (best) models.  

A) Data Transformation 

Since the evaluation criteria proposed in this study have distinct characters and units of measurement, the requirement for data 
transformation was compulsory before normalization [64]. Hence, PBIAS, which is normally expressed in percentages and receives 
either positive or negative values, should be transformed into decimal numbers, divided by 100, and positive values, taking absolute 
values of the figures, given that signs are only direction indicators, i.e., underestimation or overestimation of model biases. Similarly, r, 
which could either be positive, zero, or negative, should also be converted following the same above approach. Besides, no trans-
formation is required for RSR, given that it has either zero or non-negative decimal values.  

B) Data Normalization Approaches 

By normalizing the values of the different options available for a specific criterion, the range of values for the criteria with various 
units can be made to fall between 0 and 1. This procedure also aids in preventing the dominance of the criterion with the larger value 
over the criterion with the smaller value [64]. Pomerol and Romero [65] proposed four normalizing techniques with distinguishing 
characteristics. The approach employed in this evaluation is illustrated in Eq. (4) below, and it was chosen based on the facts at hand 
and the planning issue under discussion. 

If fj(a) is the value of criterion j for alternative (model) a, then the normalized value of criterion j for alternative (model) a, Vj(a), is 
defined as: 

vj(a) =
fj(a)

∑m

a=1
fj(a)

[4]  

where m represents the set or number of alternatives (models).  

C) Methods for Estimation of Weights 

Numerous methods have been recommended in different studies to estimate the weights assigned to each criterion. Rating, entropy, 
the Analytic Hierarchy Process (AHP), fuzzy AHP, and revised Simos methods are among the approaches that are broadly used in 
different professions and applications [65–72]. The entropy method, which is independent of the views of the decision maker and is 
typically useful for exploring contrasts between sets of data, was adopted for this study [64,69]. 

Entropy is a term that measures the uncertainty linked with random phenomena of the expected information content of a certain 
message, and a discrete probability distribution represents this uncertainty [68]. The entropy method estimates the weights of the 
different criteria from the payoff matrix, a matrix comprising the alternatives (GCMs) and the criteria (SPMs) for evaluation. The 
philosophy of the method relies on the amount of information available, which can be measured by its entropy and its relationship with 
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the relevance of the criterion. Pomerol and Romero [65] and Aomar [68] explained the method in the following steps:  

(1) For the given normalized payoff matrix, pij, entropy Ej of the set of alternatives (models) for criterion j is: 

Ej = −
1

ln(m)

∑m

i=1
pijln

(
pij
)

for j= 1, 2,…J [5] 

where m is the number of alternatives (models) and j is the number of criterion.  

(2) Degree of diversification of the information provided by the outcomes of criterion j is: 

Dj = 1 − Ej for j = 1, 2,…J [6]    

(3) Normalized weights of the criterion are: 

wj =
Dj

∑J

j=1
Dj

for j = 1, 2,…J [7] 

If the entropy value is high, the uncertainty contained in the criterion vector is high, the diversification of the information is low, 
and correspondingly, the criterion is less important. This method is valuable as it reduces the burden on the decision-maker for large 
problems. Likewise, the contribution of the decision-maker is limited when estimating the weights of the criteria [64].  

D) Approaches for Ranking of GCMs 

The methodological approach for ranking and choosing the best (most suitable) alternatives from a group of options was developed 
by Duckstein [73]. The problem must be defined and the criteria fixed before the collection of any pertinent data. The next crucial steps 
are the development of viable alternatives and the creation of a payoff matrix (alternatives versus criteria arrays). The choice of an 
appropriate approach to the problem and the inclusion of the decision-maker’s preference structure are the other steps to the final one. 
Choosing the most suitable or best alternative or alternatives is the last phase for further investigation. 

Various MCDM methods are available to rank and select the most suitable among the given non-dominated models. These methods 
were classified into four groups, i.e., distance, outranking, priority or utility, and mixed type [65,74,75]. Given the diversity of 
methods under each group, this study adopted only two approaches, i.e., one from the priority- or utility-based method called weighted 
average (WA) and the other from the distance-based method called compromise programming (CP).  

1) Weighted Average (WA) Method 

WA is a utility-type MCDM method. It is expressed as the average of the weighted sum of criterion values, i.e., 

Ua =w1u1 + w2u2 + w3u3 + ...+ wjuj [8]  

where Ua is the overall utility value for alternative (model) a; w1, w2, w3, …, wj are the weights assigned to the criterion; and u1, u2, u3, 
…, uj are the corresponding criteria values. 

The alternative whose total utility is highest can be regarded as the best. Where appropriate, a suitable normalization procedure 
should be implemented [64]. In this method, we should multiply the criteria with values of a minimization nature by − 1 to allow for a 
uniform analysis of the subject from a maximization perspective, i.e., (− 1*min) = max [51]. 

Since PBIAS and RSR are criteria that imply the magnitude of biases and errors in the GCMs, they have a minimization nature; i.e., 
GCMs with minimum values of PBIAS and RSR are relatively best regardless of the ± signs. However, r has a maximization nature, i.e., 
GCMs with positive r values are comparatively better than those with negative r values because models positively correlated with the 
observed data are much better than the others. Towards this end, negative values of PBIAS and RSR from the transformed payoff matrix 
and actual calculated values of r were considered when estimating Ua in the WA method.  

2) Compromise Programming (CP) Method 

CP defines the best (most suitable) solution as the one in the set of efficient solutions whose point is at the least distance from an 
ideal point [76]. The objective is to get a solution that is as ‘close” as possible to some “ideal” solution. The distance measure used in CP 
is from the family of Lp-metrics and is expressed as: 

Lp(a)=

[
∑J

j=1
wj

p
⃒
⃒fj

∗ − fj(a)
⃒
⃒p

]1/p

[9] 

If the criteria are not expressed in commensurable terms, a suitable normalization approach can be incorporated to ensure a similar 
range for each criterion, i.e., [0, 1]. With this note, Eq. (9) transforms to: 

E. Tesfaye et al.                                                                                                                                                                                                        



Heliyon 9 (2023) e20320

10

Lp(a)=

[
∑J

j=1
wj

p
⃒
⃒
⃒
⃒
fj
∗ − fj(a)
Mj − mj

⃒
⃒
⃒
⃒

p
]1/p

[10]  

where Lp(a) = Lp-metric for alternative (model) a, fj(a) = value of criterion j for alternative a, Mj = maximum value of criterion j in the 
set N, mj = minimum value of criterion j in the set N, fj* = ideal value of criterion j, wj = weight assigned to the criterion j, and p =
parameter or balancing factor reflecting the interest of the decision-maker with regard to compensation between deviations. 

For p = 1, all deviations from fj* are considered in direct proportion to their magnitudes. For p = 2, the largest deviation is the only 
one taken into account, corresponding to zero compensation between deviations [64]. A value of p = 1 was taken for this study. Like 
the WA method, the computation of Lp in the CP technique involves negative values of PBIAS and RSR from the transformed payoff 

Fig. 3. A diagram showing the whole flow chart of the work.  
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matrix and actual calculated values of r from the original matrix.  

E) Aggregation of Ranks 

Following the establishment of ranks for each GCM, including the MME, with the above techniques over a set of temporal scales, 
using Monthly Time Series (MTS) and Annual Time Series (ATS) data, the best models that adequately reproduce the observed 
climatology were ranked and selected following the below simple approach to aggregate the ranks from each analysis:  

i) Sum up the ranks for each model, including the MME, acquired from the two methods under various temporal resolutions with the 
MTS and ATS data;  

ii) The GCMs and the MME with the highest sum of ranks become the worst, and those with the lowest sum become the best (most 
suitable) models among the existing alternatives. 

Fig. 3 below diagrammatically depicts the entire workflow of the project, including the datasets gathered, methodology, and 
approaches used while carrying out this study. 

3. Results 

3.1. Statistical performance evaluation of GCMs 

3.1.1. Mean annual and seasonal climate characteristics  

(a) Mean precipitation 

The mean annual Pr in the sub-basin, based on ATS data, was relatively better captured by the MME, MPI-ESM-MR, HadGEM2-ES, 

Table 3 
Mean annual Pr, Tmin and Tmax of GCMs, MME and observed data over the MASB based on ATS data (1981–2005). 

Note: Values typed with red and blue font colors demonstrate overestimation and underestimation of the observed mean values, 
correspondingly. However, the best (minimum departures from the observed mean values) and the worst (considerable de-
partures from the observed mean values) five GCMs from each were shaded with bright green and yellow colors, respectively, 
for quick identification in the table. 
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INMCM4.0, and EC-EARTH consecutively. These GCMs demonstrate minimal relative deviations against the observed Pr. Among the 
five, three models (MME, HadGEM2-ES, and INMCM4.0) overestimated the Pr, and the other two (MPI-ESM-MR and EC-EARTH) 
underestimated it. Conversely, MIROC5-ESM-CHEM, MIROC5-ESM, FGOALS-g2, MIROC5, and IPSL-CM5A-LR are the worst GCMs, 
in their order of appearance, with considerable departures from the observed Pr (Tables 3 and 4). Four models overestimated the 
observed Pr except for IPSL-CM5A-LR, which displayed a much lower simulation (Table 3). The ranks of the best and worst GCMs, both 
for the annual (Jan–Dec) and seasonal temporal scales, are illustrated in Table 4 below. 

Similar results for the three variables (Pr, Tmin, and Tmax) according to MTS data under various temporal resolutions are also 
provided in the appendix for further reference (Tables A1 and A2).  

(b) Mean minimum and maximum temperature 

The top-ranked five models that were comparatively good at representing the mean annual Tmin over the MASB, again with the 
smallest relative deviations, are CMCC-CMS, MIROC5, CMCC-CM, BCC-CSM1.1, and GFDL-ESM2G. Except for two models, i.e., 
MIROC5 and BCC-CSM1.1, the other GCMs overestimated the simulated Tmin in the sub-basin. Conversely, CanESM2, IPSL-CM5A-LR, 
MPI-ESM-LR, CNRM-CM5, and INMCM4.0, successively, were the worst GCMs, which were unable to duplicate the Tmin with sub-
stantial departures from the observed values (Tables 3 and 4). The observed Tmin was underestimated by the five models over the study 
area. The ranking of the best and worst GCMs over the four temporal resolutions is presented in Table 4 below. 

Like precipitation, the MME was not a member of the worst GCMs over the four temporal scales, which suggests its superior 
advantage over many other individual GCMs. Besides, the average observed Tmin over the four temporal scales was underestimated by 
most GCMs except for CMCC-CMS, CMCC-CM, GFDL-ESM2G, BCC-CSM1.1(m), CSIRO-Mk3-6-0, MIROC5, GFDL-CM3, and GFDL- 
ESM2M. 

Considering the annual temporal scale, the best-performing models for Tmax comprise CNRM-CM5, CanESM2, MRI-CGCM3, CMCC- 
CM, and CSIRO-Mk3-6-0. They have better skills in capturing the mean observed Tmax in the sub-basin (Table 4). The departures, in 
contrast to the worst GCMs, are minimal (Table 3). However, CESM1-CAM5, FGOALS-g2, MIROC5-ESM-CHEM, MIROC5-ESM, and 
NorESM1-M are the least performing models, among others, which show sizable discrepancies from the observed mean value. Sur-
prisingly, all the GCMs in Table 4 underestimated the Tmax in the MASB. Table 4 also provides the ranks of the best and worst models 
over the annual and seasonal time scales. Here also, the MME was not among the worst GCMs over the four temporal resolutions, which 
shows its superior benefit over the other individual GCMs. 

Table 4 
Rank of best and worst GCMs for Pr, Tmin and Tmax over the annual and seasonal temporal scales based on ATS data. 

Note: GCMs typed with red font colors represent overestimation and the blue font colors demonstrate underestimation of mean values by the GCMs 
against the observed data. 
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3.1.2. Annual and seasonal variability of climate variables  

(a) Precipitation 

The variability of observed Pr was low for the annual, moderate for the JJAS, and high for the FMAM and ONDJ temporal scales. 
Also, GCM simulations on the annual time setting demonstrate both low (<20%), moderate (20–30%), and high (>30%) variability 
over the MASB. Most of the GCMs (16 in number), including the MME, have low variability, with 10 exhibiting moderate variability 
and the remaining 5 demonstrating high variability in the data (Fig. 4). However, the variability in the IPSL-CM5A-LR (65.7%) is 
exceptionally high, which makes simulations from this model unreliable in replicating the observed Pr. 

Likewise, the CV in the Kiremt season was in the low-to-high range, with 7 GCMs in the high, 5 in the moderate, and the rest 19 in 
the low variability category. The variability of Pr from the IPSL-CM5A-LR model (102.1%) is again extremely massive, which degrades 
the dependability of the model (Table 4). On the other side, the CV during the Belg and Bega seasons were in the high class, except for a 
few models (FGOALS-g2, MIROC5-ESM, and MME for the Belg, and MIROC5-ESM-CHEM and MME for the Bega seasons) (Fig. 4). The 
variability in the MME data was in the low variability range over the four-time scales, which is a value addition acquired through the 
ensemble of a subset of GCMs.  

(b) Minimum and maximum temperature 

The variability of Tmin and Tmax over the annual and seasonal time scales for all GCMs, the MME, and the observed temperature is 
given in Fig. 5 (a, b) below. The observed Tmin (Fig. 5 (a)) has shown low variability (<20%) across the four temporal scales. Yet, GCM 
simulations exposed low variability across the four temporal scales except for the INMCM4.0 model, with moderate variability (28.2%) 
for the Belg and high variability (52.3%) for the Bega seasons. Again, the MME demonstrated low variability across the four periods. 

Similarly, the variability of observed Tmax (Fig. 5 (b)) was low (<20%) over the four-time scales, and the simulated Tmax variability 
from the whole GCMs was also in the low variability class, both for the annual and seasonal temporal resolutions. In addition, the 
variability of Tmax in the MME was small across the four periods. 

3.1.3. PBIAS, r and RSR  

(a) Precipitation 

The computed values of PBIAS (%), r, and RSR for Pr using Eqs. (1)–(3), respectively, based on MTS data for each model over the 
four temporal scales, are illustrated in Table 5. The table also provides extra information with different font colors to differentiate the 
best and least-performing GCMs. 

The best models with the smallest PBIAS among the list of GCMs, which considerably reduce model biases, are the MME, MPI-ESM- 
MR, HadGEM2-ES, INMCM4.0, and EC-EARTH for the annual temporal scale. Conversely, MIROC5-ESM-CHEM, MIROC5-ESM, 
FGOALS-g2, MIROC5, and IPSL-CM5A-LR were the least suitable models with significant biases over the study area. The best and worst 
models for the other seasons are also indicated in Table 5 below. 

CNRM-CM5, CanESM2, MME, FGOALS-g2, and HadGEM2-ES are the best-performing models with an acceptable degree of a linear 

Fig. 4. CV of annual and seasonal precipitation over the MASB.  
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relationship among the observed and GCM-simulated Pr. Whereas, the worst GCMs with very weak correlation coefficients were 
CSIRO-Mk3-6-0, NorESM1-M, CMCC-CM, GFDL-ESM2G, MRI-CGCM3, and GFDL-ESM2M for the same time scale (Table 5). The details 
for other temporal scales are provided in the same table. 

The quality of GCM simulations improves with decreasing RSR. Hence, models with relatively smaller RSR values represent the 
observed Pr very well and include the MME, CNRM-CM5, CanESM2, BCC-CSM1.1(m), and MPI-ESM-LR for the annual time scale. 
However, NorESM1-M, MIROC5, MIROC5-ESM-CHEM, FGOALS-g2, and MIROC5-ESM are the worst models with quite a large RSR 
value in contrast to the others, suggesting their limitations in simulating the sub-basin observed Pr adequately for the same temporal 
setting. The details for the remaining seasons are also given in Table 5 below. A similar result, according to ATS data, which is not 
annexed to this manuscript, was also completed for Pr to be employed in the MCDM analysis.  

(b) Minimum and maximum temperature 

The actual figures of PBIAS, r, and RSR for Tmin and Tmax over the four temporal scales are given in the appendix part of this 
manuscript (Tables B1 and B2). Again, one can simply identify the best and worst models in light of their respective values, marked 

Fig. 5. CV of annual and seasonal Tmin (a) and Tmax (b) over the MASB.  
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with blue and red font colors. These tables were generated based on the MTS data between observed and historical GCM simulations. 
The same analyses for Tmin, at the annual temporal setting, proved that CMCC-CMS, MIROC5, CMCC-CM, BCC-CSM1.1, and GFDL- 

ESM2G based on PBIAS; the MME, CMCC-CM, CMCC-CMS, CNRM-CM5, and EC-EARTH in light of r [62,77,78]; and MIROC5, 
BCC-CSM1.1, BCC-CSM1.1 (m), BNU-ESM, and CMCC-CMS according to RSR, are the top-ranked five models with adequate profi-
ciency in characterizing the observed Tmin in the area. Likewise, the best-performing five GCMs with relatively strong capability in 
reproducing the observed Tmax embrace CNRM-CM5, CanESM2, MRI-CGCM3, CMCC-CM, and CSIRO-Mk3-6-0 based on PBIAS [77]; 
the MME, CMCC-CMS, CMCC-CM, GFDL-CM3, and IPSL-CM5A-LR in light of r [62,78]; and CNRM-CM5, CanESM2, MRI-CGCM3, 
CMCC-CM, and CMCC-CMS, on the basis of RSR. A similar product, based on ATS data, which is not annexed to this manuscript, 
was also produced for the two variables to be considered in the MCDM analysis. 

3.2. Ranking of GCMs with MCDM analysis 

3.2.1. Approaches and procedures for ranking 
The three SPMs (PBIAS, RSR, and r), in Table 5 below, particularly for the annual temporal scale, were considered for an example to 

establish the actual payoff matrix in Table 6 [Columns 2–5], and thus to demonstrate the MCDM approaches and procedures while 
ranking GCMs. A suitable data transformation was exercised in Table 6 [Columns 6–8] to lay the ideal groundwork for normalization 
with Eq. (4) and the construction of the normalized payoff matrix in Table 6 [Columns 9–11]. To determine the overall utility (Ua) for 
the WA method and Lp-metric values for the CP technique, the weights for each SPM were computed using the entropy method, as 
given in Eqs. (5)–(7). The entropy values (Ej) from the annual scale analysis were 0.92 for PBIAS, 0.99 for RSR, and 0.97 for r. Besides, 
the degree of diversification (Dj) for PBIAS, RSR, and r was 0.08, 0.01, and 0.03, respectively. Finally, the weights of the SPMs for the 
annual Pr were 0.68 (68%) for PBIAS, 0.06 (6%) for RSR, and 0.26 (26%) for r. The results have suggested that PBIAS is contributing 
the largest weight and has significant importance in the ranking process, followed by r, with the smallest contribution from RSR. 

The Ua values for the GCMs were estimated using Eq. (8). Here, the negative values of PBIAS and RSR from the transformed payoff 
matrix (Table 6 [Columns 6 and 7]) and the actual calculated values of r (Table 6 [Column 5]) were considered in the WA method. 
Results for each model, including the MME, are provided in Table 6 [Column 12]. The alternatives (GCMs) with the highest overall 
utility were considered more suitable than others. Hence, the MME, MPI-ESM-MR, HadGEM2-ES, HadGEM2-CC, INMCM4.0, and EC- 
EARTH models took the top positions for Pr with the annual time scale (Table 6 [Column 13]). 

Table 5 
PBIAS, r and RSR between observed and historical GCM simulations for annual and seasonal Pr over the MASB based on MTS 
data (1981–2005). 

Note: Blue font color – represents values for the best models, red font color – denotes values for the worst models and black font 
color – indicates values between the best and worst models. 
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Table 6 
Ranking of GCMs with WA and CP methods for annual Pr over the MASB based on MTS data.  

No. GCMs Calculated Performance Metric 
(Criteria) Values [Actual Payoff 
Matrix] 

Transformed Payoff 
Matrix (fj(a)) 

Normalized Payoff Matrix 
with Method 3 (Vj(a)/pij) 

Weighted Average (WA) 
Method 

Transformed Payoff Matrix for 
Compromise Programming 
(CP) 

Compromise 
Programming (CP) 
Method 

PBIAS (%) RSR (− ) r (− ) PBIAS RSR R PBIAS RSR R Overall Utility (Ua) Rank PBIAS RSR r Lp-Metric (pA1) Rank 

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] 

1 ACCESS1.0 30.7 1.16 0.55 0.307 1.16 0.55 0.027 0.030 0.043 − 0.133 14 − 0.307 − 1.158 0.548 0.263 14 
2 ACCESS1.3 22.1 1.43 0.51 0.221 1.43 0.51 0.020 0.037 0.040 − 0.100 11 − 0.221 − 1.432 0.509 0.231 11 
3 BCC-CSM1.1(m) − 21.0 0.94 0.51 0.210 0.94 0.51 0.019 0.024 0.040 − 0.064 7 − 0.210 − 0.935 0.510 0.193 8 
4 BCC-CSM1.1 25.4 1.43 0.29 0.254 1.43 0.29 0.023 0.037 0.023 − 0.181 19 − 0.254 − 1.433 0.290 0.336 19 
5 BNU-ESM 23.6 1.40 0.41 0.236 1.40 0.41 0.021 0.036 0.032 − 0.136 16 − 0.236 − 1.399 0.407 0.278 16 
6 CanESM2 − 24.8 0.93 0.60 0.248 0.93 0.60 0.022 0.024 0.047 − 0.067 8 − 0.248 − 0.933 0.598 0.189 7 
7 CCSM4 24.8 1.27 0.41 0.248 1.27 0.41 0.022 0.032 0.032 − 0.136 17 − 0.248 − 1.265 0.406 0.279 17 
8 CESM1-BGC 22.4 1.28 0.41 0.224 1.28 0.41 0.020 0.033 0.032 − 0.120 13 − 0.224 − 1.284 0.412 0.261 13 
9 CESM1-CAM5 44.7 1.43 0.42 0.447 1.43 0.42 0.040 0.037 0.033 − 0.277 22 − 0.447 − 1.427 0.422 0.427 22 
10 CMCC-CM − 49.9 1.20 0.17 0.499 1.20 0.17 0.045 0.031 0.013 − 0.366 24 − 0.499 − 1.200 0.167 0.546 24 
11 CMCC-CMS − 16.7 1.00 0.40 0.167 1.00 0.40 0.015 0.026 0.031 − 0.068 9 − 0.167 − 1.004 0.401 0.207 9 
12 CNRM-CM5 − 33.2 0.87 0.63 0.332 0.87 0.63 0.030 0.022 0.049 − 0.113 12 − 0.332 − 0.870 0.627 0.235 12 
13 CSIRO-Mk3-6-0 − 39.7 1.33 0.18 0.397 1.33 0.18 0.036 0.034 0.014 − 0.301 23 − 0.397 − 1.328 0.178 0.475 23 
14 EC-EARTH − 11.6 1.04 0.48 0.116 1.04 0.48 0.010 0.027 0.038 − 0.014 6 − 0.116 − 1.041 0.481 0.142 5 
15 FGOALS-g2 83.1 1.78 0.59 0.831 1.78 0.59 0.074 0.046 0.046 − 0.516 26 − 0.831 − 1.783 0.587 0.667 26 
16 GFDL-CM3 − 16.0 1.12 0.39 0.160 1.12 0.39 0.014 0.029 0.030 − 0.072 10 − 0.160 − 1.122 0.389 0.212 10 
17 GFDL-ESM2G − 27.2 1.25 0.08 0.272 1.25 0.08 0.024 0.032 0.006 − 0.237 20 − 0.272 − 1.255 0.080 0.416 20 
18 GFDL-ESM2M − 26.1 1.33 0.06 0.261 1.33 0.06 0.023 0.034 0.005 − 0.239 21 − 0.261 − 1.332 0.061 0.419 21 
19 HadGEM2-CC 12.5 1.06 0.56 0.125 1.06 0.56 0.011 0.027 0.044 0.001 4 − 0.125 − 1.057 0.562 0.119 4 
20 HadGEM2-ES 8.6 1.04 0.57 0.086 1.04 0.57 0.008 0.027 0.045 0.031 3 − 0.086 − 1.040 0.574 0.086 3 
21 INMCM4.0 9.0 1.16 0.45 0.090 1.16 0.45 0.008 0.030 0.035 − 0.012 5 − 0.090 − 1.157 0.448 0.142 6 
22 IPSL-CM5A-LR − 94.8 1.41 0.23 0.948 1.41 0.23 0.085 0.036 0.018 − 0.666 31 − 0.948 − 1.411 0.232 0.861 31 
23 IPSL-CM5A-MR − 73.3 1.21 0.40 0.733 1.21 0.40 0.066 0.031 0.031 − 0.465 25 − 0.733 − 1.212 0.398 0.632 25 
24 MIROC5 91.3 1.68 0.55 0.913 1.68 0.55 0.082 0.043 0.043 − 0.575 30 − 0.913 − 1.681 0.552 0.734 29 
25 MIROC5-ESM 82.8 1.80 0.48 0.828 1.80 0.48 0.074 0.046 0.037 − 0.544 29 − 0.828 − 1.803 0.477 0.707 28 
26 MIROC5-ESM-CHEM 79.6 1.78 0.48 0.796 1.78 0.48 0.071 0.046 0.038 − 0.519 27 − 0.796 − 1.785 0.482 0.680 27 
27 MPI-ESM-LR − 32.8 0.94 0.55 0.328 0.94 0.55 0.029 0.024 0.043 − 0.134 15 − 0.328 − 0.936 0.552 0.264 15 
28 MPI-ESM-MR − 7.0 0.95 0.55 0.070 0.95 0.55 0.006 0.024 0.043 0.042 2 − 0.070 − 0.949 0.554 0.076 2 
29 MRI-CGCM3 − 63.9 1.41 − 0.08 0.639 1.41 0.08 0.057 0.036 0.006 − 0.539 28 − 0.639 − 1.411 − 0.083 0.752 30 
30 NorESM1-M 16.2 1.47 0.18 0.162 1.47 0.18 0.015 0.038 0.014 − 0.149 18 − 0.162 − 1.467 0.180 0.311 18 
31 MME 1.3 0.82 0.60 0.013 0.82 0.60 0.001 0.021 0.047 0.100 1 − 0.013 − 0.823 0.598 0.011 1            

Ideal values (fj*) − 0.013 − 0.823 0.627    
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Similarly, the estimation of the Lp-metric for all GCMs involves the identification of ideal values (fj*) and the estimation of weights 
for each SPM. The ideal values were − 0.013 for PBIAS, − 0.823 for RSR, and 0.627 for r, which is the maximum of Columns 14, 15, and 
16 in Table 6 since the selected approach in this evaluation was a maximization perspective for uniform analysis. The SPM weights 
remain the same as computed above, and the p-value was chosen to be 1 while calculating the Lp-metric value using Eqs. 9 and 10. Like 
the WA approach, the computation of Lp-metrics would require negative values of PBIAS and RSR from the transformed payoff matrix 
and the actual calculated values of r in Table 6 [Columns 14, 15, and 16]. The GCMs with the smallest values of the Lp-metric were 
considered the best, as shown in Table 6 [Columns 17 and 18]. The analysis in Table 6 [Column 18] verified that the MME, MPI-ESM- 
MR, HadGEM2-ES, HadGEM2-CC, EC-EARTH, and INMCM4.0 are the top-ranked six GCMs for Pr with the same time scale adopting 
the CP method. 

3.2.2. Ranking of GCMs based on MTS data 

(a)Precipitation 

The aggregation of ranks from the two methods and the overall aggregation of aggregated ranks for Pr, with the annual and 
seasonal temporal resolutions, followed the approach as outlined in Section 2.3.4 (E), and the findings are given in Table 7 below. For 
annual Pr, the top-ranked GCMs were the MME (1), MPI-ESM-MR (2), HadGEM2-ES (3), HadGEM2-CC (4), INMCM4.0 (5), and EC- 
EARTH (5), with the last two having similar ranks. Following the same analogy, aggregation of ranks for the seasonal Pr was ach-
ieved, and the ranks are provided in the same table. The best-performing GCMs that reproduced the major rainy season fairly in the 
MASB were MPI-ESM-MR (1), CanESM2 (2), MME (3), CNRM-CM5 (4), EC-EARTH (5), and MPI-ESM-LR (5). On the other hand, 
FGOALS-g2 (1), MIROC5-ESM-CHEM (2), ACCESS1.0 (3), EC-EARTH (3), MIROC5-ESM (5), and MPI-ESM-MR (5) were the most 
suitable GCMs, which were quite good at replicating the minor rainy season. Besides, BCC-CSM1.1(m) (1), CMCC-CM (2), MRI-CGCM3 
(3), BNU-ESM (4), MME (5), ACCESS1.0 (6), ACCESS1.3 (6), and HadGEM2-CC (6), with the last three receiving equal ranks, were the 
top-positioned GCMs with sufficient capability to simulate the dry season rainfall in the sub-basin (Table 7).  

(b) Minimum and maximum temperature 

Considering the findings in Fig. 6 and Table C1 of the appendix, MIROC5 (1), BCC-CSM1.1 (2), BCC-CSM1.1(m) (3), CMCC-CMS 
(4), BNU-ESM (5), and MIROC5-ESM (6) are among the top-ranked six GCMs, which were quite good at duplicating the Tmin 
adequately over the four temporal scales in the sub-basin. Moreover, the Tmax for the annual and seasonal time scales was suitably 
replicated by the CNRM-CM5 (1), CMCC-CM (2), CanESM2 (3), CMCC-CMS (4), MRI-CGCM3 (5), and BCC-CSM1.1(m) (6) models, 
which show superior capability in simulating the variable of interest over the MASB. The BCC-CSM1.1(m) model, which stood 4th for 
Pr, 3rd for Tmin, and 6th for Tmax, was found competent in duplicating the 3 variables simultaneously under varying temporal settings 

Table 7 
Summary of ranks and aggregated ranks of GCMs for annual and seasonal Pr in the MASB based on MTS data. 

Note: Blue font color – represents overall aggregated ranks for best models and red font color – denotes ranks for worst models. 
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(Table C1 of the appendix). In addition, the results from a study made by Ref. [79] displayed BCC-CSM1.1(m) and CMCC-CMS as the 
best-performing GCMs for simulating Tmin and Tmax over Pakistan, which was partly consistent with the findings of this work. 

3.2.3. Ranking of GCMs based on ATS data  

(a) Precipitation 

The top-ranked GCMs, based on ATS data, over the annual and seasonal temporal resolutions were identified in the MASB following 
the same approach as discussed above. Towards this end, six GCMs (MME (1), ACCESS1.0 (2), EC-EARTH (3), HadGEM2-CC (4), 
CanESM2 (5), and MPI-ESM-MR (6)) were quite good at representing annual Pr in the sub-basin (Table 8). Similar results were re-
ported by Refs. [62,78] for the suitability of the MME compared to individual GCMs and RCMs. Moreover, the ability of EC-EARTH and 
CanESM2 to simulate Pr was also witnessed [79,80]. The capability of each model to duplicate the climate system of the sub-basin for 
each temporal scale is provided in the same table.  

(b) Minimum and maximum temperature 

The overall aggregated rank in Table 8 defines that BNU-ESM (1), MIROC5 (2), BCC-CSM1.1 (3), BCC-CSM1.1(m) (4), CMCC-CMS 
(5), and CMCC-CM (6) are the top-ranked models with superior potential in replicating the Tmin over the four temporal scales. 
Likewise, six GCMs were identified as the most competent models for duplicating features of Tmax over the annual and seasonal time 
scales. These are CMCC-CM (1), CanESM2 (2), IPSL-CM5A-LR (3), CNRM-CM5 (4), CMCC-CMS (5), and BCC-CSM1.1(m) (5), with the 
last two holding equal positions. 

3.2.4. Aggregation of ranks from the MTS and ATS analysis 
The aggregated ranks of the three variables resulting from the analyses, based on MTS and ATS data, over the four temporal scales 

displayed the best and worst GCMs for each variable, with the blue font colors for the best and the red ones for the worst models 
(Table 9). It can be seen from Table 9 that the MME (1), MPI-ESM-MR (2), CanESM2 (2), EC-EARTH (4), HadGEM2-CC (4), and 
ACCESS1.0 (4) are the top-ranked GCMs that have a satisfactory performance in characterizing the annual and seasonal Pr over the 
sub-basin [62,79,78,80]. Conversely, the least-performing GCMs encompass MIROC5-ESM (26), MIROC5-ESM-CHEM (26), 

Fig. 6. Overall aggregated rank of GCMs for Pr, Tmin and Tmax based on MTS data in MSAB (small bubbles demonstrate best ranked GCMs with 
lowest sum of ranks and large bubbles for the opposite). 
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IPSL-CM5A-MR (28), GFDL-ESM2M (28), MIROC5 (30), and IPSL-CM5A-LR (31) which reveals very weak skill in duplicating the Pr in 
the MASB. 

Similarly, the best models that show improved potential in replicating the annual and seasonal Tmin over the MASB include 
MIROC5 (1), BCC-CSM1.1 (2), BNU-ESM (3), BCC-CSM1.1(m) (4), CMCC-CMS (5), and CMCC-CM (6) [79,81]. Conversely, 
HadGEM2-ES (26), IPSL-CM5A-LR (27), MPI-ESM-LR (27), HadGEM2-CC (29), CNRM-CM5 (30), and INMCM4.0 (30) were the least 

Table 8 
Summary of aggregated ranks and overall aggregated ranks of GCMs for Pr, Tmin and Tmax over the four temporal scales in the MASB based on ATS 
data. 

Note: Blue font color – represents overall aggregated ranks for best models and red font color – denotes ranks for worst models. 

Table 9 
Summary of ranks of GCMs for Pr, Tmin and Tmax based on MTS and ATS data formats over the MASB. 

Note: Blue font color – represents final ranks for best models and red font color – denotes ranks for worst models. 
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performing GCMs with the worst efficiency in representing Tmin in the area. Correspondingly, GCMs with a good ability to mimic the 
characters of annual and seasonal Tmax comprise CMCC-CM (1), CanESM2 (2), CNRM-CM5 (2), CMCC-CMS (4), IPSL-CM5A-LR (5), and 
BCC-CSM1.1(m) (6) [79,81]. In contrast, the poorly performing GCMs with unsatisfactory performance for Tmax were CCSM4 (26), 
FGOALS-g2 (27), MIROC5-ESM (28), CESM1-CAM5 (29), NorESM1-M (29), and MIROC5-ESM-CHEM (31) (Table 9). 

In summary, the GCMs with adequate capability in simulating the characteristics of Pr, Tmin, and Tmax concurrently at the four 
temporal resolutions, based on MTS and ATS data, over the sub-basin were CMCC-CMS (1), BCC-CSM1.1(m) (2), CMCC-CM (3), BNU- 
ESM (4), CanESM2 (4), and MPI-ESM-MR (6) [79,82,81]. However, INMCM4.0 (25), IPSL-CM5A-LR (25), MIROC5-ESM (25), 
FGOALS-g2 (28), CESM1-CAM5 (29), MIROC5-ESM-CHEM (30), and NorESM1-M (31) were the least performing models to reproduce 
the features of the three variables at a time. 

4. Discussion 

The findings in Table 4 have confirmed that models that were best for one climate variable at a specific time scale may not always fit 
for other temporal resolutions [79]. Likewise, the most suitable models at one temporal scale for different climatic variables may not 
perform well at other temporal resolutions and data formats (MTS and ATS). It is obvious from the same table that the MME was not 
among the worst GCMs over a set of temporal scales, which attests to the value addition achieved through ensembling a subset of 
models rather than the application of individual GCMs. Besides, most of the GCMs, among the best and worst models, were charac-
terized by an overestimation of the mean observed Pr (Table 4). 

Many GCMs in the annual temporal setting overestimated the observed Pr variability except for a few models, including the MME, 
which were in the low variability class (Fig. 4). Yet, the variability of observed Pr in the major rainy season was underestimated by 
multiple GCMs. Conversely, the variability in the minor rainy season was overestimated by several models, excluding six GCMs and the 
MME. Similar to the Pr variability in the JJAS season, most GCMs, with the exception of four, underestimated the variability during the 
dry season, as given in Fig. 4 above. 

The performance evaluation of GCMs for precipitation, on the basis of the correlation coefficient, confirms that the magnitude of 
linear association was much stronger in the JJAS season as compared to the others and became very weak for the FMAM and ONDJ 
seasons (Table 5). 

The research conducted by Ref. [77] in Ziway Lake basin with 3 CMIP5 GCMs (CNRM-CM5, MPI-ESM-LR, and CSIRO-Mk3-6-0) 
demonstrated the reasonable suitability of these models, based on PBIAS, RMSE, and r, in simulating both monthly precipitation 
and temperature, which is much more consistent with the findings resulting from the performance evaluation of GCMs using PBIAS, 
RSR, and r in this study over a range of temporal scales. Also, the superiority of the MME was justified by a study made by Ref. [78] at 
simulating precipitation in the Upper Awash sub-basin using four performance metrics: PBIAS, CV, RMSE, and r, and the same was also 
realized in this study at various temporal resolutions. 

In general, it can be concluded that different models respond differently to the various performance metrics over a range of 
temporal resolutions and data formats. Thus, it looks very difficult to find a common model that works best for all climate variables 
under various conditions. In this connection, the need for proper ranking and selection of models with a viable approach and per-
formance metrics for various climate variables over multiple situations is mandatory to develop a subset of best-performing GCMs that 
can reproduce the observed climate system over a certain area of interest. 

In a nutshell, the overall aggregated rank for Pr, based on MTS data, over the four temporal resolutions illustrated that the MME (1), 
MPI-ESM-MR (2), CanESM2 (3), BCC-CSM1.1(m) (4), HadGEM2-CC (5), and EC-EARTH (6) were the top-ranked six models with 
superior skill in characterizing the Pr in the sub-basin (Table 7 and Fig. 6). The findings from similar studies [62,78] revealed the 
superior advantage of the MME over many other individual models. Also, the EC-EARTH model received the first position among 36 
GCMs for a study conducted in Pakistan using six spatial metrics [79]. Another two evaluations have confirmed the capability of 
CanESM2 [80] and BCC-CSM1.1 [83] in simulating precipitation adequately in India. 

The selected models were comparatively better at reproducing the Pr during the annual and seasonal time settings. The findings in 
this study prove that a model that works fine for a specific temporal scale will not always produce the same results for another time 
setting. Hence, proper evaluation of the GCMs’ skill at each time scale and aggregating the ranks achieved from each analysis are very 
crucial to establishing the ensemble of best GCMs that capture the real climate system of the area for the chosen variable under a 
certain time scale and data format. The attempt made by Ref. [82] to evaluate 21 GCMs in the Awash basin based on four metrics 
confirmed that MPI-ESM-MR, MPI-ESM-LR, GFDL-CM3, and HadGEM2-AO are the best-performing GCMs, which were somewhat 
consistent with the findings of this study. 

According to the analysis made with the MTS data, the MMEs of the 30 GCMs, which were supposed to be superior to the individual 
models, were not among the top-ranked six models, both for Tmin and Tmax. However, it attains the 18th and 11th ranks for Tmin and 
Tmax, respectively, which still verifies its comparative skill over the worst or least suitable GCMs (Fig. 6 and Table C1 of the appendix). 
The MME will produce an acceptable result provided that the GCMs in the subset of models for ensembling are carefully selected. The 
shortlisted models should also be sufficiently capable of representing the characteristics of the climatic variables over a range of spatial 
and temporal scales under varying circumstances. Therefore, the best GCMs from the long list of models should be used while 
establishing time series data for the MME with suitable ensembling techniques. 
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The ranking of GCMs on the basis of ATS data demonstrated that the MME was among the top-ten GCMs over a range of seasons, 
which signifies its superior potential in mimicking the Pr characteristics under varying time scales. However, the most suitable models 
from one temporal setting were unable to simultaneously simulate the Pr features across the other temporal resolutions (Table 8). The 
findings for Tmin and Tmax in this study (Table 8) were reinforced by Ref. [79] and suggested two GCMs (BCC-CSM1.1(m) and 
CMCC-CMS) as the best-performing models in duplicating both Tmin and Tmax over Pakistan. In addition, three models, i.e., 
BCC-CSM1.1(m), CMCC-CM, and CMCC-CMS, satisfactorily and consistently simulated both the Tmin and Tmax simultaneously over the 
MASB. 

The aggregation of ranks from the MTS and ATS analyses in Table 9 asserts the superior skill and performance of the MME in 
representing the climate of the study area compared to many other individual GCMs. The overall findings from this work have 
illustrated that, instead of aggregating the ranks from the three variables into one, it is rather wise to treat each variable independently 
to establish a subset of the best GCMs for MME since each GCM responds significantly differently to each variable under a set of 
conditions. 

Finally, evaluating the skills of GCMs in duplicating the observed Pr, Tmin, and Tmax is essential for projecting future climate and 
further investigating climate change impact assessment and hydrological modeling in the study area. Besides, the approaches in this 
study can be extrapolated to other GCMs and RCMs, climate variables, and regions with multiple performance metrics, different MCDM 
techniques for ranking, and the suitable selection of a subset of skilled GCMs for ensembling to minimize uncertainties in the GCM 
projections. Towards this end, the recently released CMIP6 datasets will provide a greater opportunity to further examine, compare, 
rank, and select the most suitable models between the CMIP5 and CMIP6 GCMs in the study area and beyond. 

5. Conclusion 

This study concentrates on the performance evaluation of 30 CMIP5 GCMs, including the MME, in reproducing the observed Pr, 
Tmin, and Tmax over the MASB. The 1981–2005 baseline periods were considered for the analyses using MTS and ATS data formats over 
the annual and seasonal temporal scales. Essentially, two approaches were followed to measure the skill of GCMs. The first one was an 
evaluation of the GCMs with 5 SPMs (mean, CV, PBIAS, RSR, and r) taking observed and raw historical GCM simulations as input data. 
Meanwhile, the second approach involves the use of MCDM analysis using three SPMs (PBIAS, RSR, and r) to determine the relative 
performance of models in replicating the observed climate. Besides, the weights of the SPMs were managed through the entropy 
method. Also, two MCDM techniques, i.e., WA and CP, were employed for the ranking and selection of the best GCMs at a sub-basin 
scale. The main findings of this study are summarized below. 

The evaluation of GCMs using 5-SPMs illustrates that a GCM that performs well for one SPM for a specific variable may fail to 
achieve the same for another SPM on the same temporal scale. Likewise, for the same SPM at different resolutions, a GCM may perform 
well on one time scale but poorly on another. These suggested that the outputs of GCM skills for a particular variable of interest relied 
mainly on the performance metrics, data format, and time scale chosen for analyses. Thus, it is very critical to evaluate the performance 
of GCMs using multiple performance metrics over a range of spatial and temporal settings and data formats for various climate var-
iables rather than a single consideration alone. 

Outcomes of the MCDM analysis confirmed that the MME, MPI-ESM-MR, CanESM2, EC-EARTH, HadGEM2-CC, and ACCESS1.0 
were the most skillful GCMs in simulating the time series characteristics of Pr over the four temporal settings in the sub-basin. 
Similarly, MIROC5, BCC-CSM1.1, BNU-ESM, BCC-CSM1.1(m), CMCC-CMS, and CMCC-CM occupied the top positions in replicating 
the annual and seasonal Tmin. Also, the best-performing GCMs in duplicating the features of Tmax encompass CMCC-CM, CanESM2, 
CNRM-CM5, CMCC-CMS, IPSL-CM5A-LR, and BCC-CSM1.1(m). However, it was noticed that different GCMs performed much 
differently in duplicating various variables over a set of temporal scales and data formats. 

In brief, the ensemble of GCMs that asserts adequate performance in simulating the salient features of Pr, Tmin, and Tmax 
concomitantly over the MASB includes CMCC-CMS (1), BCC-CSM1.1(m) (2), CMCC-CM (3), BNU-ESM (4), CanESM2 (4), and MPI- 
ESM-MR (6). Conversely, INMCM4.0 (25), IPSL-CM5A-LR (25), MIROC5-ESM (25), FGOALS-g2 (28), CESM1-CAM5 (29), MIROC5- 
ESM-CHEM (30), and NorESM1-M (31) were incapable of reproducing the statistical characteristics of the three climate variables 
at a time. Amazingly, none of the best models were able to consistently simulate the three variables at a time over a range of data 
formats and temporal resolutions. 

In addition, the MME, which holds the 8th rank in the overall aggregated matrix, proves its superior potential in representing the 
climate of the study area compared to many other individual GCMs. The overall findings from this work indicated that, instead of 
aggregating the ranks of the three variables into one, it is good to treat each variable independently while developing a subset of best- 
performing GCMs for ensembling since each GCM responds much differently to each variable under a range of considerations. 

The performance evaluation of GCMs with a diverse set of performance metrics, temporal resolutions, data formats, and several 
MCDM methods is crucial to determining the relative performance of models in replicating the observed climate under a subset of 
conditions. This, in turn, helps with the ranking and selection of the most suitable models for subsequent endeavors. However, given 
the limitations in resources, time, and scope of the work, this study mainly concentrates on evaluating the skills of 30 CMIP5 GCMs 
with only three SPMs (PBIAS, RSR, and r), at reproducing three climate variables (Pr, Tmin, and Tmax) using only two MCDM techniques 
(WA and CP). 
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Appendix A  

Table A1 
Mean monthly Pr, Tmin and Tmax of GCMs, MME and observed data over the MASB based on MTS data (1981–2005) 

Note: Values typed with red and blue font colors demonstrate overestimation and underestimation of the observed mean values 
correspondingly. However, the best (minimum departures from the observed mean values) and the worst (considerable de-
partures from the observed mean values) five GCMs from each were shaded with bright green and yellow colors respectively for 
quick identification in the table.  
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Table A2 
Rank of best and worst GCMs for Pr, Tmin and Tmax over the annual and seasonal temporal scales based on MTS data 

Note: GCMs typed with red font colors represent overestimation and the blue font colors demonstrate underestimation of mean values by the GCMs 
against the observed data. 

Appendix B  

Table B1 
PBIAS, r and RSR between observed and historical GCM simulations for annual and seasonal Tmin over the MASB based on MTS 
data (1981–2005) 
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Note: Blue font color – represents values for the best models, red font color – denotes values for the worst models and black font 
color – indicates values between the best and worst models.  

Table B2 
PBIAS, r and RSR between observed and historical GCM simulations for annual and seasonal Tmax over the MASB based on MTS 
data (1981–2005) 
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Note: Blue font color – represents values for the best models, red font color – denotes values for the worst models and black font 
color – indicates values between the best and worst models. 

Appendix C  

Table C1 
Summary of aggregated ranks and overall aggregated ranks of GCMs for Pr, Tmin and Tmax over the four temporal scales in the MASB based on MTS 
data 
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Note: Blue font color – represents overall aggregated ranks for best models and red font color – denotes ranks for worst models. 
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