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Iwona Gołda-Gocka 4, Aleksander Barinow-Wojewódzki 4 and Franciszek K. Główka 1

����������
�������
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Simple Summary: The prognosis of advanced lung cancer is poor. Even though it can improve
with immunotherapy, most patients do not respond to treatment. Identifying patients who would
not benefit from therapy is an unmet goal. We hypothesized that one of the molecules present in
human serum (namely, the soluble form of the unit α of the interleukin-2 receptor, sCD25) could be
used as a predictor of successful immunotherapy in patients with lung cancer. Our study showed
that patients who presented high sCD25 levels before treatment (≥5.99 ng/mL) and/or about three
months from the start of treatment (≥7.73 ng/mL) progressed faster and lived shorter without the
disease progression and serious toxicity. Serum levels of sCD25 could easily indicate patients with
lung cancer who would not achieve long-term benefits from immunotherapy. Therefore, other more
effective therapies could be implemented.

Abstract: Prognosis of advanced non-small cell lung carcinoma (NSCLC) is poor. Even though it can
improve with anti-PD-1/PD-L1 agents, most patients do not respond to treatment. We hypothesized
that the serum soluble form of the unit α of the interleukin-2 receptor (sCD25) could be used as a
biomarker of successful immunotherapy in NSCLC. We recruited patients dosed with atezolizumab
(n = 42) or pembrolizumab (n = 20) and collected samples at baseline and during the treatment.
Levels of sCD25 were quantified with the ELISA kits. Patients with a high sCD25 at baseline
(sCD25.0 ≥ 5.99 ng/mL) or/and at the end of the fourth treatment cycle (sCD25.4 ≥ 7.73 ng/mL)
progressed faster and lived shorter without the disease progression and serious toxicity. None of
the patients with high sCD25 at both time points continued therapy longer than 9.3 months, while
almost 40% of patients with low sCD25 were treated for ≥12.3 months. There was a 6.3-times higher
incidence of treatment failure (HR = 6.33, 95% CI: 2.10–19.06, p = 0.001) and a 6.5-times higher
incidence of progression (HR = 6.50, 95% CI: 2.04–20.73, p = 0.002) in patients with high compared
with low sCD25.0 and sCD25.4. Serum levels of sCD25 may serve as a non-invasive biomarker of
long-term benefits from the anti-PD-1/PD-L1s in NSCLC.

Keywords: biomarkers; sCD25; atezolizumab; pembrolizumab; anti-PD-1/PD-L1

Cancers 2021, 13, 3702. https://doi.org/10.3390/cancers13153702 https://www.mdpi.com/journal/cancers

https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0003-3568-4716
https://orcid.org/0000-0001-6873-5861
https://orcid.org/0000-0003-3551-4784
https://orcid.org/0000-0002-5014-8391
https://orcid.org/0000-0002-6611-5789
https://doi.org/10.3390/cancers13153702
https://doi.org/10.3390/cancers13153702
https://doi.org/10.3390/cancers13153702
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cancers13153702
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers13153702?type=check_update&version=2


Cancers 2021, 13, 3702 2 of 14

1. Introduction

Non-small-cell lung carcinoma (NSCLC) comprises 80–85% of all lung cancers. Usu-
ally, there are no symptoms until the disease is at an advanced stage. Thus, diagnosis is
often late [1]. The five-year survival of lung cancer patients in Europe between 1999 and
2007 was about 13% [2], while in the U.S., it was about 17% in 2009 [3]. The introduction
of immune-checkpoint inhibitors (ICIs) reduced the mortality rate by approx. 30% [4].
However, the response rates are still below expectations. Depending on the subset of
NSCLC patients, the highest observed overall response rates (ORRs) range between 30 and
40% [5–8]. Importantly, some patients benefit from treatment only temporarily [9,10]. Thus,
non-responders, short-term responders, and long-term survivors can be distinguished
among patients dosed with the ICIs [11].

The programmed cell death protein 1 (PD-1) receptor, or its ligand 1 (PD-L1) directed
agents became crucial in the treatment of NSCLC including atezolizumab (ATEZO),
nivolumab (NIVO), and pembrolizumab (PEMBRO) [4,8]. They inhibit the interaction
between PD-1 (located on T cells) and PD-L1 (expressed by tumor cells). Such an action
prevents the immune response inhibition and blocks the mechanism used by tumor cells
to evade the immune eradication [12]. A correlation between PD-L1 tumor expression
and overall survival (OS) or progression-free survival (PFS) has been established [6] and,
up to now, PD-L1 expression is the only biomarker used in clinical practice for patients’
qualification for ICI therapy. However, several clinical trials have shown that patients with
no PD-L1 tumor expression also benefited from immunotherapy [7,13]. Based on the PD-L1
expression, it is impossible to indicate which patients would not benefit from therapy [5].
The predictive power of PD-L1 is limited by the heterogeneity of its expression within the
tumor tissue and the diversity of antibodies used in the assays [5,14,15].

Great emphasis is being placed on understanding why only a subset of patients
responds to immunotherapy. Efforts are being made to develop a panel of biomarkers that
could identify patients that would most likely benefit from ICIs [16]. Recent meta-analyses
have shown that particularly useful in this field could be tumor mutation burden [17] and
neutrophil-to-lymphocyte ratio [18] that impacted both OS and PFS in NSCLC patients
treated with ICIs.

Several soluble proteins have been identified to correlate with immune activation, (e.g.,
a soluble form of the unit α of interleukin-2 (IL-2) receptor, called sCD25 or sIL-2Rα) [19].
The sCD25 was postulated as a surrogate marker of T-cell activation and the indicator
of subsequent cellular death [20]. The exact role of sCD25 in immunity and tolerance
mechanisms remains unclear, as summarized recently by Damoiseaux [21]. One of the
hypotheses concerning the function of sCD25 says that it could act as a decoy receptor
for IL-2, resulting in reduced bioavailability of IL-2. An intermediate-affinity dimeric
receptor (units β and γ) expressed by NK-cells and conventional T-cells would then lose
the competition for IL-2 with a high-affinity tri-molecular receptor (units α, β, and γ)
expressed by regulatory T cells (Tregs). As a consequence, tolerance induction would be
favored over the activation of T-cell responses [21].

The elevated levels of serum sCD25 (sIL-2R) have been linked with poor outcomes
in various blood [22,23] and solid cancers [24–27], including NSCLC [28–30]. Cabrera
and colleagues [25,31] observed the elevated levels of sCD25 in hepatocellular carcinoma
and postulated sCD25 as a mediator of T-cell suppression and tumor progression. Due to
their mechanism of action, ICIs-based drug regimens also started to be investigated for
their efficacy in relation to the sCD25 levels. An in vitro study showed that sCD25 protein
inhibited the antitumor effects of cytotoxic T lymphocyte antigen-4 (CTLA-4) blockade [32].
Accordingly, higher baseline sCD25 predicted shorter OS in metastatic melanoma patients
administered with different anti-CTLA-4 agents [32,33].

Currently, there are no data regarding sCD25 levels in NSCLC patients treated with
ICIs. This study aimed to assess the possible utility of sCD25 in lung cancer as an early
indicator of the long-lasting benefits and durable responses to the anti-PD-1/PD-L1 agents.



Cancers 2021, 13, 3702 3 of 14

We assessed the protein levels in sera of patients with advanced NSCLC, both at the
initiation of the therapy with ATEZO or PEMBRO and during subsequent doses.

2. Materials and Methods
2.1. Study Population

This study included 62 individuals with advanced NSCLC, qualified to the national
drug program (Supplementary Table S1) and treated with ATEZO (n = 42) or PEMBRO
(n = 20) in the Eugenia and Janusz Zeyland Wielkopolska Center of Pulmonology and
Thoracic Surgery in Poland. Patients received the drug in monotherapy as a first-line
(PEMBRO; 200 mg Q3W) or a second-line treatment (ATEZO; 1200 mg Q3W). We recruited
patients before their first anti-PD-1/PD-L1 administration and asked them to provide
five blood samples, the first one at enrollment (baseline; sample taken just before the first
dose of ICI), and the next samples in three-week intervals, just before administrating the
consecutive doses of ICI (the last sample was taken at the end of cycle four, just before
administrating the fifth dose). Immunotherapy was continued until unacceptable toxicity,
disease progression, or death. Each patient filled out a questionnaire on anthropometric
measurements, general health, and smoking habits.

Response to treatment was assessed every three months according to the Response
Evaluation Criteria in Solid Tumors (RECIST, version 1.1) [34], and was classified as
complete response (CR), partial response (PR), stable disease (SD), or progressive disease
(PD). Patients with PD were no longer eligible for immunotherapy and stopped receiving
the anti-PD-1/PD-L1s. Each patient who continued therapy was followed up for at least
twelve months from the start of treatment. Clinical benefits (disease control) were defined
as obtaining SD, PR, or CR and objective response (OR) as obtaining PR or CR. PFS was
measured as the time from the initiation of therapy to confirmed progression (PD or
death); time to treatment failure (TTF) as the time from the initiation of therapy to its
discontinuation; and OS as the time from the start of therapy to death.

BMI and smoking status were calculated based on the self-reported data; never
smokers were defined as patients who smoked <100 cigarettes in their lifetime, and for-
mer/current smokers as patients who smoked ≥100 cigarettes and had quit smoking
(former smokers) or smoked cigarettes (current smokers) at the time of the interview [35].

Table 1 presents the detailed characteristics of the study population. Thirteen out of sixty-
two patients (21.0%) were still on treatment at the time of data cut-off (TTF ≥ 12.9 months). Af-
ter a minimum follow-up of twelve months, the ORR was 16.1%. Half of the patients discon-
tinued therapy within 5.7 months from the start of treatment (Supplementary Figure S1A),
and the main reason for the end of therapy was confirmed progression (Supplementary
Figure S1B). In total, 11 patients were not evaluated for any treatment response, including
those who died before the first response evaluation. During the first three months of
immunotherapy (i.e., at the time of sample collection), the next dose of ICI was postponed
at least one time in 28 patients (45.2%), and the median delay time was four days. The
delay was usually due to the patient’s condition, but sometimes due to medical-unrelated
issues. For a few patients, the blood sample collection was disrupted as a result of the
COVID-19 pandemic and hospital restrictions. Therefore, the number of samples coming
from these patients was incomplete. In total, 249 blood samples were collected and used in
the analyses.
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Table 1. Characteristics of NSCLC patients treated with anti-PD-1/PD-L1 agents.

All (n = 62) ATEZO (n = 42) PEMBRO (n = 20) p-Value

• Age [years] 65.4 ± 7.2 65.1 ± 6.3 66.2 ± 8.9 NS
- age ≥ 65 37 (59.7%) 26 (61.9%) 11 (55.0%) NS

• BMI [kg/m2] 25.8 ± 4.3 26.4 ± 4.3 24.5 ± 4.1 NS
- BMI ≥ 25 30 (48.4%) 21 (50.0%) 9 (45.0%) NS
- missing information 3 (4.8%) 3 (7.1%) 0 (0.0%)

• Gender
- females 25 (40.3%) 15 (35.7%) 10 (50.0%)

NS- males 37 (59.7%) 27 (64.3%) 10 (50.0%)
• Smoking status

- never smoker 7 (11.3%) 4 (9.5%) 3 (15.0%)
NS- former smoker 39 (62.9%) 28 (66.7%) 11 (55.0%)

- current smoker 13 (21.0%) 7 (16.7%) 6 (30.0%)
- missing information 3 (4.8%) 3 (7.1%) 0 (0.0%)

• Type of NSCLC
- ADC 38 (61.3%) 27 (64.3%) 11 (55.0%)

NS- SQC 19 (30.6%) 11 (26.2%) 8 (40.0%)
- NOS/other/missing information 5 (8.1%) 4 (9.5%) 1 (5.0%)

• Stage of NSCLC
- III * 2 (3.2%) 2 (4.8%) 0 NS
- IV 60 (96.8%) 38 (95.2%) 20 (100%)

• Best response to treatment #

- CR 0 0 0

NS
- PR 10 (16.1%) 4 (9.5%) 6 (30.0%)
- SD 26 (41.9%) 17 (40.5%) 9 (45.0%)
- PD 23 (37.1%) 18 (42.8%) 5 (25.0%)
- n/e 3 (4.8%) 3 (7.1%) 0

Continuous (normally distributed data) were expressed as mean ± sd, categorical data were expressed as n (%); * III B T4N2M0; # death
before the first treatment evaluation was considered PD. Abbreviations: ADC, adenocarcinoma; ATEZO, atezolizumab; BMI, body mass
index; CR, complete response; n/e, not evaluated; NOS, not otherwise specified; NS, not significant; NSCLC, non-small cell carcinoma; PD,
progressive disease; PEMBRO, pembrolizumab; PR, partial response; SD, stable disease; SQC, squamous cell carcinoma.

2.2. Samples and Methods

The peripheral blood samples were centrifuged at 1700× g for 15 min, aliquoted, and
stored at −80 ◦C until use. Serum sCD25 was determined by the sandwich enzyme-linked
immunosorbent assay (ThermoFisher Scientific, Waltham, MA, USA; Cat. No. BMS212-2),
strictly according to the manufacturer’s protocol. The optical density was read at 450 nm
with reference 630 nm with the BioTek 800TS plate reader (BioTek Instruments, Winooski,
VT, USA). Each sample was analyzed in duplicate. A log-log linear regression was used to
calculate the sCD25 levels.

2.3. Statistics

All statistical analyses were performed with Statistica 13.3 software (Statsoft Inc.,
Tulsa, OK, USA). The Shapiro–Wilk test was used to check for normal distribution of
continuous variables. Normally distributed data were then expressed as mean ± sd, while
skewed data as median (interquartile range, IQR). Qualitative data were expressed as num-
bers and corresponding percentages. For between-group comparisons, the t-Student test,
Mann–Whitney U test, Kruskal–Wallis test, or Chi-square test were used, as appropriate.
The changes in biomarker levels over time compared to baseline were assessed with the
Wilcoxon test. The Kaplan–Meier curves were used to check the associations between high
and low protein levels and OS, PFS, and TTF. The differences between the curves were
calculated with the log-rank test, and patients who did not experience the event of interest
(death for OS analyses; progression or death for PFS analyses; treatment failure for TTF
analyses) were censored in Kaplan–Meier analyses. Patients who stopped immunotherapy
due to other reasons than progression or death were censored in PFS analyses unless they
died within the three months after discontinuation of immunotherapy. Such an approach
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was necessary as these patients were lost to follow-up. The Cox proportional hazard
models were used to confirm the prognostic role of the tested biomarkers on OS, PFS, and
TTF. For all performed analyses, a p-value < 0.05 was considered significant.

3. Results
3.1. Kinetic Changes in Serum sCD25

We started our analyses by testing how sCD25 levels changed after the start of im-
munotherapy. The sCD25 level increased after the first dose of ATEZO in all patients,
and PEMBRO in 88.2% of patients. The relative change compared to baseline (sCD25.1/0
ratio) was 154.5% (136.6–205.3) in ATEZO and 147.7% (119.5–208.2) in PEMBRO subgroup
(medians (IQRs)). It was the highest increase in the sCD25 level during the first three
months of immunotherapy in both groups (Figure 1A,B). We did not find any significant
differences in sCD25 levels between patients dosed with ATEZO and PEMBRO at any of
the evaluated time points. Therefore, further analyses were performed after combining
these patients into one study group.

Figure 1. Changes in serum sC25 during the first four cycles of immunotherapy with anti-PD-1/PD-L1 drugs. Figure
presents medians (filled squares) and interquartile ranges (whiskers) of sCD25 protein in subjects with NSCLC receiving
(A) ATEZO and (B) PEMBRO.

3.2. Association with Clinicodemographic Data

The sCD25 levels and their changes were independent of the NSCLC subtype (Supple-
mentary Figure S2), smoking status (Supplementary Figure S3), or BMI< and ≥25 kg/m2

(Supplementary Figure S4). Serum sCD25 did not differ significantly between females
and males (Supplementary Figure S5A1–A5). However, the relative changes of sCD25
across therapy tended to be higher in females than males, and the difference reached
significance for sCD25.1/0, sCD25.2/0, and sCD25.4/0 (Supplementary Figure S5B1–B4).
Older patients (≥ 65 years old) presented a stronger increase in sCD25 levels at the end of
cycle 1 (sCD25.1/0 ratio) (Supplementary Figure S6).

Due to revealed differences, further analyses were performed with sCD25 levels only
(sCD25.0–sCD25.4), not with their relative changes compared to baseline (sCD25.1/0–
sCD25.4/0).

3.3. Clinical Benefits 1-Year from the Start of Immunotherapy

Baseline serum sCD25 concentrations (sCD25.0) were significantly lower in patients
who presented disease control after twelve months from the start of immunotherapy
(BEN-12 group) than in those with no benefits (NB-12 group): 4.50 (3.03–5.82) vs. 5.99
(4.45–7.64) ng/mL (Figure 2A). After the first dose of the anti-PD-1/PD-L1s, the sCD25
level increased significantly in both groups (p < 0.001 from Wilcoxon test). However, it
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returned to baseline values only in BEN-12 group (p > 0.05 for sCD25.3 and sCD25.4 levels
compared to baseline). The levels of sCD25 were significantly lower in BEN-12 than in
NB-12 group at the end of cycle three (sCD25.3) and four (sCD25.4): 5.07 (2.67–6.58) vs. 7.89
(5.53–9.20) ng/mL for sCD25.3 (Figure 2D) and 3.92 (2.38–6.85) vs. 7.73 (6.05–11.83) ng/mL
for sCD25.4 (Figure 2E).

Figure 2. Serum sCD25 levels stratified by achieving long-term benefits from treatment. Figure presents medians (filled
squares), interquartile ranges (boxes), and ranges excluding outliers for sCD25 protein measured at (A) baseline and at the
end of (B) cycle 1, (C) cycle 2, (D) cycle 3, and (E) cycle 4 in patients who obtained (BEN-12) and lacked (NB-12) clinical
benefits after 12 months from the start of immunotherapy.

3.4. Survival Analyses

Based on the previous analysis, levels of sCD25.0, sCD25.3, and sCD25.4 were chosen
for survival analyses. The cut-offs were median values for patients without long-term
benefits (assessed after twelve months from the initiation of therapy; NB-12 group). For
biomarkers that differed significantly in the survival curves, Cox regression analysis was
performed to account for other factors’ influence.

The log-rank test indicated that sCD25 level was not predictive in terms of patient
survival (OS). Patients stratified according to the sCD25.0 (cut-off: 5.99 ng/mL) and
sCD25.4 concentrations (cut-off: 7.73 ng/mL) differed in TTF (p = 0.008 and p = 0.013) and
PFS (p = 0.019 and p = 0.023, respectively).

The median values for TTF in patients with low and high sCD25.0 were 6.0 and
3.1 months (Figure 3A1), and for PFS it was 6.3 and 3.1 months (Figure 3B1). A lack of
short-term benefits from treatment was observed in 27.8% of patients with low and 57.7%
of patients with high baseline sCD25 (Table 2). After a year, the therapy was continued
by 36.1% of patients with low baseline and 7.7% of patients with high baseline sCD25
(Table 2).

The median values for TTF in patients with low and high sCD25.4 were 12.1 vs.
4.7 months, and for PFS it was 12.1 vs. 5.9 months. Three months from the start of therapy,
a lack of clinical benefits from treatment was observed in 4.8% of patients with low and
42.9% of patients with high sCD25.4. The therapy was continued for at least a year by
42.9% of patients with low and 7.1% of patients with high sCD25.4 (Table 2).

Figure 3A2,B2 present the differences in TTF and PFS after stratifying patients by high
and low levels of both sCD25.0 and sCD25.4. None of the patients with high sCD25.0 and
sCD25.4 continued the therapy longer than 9.3 months; almost 40% of patients with low
sCD25.0 and sCD25.4 were treated for at least 12.3 months (Figure 3A2).

The univariate Cox regression showed that PFS and TTF were independent on gen-
der, administered drug, smoking status, age, BMI, and NSCLC subtype. High sCD25.0
(≥5.99 ng/mL) was a prognostic factor of shorter TTF (HR = 2.18, 95% CI: 1.24–3.83,
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p = 0.007) and PFS (HR = 2.06, 95% CI: 1.14–3.74, p = 0.017); high sCD25.4 (≥7.73 ng/mL)
was a prognostic factor of shorter TTF (HR = 2.93, 95% CI: 1.34–6.40, p = 0.007) and PFS
(HR = 2.76, 95% CI: 1.22–6.23, p = 0.014); high concentrations of both sCD25.0 (≥5.99 ng/mL)
and sCD25.4 (≥7.73 ng/mL) were a prognostic factor of shorter TTF (HR = 4.18, 95% CI:
1.73–10.08, p = 0.001) and PFS (HR = 3.90, 95% CI: 1.56–9.76, p = 0.004).

Figure 3. Kaplan–Meier curves for TTF and PFS based on the sCD25 levels. High sCD25.0 level (≥5.99 ng/mL) was a
prognostic factor of (A1) shorter TTF and (B1) shorter PFS; high sCD25.0 (≥5.99 ng/mL) and sCD25.4 (≥7.73 ng/mL) levels
were a prognostic factor of (A2) shorter TTF and (B2) shorter PFS in NSCLC patients dosed with ATEZO or PEMBRO;
complete observations are denoted as filled circles, censored observations as crosses.

After stratifying patients by low and high levels of sCD25.0, sCD25.4 or both, between-
group comparison with regard to patients’ characteristics was additionally performed
to confirm groups’ similarity. Most patients with a low concentration of sCD25.0 were
≥65 years old (72.2% vs. 27.8%, p < 0.05), and a similar trend was observed for a group
with low both sCD25.0 and sCD25.4 (69.2% vs. 30.8%, p = 0.068). Moreover, in a high
sCD25.0 level subgroup, there was a trend toward more males than females (73.1 vs. 26.9%,
p = 0.058). No other between-group differences were observed (data not shown).

To account for these discrepancies, the multivariable Cox regression analysis was
performed that included (1) age ≥65 and gender and as the confounding factors in sCD25.0
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analyses and (2) age ≥65 in the analyses including both sCD25.0 and sCD25.4. High
sCD25.0 (≥5.99 ng/mL) was an independent prognostic factor of shorter TTF (HR = 2.34,
95% CI: 1.22–4.48, p = 0.010) and PFS (HR = 2.24, 95% CI: 1.13–4.44, p = 0.021); high
concentrations of both sCD25.0 (≥5.99 ng/mL) and sCD25.4 (≥7.73 ng/mL) were an
independent prognostic factor of shorter TTF (HR = 6.33, 95% CI: 2.10–19.06, p = 0.001) and
PFS (HR = 6.50, 95% CI: 2.04–20.73, p = 0.002).

Table 2. Clinical benefits in NSCLC patients treated with ATEZO or PEMBRO.

Clinical Benefits
3 Months from the Start of Treatment

Clinical Benefits
12 Months from the Start of Treatment

Yes No p-Value Yes No p-Value

sCD25.0
low 26

(72.2%)
10

(27.8%) p < 0.05

13
(36.1%)

23
(63.9%) p < 0.05

high 11
(42.3%)

15
(57.7%)

2
(7.7%)

24
(92.3%)

sCD25.4
low 20

(95.2%)
1

(4.8%) p < 0.01

9
(42.9%)

12
(57.1%) p < 0.05

high 8
(57.1%)

6
(42.9%)

1
(7.1%)

13
(92.9%)

sCD25.0 & sCD25.4
low 24

(92.3%)
2

(7.7%) p < 0.01

10
(38.5%)

16
(61.5%) p < 0.05

high 4
(44.4%)

5
(55.6%)

0
(0%)

9
(100%)

Results are presented as number of patients (%); sCD25.0 (cut-off: 5.99 ng/mL) and sCD25.4 (cut-off: 7.73 ng/mL) levels of sCD25 at
baseline and at the end of cycle four.

4. Discussion

ICIs have improved the treatment outcomes in various cancers, including NSCLC [4].
However, not all patients benefit from the therapy [6,36], which raises economic and ethical
concerns. Here, we demonstrate that a high level of serum sCD25 could be a prognostic
factor of lack of short and long-term benefits from treatment with ATEZO or PEMBRO.
Patients with a high sCD25 level at baseline (sCD25.0) or/and at the end of the fourth
cycle of drug dosing (sCD25.4) progressed faster and lived shorter without the disease
progression and/or serious toxicity.

The sCD25 molecule has been studied for many years, mainly in conditions associated
with the dysregulated immune system. Serum sCD25 is elevated in various autoimmune
and inflammatory conditions but also in neoplastic diseases [21], including lung cancer.
Several authors have reported higher levels of sCD25 in NSCLC [29,37–41], and our results
are in line with these observations. Baseline sCD25 (sCD25.0) in our population was 5.62
(3.72–6.88) ng/mL (median, IQR), while the literature data indicate the mean or median
values for healthy volunteers was in the range of 0.45–3.83 ng/mL [39,42–44].

We did not find any significant differences in sCD25 levels between patients with
ADC and SQC, which supports the observations presented by others [37–40]. The sCD25
levels were also independent on gender, though the relative changes in sCD25 compared to
baseline were or tended to be higher in females than in males. Data from the literature show
that while the sCD25 protein level is not affected by gender in healthy individuals [45,46], it
may be disease-specific [42]. Although some authors reported that serum sCD25 increased
with age [27,46,47], others obtained contradictory results [22,42]. We observed no difference
in baseline sCD25 between older and younger individuals. However, after the first dose of
ICI, sCD25 level increased more in older (≥65 years) than in younger patients (163.2 vs.
137.8%, p < 0.01). In general, serum sCD25 increased at the end of the first treatment cycle
almost in all patients dosed with ATEZO or PEMBRO, and this agrees with the observations
for other ICIs [32,48].
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Reports about sCD25 and ICIs concern mostly CTLA-4-blockade and melanoma pa-
tients [32,33]. A study by Hannani and colleagues [32] revealed that higher baseline sCD25
predicted shorter OS in patients administered with ipilimumab. Similar conclusions were
later presented by Bajor and colleagues [33] for concomitant therapy with tremelimumab
and a CD40 agonist. We did not confirm the association between sCD25 values and OS
in the study population. However, we demonstrated that the concentrations of sCD25
measured at selected time points during immunotherapy were significant predictors of
TTF and PFS. One year after the start of the anti-PD-1/PD-L1 treatment, at least three
times more NSCLC patients did not experience progression, and about four times more
patients still continued therapy when their baseline sCD25 was low (<5.99 ng/mL). This
corroborates with the results of Armand and colleagues [49], who reported poor response
to NIVO (anti-PD-1) in patients with lymphoma and high baseline sCD25.

We also noticed that levels of sCD25 measured at the end of the fourth cycle of
treatment (i.e., about three months from the start of immunotherapy) were predictive in
terms of achieving clinical benefits. The relationship was even stronger when both time
points were considered. All patients with high levels of sCD25.0 and sCD25.4 lacked long-
term benefits, while almost 40% of patients with low levels achieved long-term benefits
from treatment. Importantly, other authors highlighted a better response to the anti-PD-1
agents among NSCLC patients presenting higher IL-2 levels three months from the start of
treatment [50]. Together, these observations support the hypothesis on the role of sCD25 as
a decoy receptor for IL-2, favoring Tregs and tolerance induction and depriving effector
T-cells of sufficient IL-2 [21].

Recently, Takai and colleagues [51] linked high levels of sCD25 with various immune-
related adverse events in patients with malignant diseases dosed with ICIs. Moreover,
Yoshida and colleagues [52] showed that sCD25 predicted the occurrence and the disease
activity of the checkpoint inhibitor pneumonitis in NSCLC. In our population, only a
small number of patients experienced severe (at least grade 3) toxicity (Supplementary
Figure S1B). Thus, we did not correlate serum sCD25 with the immune-related adverse
events. However, we noticed that in survival analyses, high sCD25 levels usually impacted
to a higher extent TTF than PFS, suggesting that not all patients with higher sCD25 levels
discontinued therapy due to progression.

In the literature, there is no agreement on whether the sCD25 levels reflect disease
progression in NSCLC. Most, but not all [29,53], studies have shown no differences in the
concentrations of sCD25 between different stages of NSCLC [38,39,41]. We demonstrated
that high baseline sCD25 predicted not only short (three months) but also long-term benefits
from immunotherapy (twelve months). Therefore, worse outcomes in the high sCD25 level
groups resulted more likely from the poor anti-PD-1/PD-L1 efficacy rather than disease
progression. To our best knowledge, our study is the first one indicating sCD25 as a useful
marker that could be easily measured and indicate patients with NSCLC who would not
benefit from immunotherapy with ATEZO or PEMBRO. Worth noting is that we obtained
a similar cut-off for baseline sCD25 (5.99 ng/mL) as Cabrera et al. [25] (5.80 ng/mL) and
Wang et al. [22] (6.05 ng/mL), who found correlations between the elevated sCD25 levels
and shorter OS or PFS in other types of cancers.

The source of the elevated sCD25 levels in NSCLC patients undergoing immunother-
apy remains unclear. However, it is probably not derived from the tumor microenviron-
ment. In patients with rare solid tumors, exposure to the anti-PD-1 agent resulted in
decreased secretion of sIL-2R in CD8+ tumor-infiltrating lymphocytes [54]. The source of
the sCD25 could be the tumor tissue. Indeed, Yano et al. [53] showed that lung cancer cells
express CD25 antigen and may release its soluble form. Moreover, sCD25 might also be
released from the activated peripheral T cells, e.g., Tregs [55]. In line with this hypothesis,
in NSCLC, non-responders to PD-1 blockade presented a higher percentage of baseline
CD25+FOXP3+CD4+ T cells [11].

The strengths of the project include its prospective character in terms of sample
collection. We collected samples both prior to and after the start of immunotherapy, which
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allowed for assessing how the levels of sCD25 changed across the treatment. Moreover, all
NSCLC patients were undergoing monotherapy with ATEZO or PEMBRO with the same
dosing regimen. This allowed for better evaluation of how the anti-PD-1/PD-L1 drugs
relate to the levels of sCD25 regardless of the other treatment options. The major limitation
of our study is the small sample size. This project was a one-year pilot study conducted
in one of the local hospitals. Therefore, the number of participants was relatively small.
We aimed to assess whether the soluble sCD25 protein might have a predictive value in
indicating patients who would benefit from immunotherapy, which could justify further
studies. Additionally, the immunotherapy was temporarily discontinued in a few patients.
Thus, the time between the next doses and sample collection sometimes exceeded 21 days.
This interruption could affect the results but was impossible to avoid in real-world settings.
Finally, though both drugs blocked the PD-1/PD-L1 pathway, PEMBRO was administered
as a first-line treatment while ATEZO was administered as a second-line treatment. This
discrepancy was due to eligibility criteria for the NSCLC drug program in Poland at the
time of conducting the study (Supplementary Table S1).

5. Conclusions

To sum up, we demonstrated that high levels of serum sCD25 protein at baseline
and three months from the start of immunotherapy could easily and quickly identify
NSCLC patients who would not achieve long-term benefits from ATEZO or PEMBRO
treatment. This observation supports the hypothesis on the benefits from monitoring
anticancer therapy with serum sCD25 [21].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13153702/s1: Figure S1, (A) Time to treatment failure and (B) reason for ending the
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Figure S4, Serum sCD25 levels and their relative changes stratified by BMI; Figure S5, Serum sCD25
levels and their relative changes stratified by gender; Figure S6, Serum sCD25 levels and their
relative changes stratified by age; Table S1, Eligibility criteria for treatment with ATEZO or PEMBRO,
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ATEZO Atezolizumab
BMI body mass index
CR complete response
CTLA-4 cytotoxic T lymphocyte antigen-4
ICI immune-checkpoint inhibitor
IL-2 interleukin-2
IQR interquartile range
NIVO nivolumab
NSCLC non-small-cell lung carcinoma
OR objective response
ORR objective response rate
OS overall survival
PD progressive disease
PD-1 programmed cell death protein 1
PD-L1 programmed cell death ligand 1
PEMBRO pembrolizumab
PFS progression-free survival
PR partial response
RECIST Response Evaluation Criteria in Solid Tumors
sCD25 soluble form of the unit α of interleukin-2 receptor (sIL-2Rα)
sd standard deviation
SD stable disease
Tregs regulatory T cells
TTF time to treatment failure
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