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Myo-inositol has been established as an important growth-promoting factor of mammalian 
cells and animals. The role of myo-inositol as a lipotropic factor has been proven, in 
addition to its involvement as co-factors of enzymes and as messenger molecules in 
signal transduction. Myo-inositol deficiency leads to intestinal lipodystrophy in animals and 
“inositol-less death” in some fungi. Of late, diverse uses of myo-inositol and its derivatives 
have been discovered in medicinal research. These compounds are used in the treatment 
of a variety of ailments from diabetes to cancer, and continued research in this direction 
promises a new future in therapeutics. In different diseases, inositols implement different 
strategies for therapeutic actions such as tissue specific increase or decrease in inositol 
products, production of inositol phosphoglycans (IPGs), conversion of myo-inositol (MI) 
to D-chiro-inositol (DCI), modulation of signal transduction, regulation of reactive oxygen 
species (ROS) production, etc. Though inositol pharmacology is a relatively lesser-known 
field, recent years of research has generated a critical mass of information on the subject. 
This review aims to summarize our current understanding on the role of inositol derivatives 
in ameliorating the symptoms of different diseases.
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INTRODUCTION

Inositols are polyols having six-carbon ring structure where each carbon is hydroxylated. A 
number of these sugar-alcohol isomers are biologically active, of which myo-inositol (MI) is the 
most common (Majumdar et al., 1997). It constitutes a component of membrane phospholipids 
and mediates osmoregulation (Majumder and Biswas, 2006). Its phosphorylated derivatives act as 
second messengers in signal transduction pathways (Berridge, 2009), mediate phosphorylation of 
proteins (Saiardi et al., 2004), participate in chromatin remodeling and gene expression (Odom 
et al., 2000; Shen et al., 2003), and facilitate mRNA export from the nucleus (York et al., 1999).

Altered MI levels have been observed in the brains of patients of Alzheimer’s disease, those 
suffering from mental disorders, and suicide and stroke victims (McLaurin et al., 1998; Macri 
et al., 2006). High fetal inositol concentrations in the cerebrospinal fluid have been attributed to 
the pathogenesis of Down’s syndrome (Acevedo et al., 1997). Administration of MI has been found 
to be therapeutic for obsessive-compulsive disorder and panic disorder (Seelan et al., 2009). Lower 
frontal cortex MI is linked to the pathophysiology of depression and concomitant sleep symptoms 
(Urrila et al., 2017).

MI deficiency causes high accumulation of triacylglycerol, cholesterol, and non-esterified lipids 
in the mammalian liver. A minimum threshold level of free MI deters the formation of fatty liver 
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(Burton and Wells, 1974; Hayashi et al., 1974a; Hayashi et al., 
1974b). Hence, the metabolic understanding of MI status in 
any biological organ or system is primarily dependent on MIPS 
activity and its regulation.

Chemistry
Chemically inositols are isomers of hexahydroxy-cyclohexanes. 
Among the nine possible geometrical isomers of inositol, seven 
are optically inactive or “meso,” and the remaining two form a 
chiral pair. The planar structures of the different isomers of this 
compound are presented in Figure 1. The molecule of MI has 
one axial and five equatorial hydroxyl groups. The axial hydroxyl 
group at position 2 is most stable to hydrolysis.

L-myo-inositol-1-phosphate synthase (MIPS) catalyzes 
the first step in the biosynthesis of all myo-inositol-containing 
compounds (Seelan et al., 2009). It converts glucose-6-phosphate 
to myo-inositol-1-phosphate (MIP). The phosphate moiety in 
MIP is subsequently removed by myo-inositol-1-phosphatase 
(IMPase) to produce free MI (Majumder and Biswas, 2006).

In addition, this compound could also be produced by cyclic 
synthesis (Agranoff et al., 1958; Paulus and Kennedy, 1960) and 
the hydrolysis of phosphatidylinositol. Although MIP is the 
intermediate common to both pathways, two different forms of 
compound are produced, the L-form by the synthetic pathway 
and the D-form by the cyclic pathway (Parthasarathy and 
Eisenberg, 1986). However, both the isomers are catalyzed by 
IMPase (Eisesnberg, 1967), which produces MI.

Myo-Inositol in Disease and Medicine
Elevated MI levels have been observed in Alzheimer’s 
disease, gliomatosis cerebri, diabetes mellitus, systemic lupus 
erythematosus, multiple sclerosis, etc. Further, decreased brain 
levels of MI were observed in chronic hepatic and hypoxic 

encephalopathy, stroke, acute thyrotoxic Graves’ disease, 
toxoplasmosis, cryptococcosis, and lymphoma (Haris et al., 2011). 
In the following section, important diseases that are influenced 
by MI and its derivatives (Table 1) have been reviewed.

Dyslipidemia and Cardiac Diseases
Ever since it was known that MI deprivation in diet resulted in 
fatty liver condition in rats (Burton and Wells, 1974, Hayashi 
et al., 1974a; Hayashi et al., 1974b), the interest regarding its 
therapeutic value developed. MI also reduced the accumulation 
of hepatic triglyceride in the liver (McCrea and Camilli, 2009). 
Treatment with MI assisted in the removal of cholesterol from 
the myocardium, resulting in the decrease in lipid buildup in the 
heart that improved heart function. The reduction in myocardial 
lipid content ultimately resulted in the decrease in left ventricular 
stiffness (Regan et al., 1973).

A family of proteins called myotubularins which are 
actually inositol-3-phosphatases that dephosphorylate PI3P and 
PI(3,5)P2 are implicated in cardiomyopathy. It has been found 
that mutations in the genes coding for the aforementioned 
proteins caused cardiomyopathy (McCrea and Camilli, 2009). 
Nebivolol, a beta-blocker drug, induces vasorelaxation through 
activation of inositol phosphate metabolism (Parenti et al., 
2000). Calcification of heart vessels is an undesirable attribute of 
cardiovascular disease (CVD), and IP6 acts as a crystallization 
inhibitor of calcium salts in vitro, reducing the calcification of 
coronary arteries (Grases et al., 2000).

Diabetic Complications
It is a known fact that, in diabetic animals, there is limited 
metabolism of fructose in the nerve system leading to the 
accumulation of sorbitol and fructose, which is responsible for 
peripheral neuropathy (Grabby, 1973). This causes a decrease 
in the motor nerve conduction velocity as well as in the MI 
concentration of the sciatic nerve at the onset of diabetes 
(Greene et al., 1975). These anomalies could be prevented by the 
exogenous administration of MI (Palmano et al., 1977).

Endothelial dysfunction (ED) caused by hyperglycemia and 
hyperlipidemia is an early feature of diabetes (Nacimento et al., 
2006). Inositol phosphoglycans (IPGs) are generated rapidly 
in response to insulin and have an insulin-like effect in vivo 
and in vitro (Huang et al., 1999). In human urine, the level of 
chiro-inositol is decreased, while the MI content increased 
in diabetic subjects. The decreased urinary chiro-inositol is 
inversely correlated to insulin resistance. Administration of 
D-chiro-inositol (DCI) in diabetic humans effectively decreased 
hyperglycemia and hypertriglyceridemia (Larner, 2002).

In type 2 diabetic subjects, the higher levels of MI and the 
lower levels of DCI are referred to as inositol imbalance. Chiro-
inositol deficiency and imbalance with myo-inositol are directly 
related to insulin resistance (Larner et al., 2010).

Cancer
Carcinogenesis in various organs may be inhibited by MI. 
Significant suppression of liver carcinogenesis by the oral FIGURE 1 | The planar structure of nine possible stereoisomers of inositol.
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administration of MI has been observed in mice (Nishino et al., 
1999). Benzo[a]pyrene (B[a]P), a carcinogen derived from 
tobacco, causes lung tumor in rodents through its metabolite, 
anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]
pyrene (B[a]PDE). Interestingly, the same metabolite inhibits the 
differentiation of small airway epithelial cells (SAE) in humans. 
MI protects SAE cells against such inhibitory effects (Jyonouchi 
et al., 1999). When MI was added to dexamethasone (another 
compound that prevents pulmonary neoplasia), an additive 
effect was observed on the inhibition of lung carcinogenesis 
(Wattenberg, 1999). Administration of MI decreases the 
multiplicity and size of surface tumors. It also decreases the 
size of adenocarcinoma, and therefore, it may be utilized for the 
chemoprevention of early pulmonary lesions (Kassie et al., 2010).

Striking anticancer effects of IP6 and inositol have 
been demonstrated in experimental models (Vucenic and 
Shamsuddin, 2003). In colon, breast, and metastatic lung 
cancer models, the effect of the combination of IP6 and MI 
was significantly better than by either of the two acting alone 
(Vucenic and Shamsuddin, 2003, 2006). IP6 also inhibits 
prostate cancer (Pca) cell proliferation and stimulates their 
apoptotic death. IP6 inhibits constitutive and growth factor-
induced signaling pathways, which eventually leads to the 
inhibition of growth and the induction of apoptotic death of 
Pca cells (Gu et al., 2010).

Mental Afflictions and Cognitive Diseases
Evidences suggest that the MI level in brain is associated with 
changes in mood state. The MI levels in the frontal coretex of 
suicide victims and those suffering from bipolar disorder were 
23 and 30% lower, respectively, than the normal levels (Shimon 
et al., 1997). Patients of major depressive disorder have shown 
significantly lower MI/creatine ratios. The low levels of MI in 
the prefronatal/anterior cingulate cortex in major depressive 
disorder patients may be a consequence of altered glial 
metabolism (Coupland et al., 2005). Abnormal level of MI along 
with glutamate and glutamine was found in the brains of major 
depressive patients (Shirayama et al., 2017).

Administration of lithium causes a lowering of MI in the 
critical areas of the brain, and the effect is therapeutic. Lithium 
reduces MI level in the right frontal lobe in the brains of patients 
with manic depression. On the other hand, valproic acid (VPA) 
decreases the intercellular concentrations of inositol by inhibiting 
the key enzyme of MI biosynthesis, MIPS, in the human brain 
(Saltiel et al., 2004). Derivatives of VPA, valnoctamide (VCD), 
and valrocemide (VGD) are potent anticonvulsant drugs 
(Loscher and Nau, 1985; Anderson et al., 1992). The fact that 
1mM VCD and VGD drastically inhibited human brain MIPS 
activity supports the view that these derivatives act as potential 
mood stabilizers (Saltiel et al., 2007).

The extra chromosome 21 in Down’s syndrome (DS), which 
leads to dementia later in life, is phenotypically similar to 
Alzheimer’s disease (AD). The presence of approximately 50% 
higher level of MI in DS patients suggests a gene dose effect of the 
extra chromosome 21, where the human osmoregulatory sodium/
myo-inositol cotransporter gene is located. Still, higher levels of 

MI in older adults with DS are similar to that symptomatic of AD 
(Huang et al., 1999).

Synaptojanin-1 is a polyphosphosphoinositide phosphatase 
found in the neurons may have a role in the early onset of AD 
associated with DS. This enzyme is responsible for maximum of 
the PIP2 phosphatase activity in the brain and plays a critical role 
in synaptic transmission (Di Paolo and DeCamilli, 2006). The 
AD peptide Aβ42 stimulates PIP2 cleavage and leads to abnormal 
PIP2 metabolism in AD (Berman et al., 2008). The genes 
encoding synaptojanin-1 as well as the Aβ42 precursor is located 
in chromosome 21, the triplication of which is responsible for 
DS (McCrea and Camilli, 2009). In DS patients, the level of 
synaptojanin-1 is increased, and the corresponding level of PIP2 
is decreased.

People with mild cognitive disorder (MCI) have higher risk of 
conversion to AD. In MCI, increased manifestation of MI occurs 
in the parietal white matter (WM), while in AD, the elevation of 
MI was found throughout the WM (Zhu et al., 2006). Therefore, 
MI level in MCI may be regarded as an early indicator of AD 
(Siger et al., 2009).

Abnormalities in signal transduction play a role in the 
development of mood disorders. Activated PI-PLC cleaves PIP2 
into IP3 and DAG, both of which are crucial molecules for signal 
transduction (Suh et al., 2008). Different PI-PLC enzymes are 
tissue-specific, and the different expression of some isoforms was 
described in pathological conditions (Lo Vasco et al., 2013). A role 
of PI-PLC β1 in mood disorders has been suggested (Lo Vasco 
et al., 2012), and this hypothesis is in sync with the data obtained 
from schizophrenia models (Mc Omish et al., 2008). PI-PLC β1 
was also suggested to represent a molecular convergence point of 
several neurotransmitter pathways implicated in schizophrenia 
(Choi et al., 1989; Kim et al., 1997).

Polycystic Ovary Syndrome
Polycystic ovary syndrome (PCOS) is the most common form 
of the endocrine metabolic diseases affecting 6–10% of women 
of reproductive age (Diamanti-Kandarakis et al., 1999). Insulin 
resistance (IR) and compensatory hyperinsulinemia play an 
integral role in the pathogenesis of this syndrome (Nestler, 1997). 
IR places these women at an increased risk of the development 
of cancer, hypertension, dyslipidemia, type 2 diabetes, and CVDs 
(Burghen et al., 1980). It is known that some functions of insulin 
require low molecular weight IPGs (Dona et al., 2012) and also 
that a deficiency in DCI containing IPGs and/or altered DCI 
metabolism may contribute to IR.

Besides IR, hyperandrogenism is another feature of PCOS. 
This hyperandrogenism is related to alteration of steroidogenesis 
in ovary and adrenal glands (Reyes-Munoz et al., 2018). 
Androgens act synergistically with follicle stimulating hormone 
(FSH) and modify steroidogenesis enzymes (Lenie and Smitz, 
2009) which is also related to IR.

In women with PCOS, administration of DCI improves 
clinical features of the syndrome (Baillargeon et al., 2010). 
Moreover, combined therapy of MI and DCI improves the 
metabolic profile of obese PCOS patients, reducing the risk 
of CVD (Minozzi et al., 2013). MI may be incorporated into 
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membrane phosphatidylinositols, or it may constitute IPGs in 
response to insulin. After its release, the IPGs interact with 
tissues involved in insulin action, thus potentiating the effects 
of insulin (Cheang et al., 2008). PCOS patients also exhibit 
an increased DCI/MI ratio (i.e., overproduction of DCI). 
This in turn leads to MI deficiency in the ovary. A balance 
between the two inositols is associated with IR and sensitivity 
(Heimark et al., 2013).

Epilepsy
In case of patients with temporal lobe epilepsy (TLE), MI level 
increases in the areas of seizure focus (temporal lobe) and its 
concentration decrease in the areas of seizure spread i.e., frontal 
lobe (Wellard et al., 2003). In the temporal lobe, the increased 
MI has been reported as a consequence of induction of Na+/MI 
cotransporter1 (SMIT1) after seizure activity in the area of seizure 
focus (Nonaka et al., 1999). The decreased MI in the frontal lobe 
reflects the osmolyte changes due to secondary effect of seizures. 
MI is transported from extracellular fluid into the cell through 
SMIT1. Overexpression of SMIT1 as well as MI supplementation 
increases intracellular phosphoinositide level and thereby alters 

phosphoinositide modulated ion channels suggesting the role of 
SMIT1 in signaling (Dai et al., 2016).

In experimental rats, MI treatment significantly reduces 
the severity of status epilepticus induced by kianic acid. 
The treatment reduced both the frequency and duration of 
spontaneous recurrent seizures, the main character of epilepsy. 
In addition, MI had significant effects on SMIT1 and leucine rich 
repeat-containing 8A, a component of volume regulated anionic 
channel (Tsverava et al., 2019).

The IMPA2 gene located at human chromosome 18p 11.2 is 
responsible for febrile seizure (FS). IMPA2 codes for myo-inositol 
monophosphatase 2 that converts inositol monophosphate to 
MI and plays important role in phosphatidylinositol signaling 
pathway (Nakayama et al., 2004).

DISCUSSION

It is a foregone conclusion that MI and its derivatives exert various 
metabolic actions generating therapeutic outcomes. The activities 
are due to reduction in ROS generation, direct superoxide 
scavenging, protection of NO signaling, etc. For example, 

TABLE 1 | Pharmacological effects of myo-inositol and its derivatives against different disease symptoms.

Effective inositol derivative Affected tissue/organ Disease/symptom Reference

MI Intestine (gerbil) Lypodystrophy Hegsted et al., 1973
MI Heart (rat) Left ventricular stiffness Regan et al., 1973
MI Liver (rat) Fatty liver disease Burton and Wells, 1974; Hayashi et al., 

1974a; Hayashi et al., 1974b
MI Brain (human) Affective disorder Barkai et al., 1978
MI Lung (mouse) Tumor Wattenberg, 1996
MI Brain (human) Suicidal tendency Shimon et al., 1997
MI Liver (mouse) Cancer Nishino et al., 1999
MI Lung (human) Tumor Jyonouchi et al., 1999
IP6 Heart (rat) Calcification of vessels Grases et al., 2000
DCI-IPGs Ovary (human) PCOS Sabuncu et al., 2001
DCI Diabetic human Endothelial dysfunction Larner, 2002
DCI Diabetic human Endothelial dysfunction, metabolic 

syndrome, erectile dysfunction
Nacimento et al., 2006

PIP3 Nerve tissue, thyroid gland, colon, lung, 
prostate gland, skin (human)

Cancer Luo et al., 2003; Osaki et al., 2004; Yuan 
and Cantley, 2008

IP6 + MI Colon, breast, lung (human) Cancer Vucenic and Shamsuddin, 2003; Vucenic 
and Shamsuddin, 2006

MI Brain (human) Depression Coupland et al., 2005; Shirayama et al., 
2017

MI Fetal brain (human) Down’s syndrome Seelan et al., 2009
PIP2 Ovary, breast, lung, colon, stomach (human) Cancer Engelman et al., 2006; Yuan and Cantley, 

2008
MI Brain (human) Bipolar disorder Saltiel et al., 2007
MI Brain (human) Mild cognitive disorder Berman et al., 2008; Voronov et al., 2008
MI Brian (human) Alzheimer’s disease Siger et al., 2009
DCI/MI ratio Diabetic human Insulin resistance Larner et al., 2010
MI Lung (mouse) Tumor Kassie et al., 2010
IP6 + MI Breast (human) Cancer Bacic et al., 2010
IP6 Prostate gland (human) Cancer Gu et al., 2010
DCI Ovary (human) Poor oocyte quality Carlomagno et al., 2011; Isabella and 

Raffone, 2012; Simi et al., 2017
PIP2 Brain (human) Schizophrenia Lo Vasco et al., 2012
MI + DCI Ovary (human) PCOS Minozzi et al., 2013

DCI, D-chiro-inositol; ED, endothelial dysfunction; IP6, Myo-inositol hexakisphosphate/phytic acid; IPG, inositol phosphoglycan; MI, Myo-inositol; PIP2, 
phosphatidylinositol inositol 4,5-bisphosphate; PIP3, phosphatidyl inositol 3,4,5-trisphosphate.
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DCI may be considered a therapeutic agent against metabolic 
syndrome, endothelial dysfunction, and erectile dysfunction in 
diabetes patients (Nacimento et al., 2006), and MI may act as 
alternative of metformin, the most popular oral antidiabetic drug, 
because it interacts directly with insulin target tissues; however, 
it does not show the side effects of the drug (Dona et al., 2012). 
The insulin like action of MI and DCI is due to the production of 
inositol glycan secondary messengers. These inositol glycans may 
modulate cell signaling, and in addition, inositols are incorporated 
in cell membrane phospholipids (Lagana et al., 2018).

Depression and schizophrenia are severe psychiatric diseases 
that affect millions of individuals worldwide, consequently 
increasing global suicide levels (Ren, 2019). MI and its derivatives 
may be a very important adjunct therapy in such cases. The 
most important role of MI is found in the treatment of bipolar 
disorder. More often than not, lithium is the first line of defense 
in such cases. However, lithium treatment often leads to psoriasis 
and depression. In such cases, MI may act as a preferable 
alternative since it is effective in mood stabilization as well as in 
the treatment of psoriasis (Kontoangelos et al., 2010).

The importance of inositol in cancer lies in the fact that inositol-
3-phosphatase is a potent tumor suppressor, and its mutation leads 
to many types of cancers (Luo et al., 2003; Osaki et al., 2004; Yuan 
and Cantley, 2008). On the other hand, activating mutations in 
PI3-kinases have been reported in ovarian, breast, lung, colon, and 
gastric cancers (Engelman et al., 2006; Yuan and Cantley, 2008). In 
addition, in breast cancer patients, IP6 and MI may be a valuable 
adjunctive therapy. They also help in ameliorating the side effects 
and improving the quality of life (Bacic et al., 2010).

In oligoasthenospermia (OA), reduction in the number and 
motility of spermatozoa takes place. MI plays a crucial role in the 
osmoregulation of seminal fluid, thereby improving sperm motility. 
The antioxidant effect of MI also plays important role in the 
production and regulation of spermatozoa. Therefore, MI could be 
used in OA patients undergoing an in vitro fertilization cycle (Gulino 
et al., 2016). ROS affects not only the morphology and motility 
of spermatozoa but may also damage mitochondrial membrane 
potential (MMP) which in turn increases ROS production. MI may 
improve the sperm mitochondrial function, thereby improving 
sperm parameters in OA patients (Condorelli et al., 2017).

In women with PCOS, the combined therapy of MI plus DCI 
is able to influence the metabolism leading to improved lipid 
profile. However, in these patients, enhanced epimerization of 
MI to DCI takes place in the ovary, leading to excess DCI and less 
MI (Isabella and Raffone, 2012). This MI depletion eventually 
leads to poor oocyte quality (Carlomagno et al., 2011). MI 

supplementation may salvage the situation by improving oocyte 
quality (Simi et al., 2017).

The spurt of research on inositol biochemistry started from 
the 1960s with different groups taking the lead on various 
aspects of the work (Ballou and Pizer, 1960; Shaktin and Tatum, 
1961; Nagai and Funahashi, 1962, Plouvier, 1963; Michell and 
Hawthorne, 1965; Charalampous and Chen, 1966; Eisesnberg, 
1967; Sherman et al., 1968; Dittmer and Douglas, 1969). Now, 
the molecules have again come into focus primarily due to the 
continued increase in lifestyle diseases and the long quest for 
effective and non-toxic cure for the same. ROS reduction may 
be one of the strategies of MI derivatives for its therapeutic 
functions. In diabetes and heart ailments, ROS generation by 
NADPH oxidase action and mitochondrial disruption could be 
inhibited by DCI (Vendrov et al., 2015). IP3 signaling may be 
another mechanism by which MI derivatives influence cellular 
functions. IP3 is responsible for Ca2+ release from the ER which 
raises the cytosolic Ca2+, and this in turn activates many enzymes 
and proteins. Indeed, defective IP3 receptors have been found 
responsible for many neurodegenerative disorders (Egorova and 
Bezprozvanny, 2018). Thus, MI and its derivatives may well play 
important roles not only to ameliorate cancers and psychotic 
diseases but also in many lifestyle diseases like obesity, diabetes, 
CVD, etc. This report tried to highlight these critical areas.
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