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Designing a highly efficient graphene 
quantum spin heat engine
Arjun Mani, Subhajit Pal & Colin Benjamin   

We design a quantum spin heat engine using spin polarized ballistic modes generated in a strained 
graphene monolayer doped with a magnetic impurity. We observe remarkably large efficiency and large 
thermoelectric figure of merit both for the charge as well as spin variants of the quantum heat engine. 
This suggests the use of this device as a highly efficient quantum heat engine for charge as well as spin 
based transport. Further, a comparison is drawn between the device characteristics of a graphene spin 
heat engine against a quantum spin Hall heat engine. The reason being edge modes because of their 
origin should give much better performance. In this respect we observe our graphene based spin heat 
engine can almost match the performance characteristics of a quantum spin Hall heat engine. Finally, 
we show that a pure spin current can be transported in our device in absence of any charge current.

The efficacy of quantum heat engines(QHE) at the nanoscale has been made more than obvious in the past half 
decade1. From being useful in schemes for removal of excess heat in nanosystems to novel nano heat engines 
which produce huge amounts of power they have been one of the most productive areas of research2. Graphene 
as a thermoelectric material has a very small thermoelectric figure of merit ZT around 0.1–0.01, which is much 
smaller than the most efficient thermoelectric material Bi2Te3, see refs3,4. This is due to its large thermal conduct-
ance and absence of any band gap. In some recent works, a moderate improvement of the thermoelectric figure of 
merit ZT is noticed in graphene based systems. This improved thermoelectric figure of merit ZT of around 2.5–3 
has been observed in 2D graphene systems with disorder5,6 or isotopes6 or nanopores7 or by nano-patterning the 
graphene surface3. This thermoelectric figure of merit observed in 2D graphene system is still smaller than that 
of the heat engine based on spin wave ferromagnetic system, see ref.2. In one of our previous works, see ref.8 we 
designed a QHE based on monolayer graphene system to improve the overall performance and discussed the 
effect of strain. In ref.8 we have only discussed the charge thermoelectric properties of strained graphene, the spin 
thermoelectric properties are not examined. Here, we mainly concentrate on the interplay between the roles of 
strain and spin flip scattering due to the magnetic impurity. In this work we prescribe a recipe to design a quan-
tum spin heat engine(QSHE) using spin polarized ballistic modes in strained graphene. We find giant thermoe-
lectric factors of around 50 for both charge as well as spin based transport.

There have been a few papers on marrying spin transport into heat engines, mention may be made of ref.2 
wherein both the spin as well as charge thermoelectric factors are calculated along with the power and efficiency 
of both charge as well as spin heat engines. In ref.9 charge/spin thermoelectric properties of a carbon atomic chain 
sandwiched between two ferromagnetic zigzag graphene nanoribbon is studied at various range of temperatures 
(from 0–400 K). In ref.10 the spin and charge thermoelectric figure of merits for a ferromagnetic graphene based 
QHE is calculated. Finally, in ref.11 the authors calculate the thermoelectric figure of merit as well as power output 
in a graphene based heat engine with spin polarized edge modes. However, what is unique to our work is that the 
same graphene based heat engine under strain and doped with a magnetic impurity can work as a highly efficient 
charge as well as spin heat engine. We also show that our device generates a charge power almost twice than what 
is seen in it’s closest competitor, see ref.11. In some of the recent works, see refs12–14 the possibility of graphene to 
work as spin caloritronic devices is also studied, where graphene nanoribbon devices are engineered to generate 
large spin currents on application of a temperature difference at the two opposite edges of the system. In our 
device too, it can be shown that pure spin currents can be generated on application of only temperature difference. 
In a previous work we had dealt in detail with a quantum spin Hall based QSHE15. The charge and spin thermo-
electric properties of graphene nanoribbon has also been studied in a recent paper16 in the ballistic transport 
regime similar to us, but in their model they have spin-orbit coupling of Rashba type instead of a magnetic impu-
rity. In ref.16 two types of spin currents are studied, one along the direction of applied thermal bias and the other 
one in the transverse direction, while in this work we studied the spin currents only in the direction of the thermal 
bias. In refs17,18 it has been shown that in presence of strong spin orbit coupling and exchange interaction due to 
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the presence of magnetic impurities, quantum anomalous Hall effect can be observed in graphene. Since intrinsic 
spin orbit interaction of graphene is very small, in refs17,18 it has been introduced via a substrate and magnetic 
impurities. In ref.17 it has been shown that Rashba spin splitting of magnitude 225 meV can be observed if Nickel 
is used as substrate. Thus for the experimental realization of our model we can utilize a different substrate with 
low spin orbit interaction, such as Silicon or Germanium. We also choose the magnetic impurity such that spin 
orbit interaction introduced by it is minimum. In ref.18 it has been shown that when magnetic impurities are dis-
tributed all over the sample then a strong Rashba spin splitting results. In our case, on the other hand we only have 
a single magnetic impurity located at x = 0. Thus, we can safely neglect the spin orbit interaction in our system, see 
Fig. 1. In some of the recent works, see refs19–21 the thermoelectric power of a graphene nanoribbon has also been 
studied in presence of a strong magnetic field. In these papers, along with the Seebeck coefficient, they have also 
studied the Nernst coefficient, which is the measure of charge current generated along the transverse direction. 
Further, in refs22,23 the graphene monolayer system and a single Dirac particle trapped in a infinite potential well 
are used to design the quantum analogue of classical Otto engine and classical Carnot engine respectively. While 
these quantum heat engines work as the cyclic heat engines, our model consists of strained graphene layer and 
works as a steady state quantum heat engine. The working principle of cyclic heat engine is that after a complete 
cycle all the parameters return back to their initial position via a reversible process, and since a reversible process 
take infinite time to complete the cycle, the output power generated in these heat engines are almost zero. For 
steady state heat engines the output power is finite and is generated via steady state flows of microscopic particles.

In this work, we also compare the performance of charge/spin quantum heat engine based on monolayer 
graphene with that based on edge modes in quantum spin Hall systems. The reason behind this comparison is 
that while a graphene based QSHE relies on ballistic modes, a quantum spin Hall heat engine will rely on edge 
modes. Edge modes are observed at the edges of topological insulators (quantum spin Hall system), while the 
best place to see ballistic modes is monolayer graphene. Edge modes are different from ballistic modes in that 
the transmission probability for edge mode transport is unity, i.e., there is no back reflection of the edge modes 
when they encounter any impurity present within the sample, while for ballistic mode transport, transmission 
probability can be less than unity, i.e., ballistic modes are not completely immune to backscattering due to impu-
rity present within the sample. This comparison will give a better perspective on application of edge modes verses 
ballistic modes in thermoelectrics.

The reason we aim to design a quantum spin heat engine(QSHE) in graphene is that the prospect for device 
realization is high. Since in graphene, electronic transport can be very easily tuned by a gate voltage alone. In 
our model graphene QSHE too, by optimizing the parameters, heat can be converted to a spin polarized charge 
current as well as a pure spin current similar to ref.24. A bandgap or a conduction gap present in a sample can 
enhance the Seebeck coefficient and thus the performance of the quantum heat engine. It can be explained in 
this way. In presence of a conduction gap or a band gap the electrical conductance reduces but the Seebeck 
coefficient increases, since Seebeck coefficient is inversely proportional to the electrical conductance (see Eq. (2) 
of the main manuscript). However, there are some restrictions. To get a finite Seebeck current one has to break 
both the left-right symmetry, i.e., T12V2 ≠ T21V1 although time reversal symmetry (T12 = T21) is not broken, and 
electron-hole symmetry. When one of the contacts of a particular system is hotter than all other contacts in that 
system then a electron-hole pair created at that contact which traverses to other contacts carries the excess heat 
energy of that contact. Now, since both electron and holes in a pair are transmitting to the other contacts, one will 
not get any current. To get a finite current one has to break the electron-hole symmetry, which is only possible 
when the transmission function is energy dependent. This energy dependent transmission function will act as a 
rectifier, which creates an asymmetry between electron and hole transport. Thus, to get a better thermoelectric 
(TE) performance one has to have a conduction gap and specific energy dependent transmission function as 
well. In a related paper, see ref.25 it has been concluded that a delta like transmission function in energy helps in 
reaching the Carnot limit in those quantum heat engines. Since MoS2 and black phosphorus both have a band gap, 
and if they too satisfy the delta like transmission function in energy, then quantum heat engines based on these 
materials will also have a large Seebeck coefficient as well as large efficiency.

The manuscript is arranged as follows in section 2 we delve into the theory needed to understand the quantum 
spin heat engine. Next in section 3 we introduce our model which consists of a strained mono-layer of graphene 
embedded with a magnetic impurity. In section 4 we discuss the results of our work with a few plots of the spin 

Figure 1.  Monolayer graphene with a magnetic impurity at x = 0 denoted by thick maroon line. The middle 
portion is strained region while the two side portions are normal graphene regions. Voltages V1 and V2 are 
applied to the two sides which are at temperatures T1 and T2 respectively.

https://doi.org/10.1038/s41598-019-42279-7


3Scientific Reports |          (2019) 9:6018  | https://doi.org/10.1038/s41598-019-42279-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

and charge Seebeck coefficients, of the charge/spin thermoelectric factors and of the efficiency and power of our 
model spin heat engine, we also deal with the a novel application of our spin heat engine to generate pure spin 
current and we delve deep into the causes behind the novel effects seen by plotting the bandstructure in presence 
of spin flip scattering and strain. Section 5 deals with the experimental realization of our proposed device. We 
conclude with an experimental realization of our proposed device in section 6 along with a table which compares 
the spin/charge efficiency, thermoelectric factors of our device with edge mode based quantum spin Hall heat 
engine.

Theory of the Quantum Spin Heat Engine
Spin Seebeck coefficient.  The aim of our work as stated in the introduction is to design a quantum spin 
heat engine using a strained graphene layer embedded with a magnetic impurity. It goes without saying that our 
device acts as a quantum charge heat engine too. For this we begin by defining the thermoelectric properties of 
our graphene system in the linear transport regime- the electric and heat currents are linearly proportional to the 
applied biases be it electric or thermal. As is well known electrons in graphene can be both valley (K/K′) polarized 
as well as spin (↑/↓) polarized26,27. The linear dependencies can be expressed as follows10,28,29-
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valley, Lij with i, j ∈ 1, 2 represents the Onsager coefficients for a two terminal thermo-electric system. The electric 
response due to a finite temperature difference ΔT across the graphene layer is denoted as the Seebeck coefficient 
while the heat current generated due to the applied bias voltage E  across graphene layer is denoted as Peltier coef-
ficient. Using Eq. (1) these aforesaid coefficients can be expressed as-
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Due to the additional spin(s) and valley(ν) degrees of freedom for electrons in graphene the charge( νSch) and spin 
Seebeck( νSsp) and Peltier coefficients( ν νP P,ch sp) for any valley (ν = K/K′) can be written as2-
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The sum over both valleys (K and K′) gives the total charge/spin Seebeck and Peltier co-efficients-
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To simplify matters, the Onsager co-efficient matrix in Eq. (1), relating electric and heat currents to temperature 
difference and applied electric bias, can be rewritten as follows10,30,31-
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herein G0 = (e2/ℏ)(W/π2), with W being the width of graphene layer in y− direction,  = Gs
v

s
v0,  is conductance of 

graphene electrons with spin s, in valley v.31 φ is the angle at which the electron is incident, ε is the energy of the 
electron, f is the Fermi-Dirac distribution, μ is the Fermi energy and  ε φν( , )s  is the transmission probability for 
spin s electrons through strained graphene for valley ν. To calculate the Onsager coefficients νLs

ij ,  in Eq. (1), one 
first has to calculate the transmission probability  ε φν( , )s  and then after calculating the Onsager coefficients Ls

ij v,  
in Eq. (1), we calculate efficiency and power of our quantum spin heat engine. To do that we need to write the 
response matrix in terms of electric charge(Jch) and spin(Jsp) currents as well as heat current (JQ), which can be 
calculated from Eq. (1) by using the relations- Jch = j↑ + j↓, Jsp = j↑ − j↓ and = +↑ ↓J j jQ

q q as follows2-

https://doi.org/10.1038/s41598-019-42279-7


4Scientific Reports |          (2019) 9:6018  | https://doi.org/10.1038/s41598-019-42279-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

E
E















=







′
′













−
−

−Δ







J
J
J

G
P S

P P S
S T P S G T

1
1

/ (9)

ch

sp

Q

ch

ch

ch

ch ch ch

sp

In the above Eq. (9), E  is the applied electric field while the spin voltage applied E = 0sp  in our system. Here 
we have summed the contribution of two valleys such that the total electric charge conductance Gch = G↑ + G↓ and 
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Seebeck co-efficients respectively, P is the polarization of spin conductance while P′ is the polarization of the 
product of Seebeck coefficient and conductance1,2 which are defined as follows:
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Efficiency and power of quantum spin heat engine.  The charge(spin) power28 defined as usual as the 
product of electric current and voltage applied then can be written as-
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The efficiency at maximum power is defined as the ratio of maximum power to the heat current transported and 
can be derived as follows28-
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Similarly, efficiency η can be written as28-
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After determining the expressions for the quantities (both charge as well as spin) like Seebeck coefficient, 
Thermoelectric figure of merit, maximum power output and efficiency of respective heat engines at maximum 
power, we plot them in section IV. We also discuss and analyze the aforesaid plots in the same section.

Model
Hamiltonian.  A graphene sheet is lying in the x-y plane, a strain is applied to the region 0 < x < L, see Fig. 1, 
with a magnetic impurity at x = 0. The in-plane uniaxial strain impacts the hopping between nearest neighbors 
and is generally delineated via a gauge vector which takes opposing signs in the two valleys (K and K′) of 
graphene. In the Landau gauge, the vector potential corresponding to the strain is → =A A(0, )y . The system is then 
defined by the Hamiltonian-

HK K δ= + .′ ′H J xs S ( ) (24)K K/ /

with HK = ℏvf σ.(k − t′) and HK′ = ℏvf σ*.(k + t′). Strain is denoted as t = ℏvf t′ = Ay[Θ(x) − Θ(x − L)] with Θ the 
Heaviside step function and vF the Fermi velocity. The first term in Eq. (24) represents the kinetic energy in 
graphene with σ = (σx, σy) - the Pauli matrices that operate on the sub-lattices A or B and k = (kx, ky) the 2D 
wave vector. The second term in Eq. (24) denotes the exchange interaction between Dirac electron and magnetic 
impurity with J representing the strength of the exchange interaction. The spin of Dirac electron is denoted by s, 
while S represents spin of the magnetic impurity and m its magnetic moment, while magnetic moment of Dirac 
electrons is 1/2 (spin up) or −1/2 (spin down). For better understanding of our model we have compared our 
delta potential magnetic impurity with a rectangular potential barrier magnetic impurity in Fig. 2. There is a 
single magnetic impurity located along the line x = 0. A solid black color line is shown at x = 0 in Fig. 2(a). The 
magnetic impurity is lying along this line. The magnetic impurity is modeled as a delta potential in x−, but is 
uniform in the y− direction. A magnetic quantum dot doped with few Mn+ ions can be thought of as a magnetic 
impurity, see refs32,33. We assume it to have a finite width with a translational invariance in the y− direction. This 
can be understood with an analogy to a rectangular potential barrier in graphene. Klein tunneling in graphene is a 
2D scattering problem, see ref.34. The Klein setup has a rectangular potential barrier between x = 0 and x = L with 
translational invariance in the y− direction, as shown in Fig. 2(c). The potential barrier affects the transmission of 
incident particles in the x− direction but doesn’t affect the transmission in y− direction because the transmitting 
particle cannot feel the potential change in the y− direction. As one reduces the length L of the potential barrier, 
it becomes similar to a delta potential located at x = 0, see ref.35. Similarly, a magnetic impurity can have a finite 
width between x = 0 and x = L with a translational invariance in the y− direction, as shown in Fig. 2(b), see ref.32. 
If one decreases the width L of the impurity, it reduces to a delta function like profile affecting the transmission in 
the x− direction but not in the y− direction, see Fig. 2(a). All of the electrons passing through the system interact 
with the impurity. Refs32,33 have a magnetic impurity embedded into a graphene monolayer very similar to us. 
The analysis as done in refs26,27,32 is used in this work also. In ref.32 a delta potential approximation of a rectangular 
barrier magnetic impurity in a graphene monolayer shows that for a range of incident angles from −π/6 to π/6 
the difference between the transmissions through delta potential magnetic impurity and that of the rectangular 
barrier magnetic impurity is quite small. In ref.32 too, the delta potential magnetic impurity is an approximation 
for a magnetic quantum dot with spin.
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We consider a magnetic impurity as the prototype of a magnetic quantum dot doped with few Mn+ ions, 
oriented by an external magnetic field and put in a specific state with spin S and spin magnetic moment in 
z-direction m, see refs32,33. It can be oriented such that only a particular state-defined by S, m is occupied. Two 
types of scattering can happen: 1. with spin-flip (same S but m → m ± 1) or 2. without spin-flip (same S as well as 
m) of magnetic impurity. The rest of the states would have zero occupation probability as shown in the analysis of 
the scattering of electrons due to the magnetic impurity in the next subsection, see also refs26,27,32.

Wave functions and boundary conditions.  To calculate the transmission probability and from it the 
Onsager coefficients and the thermoelectric factors we consider a spin-up electron with energy E incident at the 
strained graphene interface at x = 0 at an incident angle φ. At the interface itself we also have a magnetic impu-
rity. The incident electron thus can be scattered due to the strained region. Further, its spin can also be affected 
because of the magnetic impurity. The incident electron thus can be scattered as a spin up or down electron 
depending on the spin and magnetic moment of the magnetic impurity.

The wave function for A-sub-lattice in each region (normal and strained) for K- valley can be written as:
For x < 0-
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Figure 2.  2D graphene monolayer with (a) a delta potential magnetic impurity, (b) rectangular barrier 
magnetic impurity, (c) a rectangular potential barrier and (d) a delta potential barrier. A rectangular 
barrier magnetic impurity (b) models a magnetic quantum dot (see ref.32) the transmission through which 
approximates that of a delta potential magnetic impurity (a) to a great extent. Similarly, a rectangular potential 
barrier (c) approximates a delta potential (d) in modeling the Klein paradox (see refs34,35).
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The x component of the wave-vector in strained region is = − −q E v k t( / ) ( )x F y
2 2 , whereas in the normal 

region qx is substituted with kx, wherein kx = Ecosφ/ℏvF, and the phase factor in strained region is given by 
tanθ = (ky − t)/qx. χm is the eigen state of z− component of spin operator of magnetic impurity Sz with 
Szχm = mχm, m being the corresponding eigen-value. The spin flipping mechanism is considered elastic and the 
sum of the z− components of the spin magnetic moment of impurity(m) and of electron(m′ = ±1/2), i.e., 
M = m + m′ remains conserved before and after spin-flip scattering. Following ref.36 one obtains the boundary 
conditions at x = 0:

 ψ = − ψ = = . ψ = + ψ =i v x x J s S x x[ ( 0) ( 0)]
2

[ ( 0) ( 0)] (31)F B B A A
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and at x = L as-
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2 3

and
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The spin flip process is attributed to the interaction between the spin of electron (s) and the spin of magnetic 
impurity (S), with . = + +− + + −s S s S s Ss S ( )z z
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 and Sz are the 
z-components of the spin operator of electron and magnetic impurity, respectively. S±  = Sx ± iSy, where S + and S− 
are the spin raising and spin lowering operators for magnetic impurity, and s±  = sx ± isy are the same for electrons.

After substituting the wave functions (30–35) in Eqs (36–39), at x = 0 we get-
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= −φ
↓

+
↓

+ θ
↓

− − θt e a e b e (42)
ikL i iqL i iqL i

In the above equations α = J/(4ℏvf). Equations (40–47) consist of 8 unknowns which satisfy the probability 
conservation- |r↑|2 + |t↑|2 + |r↓|2 + |t↓|2 = 1. Similarly, for spin down incident electron from the left side we can 
derive the scattering amplitudes. Further, for K′ valley too solving the Hamiltonian one can get the transmission 
amplitude (ts) and reflection amplitude (rs) with s = ↑, ↓ again in a nod to probability conservation satisfying |r↑|2 
+ |t↑|2 + |r↓|2 + |t↓|2 = 1 for K′ valley also. Since there is no inter valley scattering, our results remain identical for 
K′ valley after integrating over both energy and the incident angle. So we focus on the transmission probability 
 = | |ts s

2 in one valley v = K only (see Eq. 8), in the results and discussion section IV.

Results and Discussion
Charge/spin conductance and charge/spin Seebeck coefficient.  In Fig. 3(a,b) we plot the charge 
and spin conductance for various m values (spin magnetic moment in z-direction) of magnetic impurity. We 
see that though different magnetic orientations have no effect on the charge conductance, the spin conductance 
increases as the magnitude of m increases, but it is unaffected by the direction of m. Decreasing the spin magnetic 
moment m of the magnetic impurity reduces the transmission probability of spin up electrons, but increases the 
transmission probability for spin down electrons by the same amount. Thus the sum of transmission probabilities 
of spin-up and spin-down electrons remains unchanged with decreasing m. The total charge conductance remains 
unaffected by the changing m, but the spin conductance increases as the difference between spin up current 
and spin down current increases. It can also be noted that both charge as well as spin conduction gaps shown in 
Fig. 3(a,b) is not due to the band gap in the band structure but due to the shift of Dirac cones in the Brillouin zone 
in strained region of monolayer graphene. In presence of strain, Dirac cones are formed/shifted in strained region 
of graphene at different positions in the kx axis while in the unstrained region of graphene there is no shift. Thus, 
there is a energy gap created in the strained region of graphene. The conduction band is related to the energy gap 
in kx axis. Thus, there is always a finite transmission gap obtained even for small strain value in our device and 
shown in Fig. 3(a,b). This conduction gap can be of two types- charge and spin conduction gap for our device. The 
charge and spin conduction gaps are always proportional to the strength of strain. This result is one of the reasons 
to study the superior thermoelectric effects in graphene nano structure in presence of strain. It is to be noted 
here that the presence of exchange interaction does not affect the charge conduction gap while it reduces the spin 
conduction gap. Similar effects on the charge/spin conductances are observed when the exchange interaction J 

Figure 3.  (a) Charge Conductance (Gch) vs. EF (Fermi energy) for various values of magnetic moment m, length 
of strained graphene layer L = 40 nm and width W = 20 nm, strain t = 50 meV, temperature T = 30 K with spin of 
magnetic impurity S = 5/2 and J = −600 meV-nm, (b) Spin Conductance (Gsp) vs. EF (Fermi energy) for various 
values of magnetic moment m, length of strained graphene layer L = 40 nm, strain t = 50 meV, temperature 
T = 30 K with spin of magnetic impurity S = 5/2 and J = −600 meV-nm, (c) Charge conductance (Gch) vs J 
(impurity coupling strength) for various strains at Fermi energy EF = 50 meV, length of strained graphene layer 
L = 60 nm, temperature T = 30 K with spin of magnetic impurity S = 5/2 and spin magnetic moment m = −5/2. 
(d) Spin conductance (Gsp) vs. J (impurity coupling strength) for various strains at Fermi energy EF = 50 meV, 
length of strained graphene layer L = 60 nm, temperature T = 30 K with spin of magnetic impurity S = 5/2 and 
spin magnetic moment m = −5/2.
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is altered. The effect of the exchange interaction J on transmission probability of incident spin up and spin down 
electrons is same as the effect of magnetic moment m of the magnetic impurity on it. In Fig. 3(c) we see that the 
charge conductance is almost constant as function of the exchange interaction (J), however the spin conduct-
ance increases as shown in Fig. 3(d). This can be understood in this way- Increasing exchange coupling J of the 
magnetic impurity increases the transmission probability of either spin-up (or, spin-down) electron depending 
on the magnetic moment m of the magnetic impurity and reduces it for the spin-down (or, spin-up) electron. In 
this way the sum of the transmission probabilities of spin-up and spin-down electrons remains unchanged and 
so does the charge conductance. However, the difference between the transmission probabilities of spin-up and 
spin-down electrons increases showing a increase in spin conductance with exchange coupling J. If an electron 
is incident at the interface of strained and unstrained region, it is refracted to the strained region with a refrac-
tion angle θ = tan−1(ky − t)/qx in K valley. So, if one increases the strain t, electrons with incident angle 0 to π/2 
will refract close to the normal to the interface between the two regions and thus their transmission probability 
increases, but electrons with incident angle 0 to (−π/2) will refract away from the normal to interface reducing 
the transmission probability more and thus reducing the overall transmission (after integrating over incident 
angle φ) in the the K valley. In the K′ valley, the electrons refract in the opposite direction to that of the K valley 
with a refraction angle θ = tan−1(ky + t)/qx, but overall transmission probability (after integrating over incident 
angle φ) reduces with strain and is always equal to the K valley unless a magnetic field is applied at the interface 
to create a valley polarization, see ref.37. Increasing strain decreases both the charge as well as spin conductances. 
Similar to Fig. 3, in Fig. 4 we see the effect of the orientation of the magnetic impurity in z− direction (m) and 
strain on the charge and spin Seebeck coefficients. In Fig. 4(a,b) we see that impurity orientation m has no effect 
on the charge Seebeck coefficient, but it has a huge impact on the spin Seebeck coefficient. This can be understood 
as follows. With changing sign of the spin magnetic moment m of the magnetic impurity from positive to nega-
tive, the transmission probability of spin-up electrons decreases while that for spin-down electrons increases by 
the same amount. Thus the total transmission probability of spin-up and spin-down electrons remains same with 
decreasing m. So, the charge Seebeck coefficient remains unaffected with changing m but spin Seebeck coefficient 
decreases and changes its sign from positive to negative as seen in Fig. 4(a,b). In Fig. 4(c,d) we see that charge 
and spin Seebeck coefficients both increase with increasing strain, which is opposite to the effect on charge and 
spin conductances. This can be understood as follows- A bandgap in a nanostructured material can increase the 
Seebeck coefficient significantly. In graphene, due to its gapless band-structure the Seebeck coefficient is very 
small, see ref.31. Applying strain in a graphene device can shift the Dirac points in opposite direction by opening a 
conduction gap without opening a bandgap. This conduction gap increases with increasing strain and so also the 
charge/spin Seebeck coefficients.

From Fig. 4(b), it’s evident that spin Seebeck coefficient depends on the sign (orientation) of the magnetic 
impurity m, i.e., Ssp|m = −Ssp|−m, unlike the spin conductance which is independent, since Gsp = |G↑ − G↓|. In 

Figure 4.  (a) Charge Seebeck coefficient (Sch) vs. Fermi energy for various m of magnetic impurity at T = 30 K, 
J = −600 meV-nm, strain (t) = 50 meV and spin S = 5/2 and length of strained graphene region L = 40 nm and 
width w = 20 nm and (b) Spin Seebeck coefficient Ssp vs. Fermi energy EF in meV for various m of magnetic 
impurity, length of strained graphene layer L = 40 nm, strain  = 50 meV, temperature T = 30 K with spin of 
magnetic impurity S = 5/2 and J = −600 meV-nm. (c) Charge Seebeck coefficient (Sch) vs Fermi energy for 
various strains at J = 600 meV-nm, length of strained graphene layer L = 60 nm, temperature T = 30 K with spin 
of magnetic impurity S = 5/2 and spin magnetic moment m = −5/2, (d) Spin Seebeck coefficient (Ssp) vs Fermi 
energy for various strains with parameters same as (c).
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Fig. 5(a) we see that exchange interaction strength J has no effect on charge Seebeck coefficient Sch at zero strain, 
while the spin Seebeck coefficient Ssp increases with J, as shown in Fig. 5(b). In presence of strain, the effect of J 
on Sch is negligible. One thing to note in Figs 4 and 5 is that both spin as well as charge Seebeck coefficients are 
anti-symmetric as function of Fermi energy (EF), i.e., Sch/sp(EF) = −Sch/sp(−EF) at zero strain. In presence of finite 
strain while Sch(EF) = −Sch(−EF), Ssp has no symmetry with respect to sign reversal of Fermi energy, in effect 
change of charge carriers from electrons to holes. All this is in contrast to the spin and charge conductances which 
are symmetric, Gch/sp(EF) = Gch/sp(−EF), to reversal of charge carriers.

The sign change seen in Fig. 5(a) for the charge Seebeck coefficient Sch near the charge neutrality point or 
Dirac point is because the charge carriers switch from electrons to holes. The origin of second peak in Fig. 5(c) 
is solely strain. On the other hand the first peak seen in Fig. 5(c) which appears close to the Dirac point is due 
to the asymmetric contribution to the Seebeck current from electrons and holes, which arises due to the unique 
energy dependent density of states of graphene. The first peak is always present in graphene even in absence of 
strain, see Fig. 5(a,b) and ref.4. In presence of strain, in addition to this unique energy dependent density of states 
of graphene, an asymmetry is created in the transmission probability as function of energy and that gives rise to 
the second peak in Fig. 5(c). See also ref.8 where a similar peak is observed due to strain in graphene. It should be 
noted that the position of the first peak is always fixed, i.e., close to the Dirac point but changing the parameters 
like length of the strained region one can change the position of the second peak and thus these two peaks may 
merge to form a single large peak, see Fig. 4(c,d) which in turn leads to large power and efficiency. It is to be noted 
from Fig. 5(c,d) that at the Dirac point the charge Seebeck coefficient is exactly zero, while the spin Seebeck coeffi-
cient is finite, leading to the generation of pure spin current within the system due to temperature difference only. 
In our paper, strain and magnetic impurity are used to enhance the charge and spin thermoelectric properties 
respectively. Increasing strain increases the scattering of the electron while reducing the electrical conductance 
and thermal conductance as well. However, this increase in scattering due to strain also increases the charge 
Seebeck coefficient, which is inversely proportional to the electrical conductance. On the other hand the splitting 
of the spin bands due to the magnetic impurity helps in generating large spin Seebeck coefficient. Since charge 
and spin thermoelectric properties are proportional to the square of the charge and spin Seebeck coefficient, they 
increase with increasing Seebeck coefficient. In this way, strain and magnetic impurity help in enhancing the 
performance of our graphene spin heat engine.

Finally, we have neglected the phonon contribution in our calculations since the phonon contribution to the 
thermal conductance of graphene is quite small (almost absent) at low temperatures 0–30 K, see Figs 2 and 3 on 
ref.38 and Fig. 5 of ref.39. Beyond 25–30 K range, the phonon contribution increases linearly with temperature, as 
shown in refs38,39. Thus, the phonon contribution to the thermal conductance can be neglected at the temperature 
range 20–30 K discussed in our work.

Figure 5.  (a) Charge Seebeck coefficient Sch vs. Fermi energy (EF) for various exchange coupling strength J with 
parameters at L = 40 nm, strain t = 0 meV, T = 30 K, S = 5/2, m = −5/2, (b) spin Seebeck coefficient Ssp vs. Fermi 
energy (EF) for various exchange coupling strength J with parameters at L = 40 nm, strain t = 0 meV, T = 30 K, 
S = 5/2, m = −5/2, (c) charge Seebeck coefficient Sch vs. Fermi energy (EF) for various exchange coupling 
strength J with parameters at L = 40 nm, strain t = 100 meV, T = 30 K, S = 5/2, m = −5/2, (d) spin Seebeck 
coefficient Ssp vs. Fermi energy (EF) for various exchange coupling strength J with parameters at L = 40 nm, 
strain t = 100 meV, T = 30 K, S = 5/2, m = −5/2.
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Thermoelectric figure of merit, power and efficiency of quantum charge/spin heat engine.  To 
get large efficiency for our charge and spin heat engines we need a large charge and spin thermoelectric figure of 
merit (ZT|ch and ZT|sp). From Eq. (18) we see that charge thermoelectric figure of merit is proportional to the 
product of square of the charge Seebeck coefficient Sch and charge conductance Gch, i.e., S Gch ch

2 , while spin thermo-
electric figure of merit (ZT|sp) is proportional to the product of charge and spin Seebeck (Sch and Ssp) coefficients 
with charge conductance Gch, i.e., = ′S S G P G Sch sp ch ch ch

2  as in Eq. (19). Thus spin thermoelectric figure of merit ZT|sp 
is proportional to the polarization of the product of conductance (G) and Seebeck coefficient (S), i.e., P′ and 
inversely proportional to the polarization of electrons, P, see Eq. (19). To get a large charge thermoelectric figure 
of merit ZT|ch we need a large charge Seebeck coefficient (Sch) and large electrical charge conductance (Gch) of the 
electrons while for spin thermoelectric figure of merit, we need a large spin Seebeck coefficient (Ssp) and small 
spin conductances (Gsp = PGch) or small polarization P of the electrons.

In Fig. 6, charge and spin thermoelectric figure of merits are plotted as function of Fermi energy for various 
strains. In Fig. 6(a) we see that charge figure of merit ZT|ch increases with strain, while spin figure of merit ZTsp 
decreases as shown in Fig. 6(b). Since increasing strain increases the charge Seebeck coefficient (Sch) and decreases 
the electrical charge conductance (Gch), so as a result ZT|ch increases with strain (as it is proportional to the square 
of the charge Seebeck coefficient). On the other hand for spin transport spin Seebeck coefficient increases with 
increasing strain while spin conductance decreases (Gsp = PGch) such that a large ZT|sp results. ZT|sp increases with 
strain in the overall picture however Fermi energy where maximum peak is observed is at low strain due to 
dependencies on other parameters. ZT|ch takes values around 50 which is quite large and similar to those obtained 
in ref.2. Further, ZT|sp approaches 100 which is completely unheard of. These giant charge and spin thermoelectric 
factors are crucial for designing highly efficient quantum charge and spin heat engines and are one of the main 
novelties of this work. This large charge figure of merit can be explained as follows. We have defined the figure of 
merit in our paper as | =

κ
ZT Sch

G T
ch
2ch . According to Wiedemann-Franz law, =

κ
G T

L
1ch

0
, where L0 = is the Lorentz 

number which is a constant. So, ZT|ch is S L/ch
2

0, and completely depends on the square of the charge Seebeck coef-
ficient. We have shown in Fig. (4) of our paper that both charge as well as spin Seebeck coefficients increase 
monotonically with strain. If we increase strain in graphene, it creates a conduction gap by shifting the two Dirac 
cones in exactly opposite directions, and thus increases the Seebeck coefficient. Due to the lack of any band gap in 
pristine graphene, its Seebeck coefficient is very small and finite. So, if we keep on increasing the strain 
(t = 110 meV = 4%strain), a large Seebeck coefficient, as large as 14(kB/e)(this value is two times the value of 
Seebeck coefficient observed in Fig. 2(b) of ref.15 of our paper with 4% strain) can be generated. So, if we divide 
the square of Seebeck coefficient by the Lorentz number (L0 = 2.44 ×10−8 in SI unit) we will get ~|ZT 60ch . Thus 
the large charge/spin Seebeck coefficients seen in presence of strain is the sole reason to achieve the huge ZT|ch. 
Similarly, we can explain the huge ZT|sp as due to the large spin Seebeck coefficient.

Figure 6.  (a) Charge thermoelectric figure of merit (ZT|ch) vs. Fermi energy for various strains with parameters 
T = 30 K, J = 232 meV-nm and L = 80 nm, w = 20 nm and spin S = 5/2, magnetic moment m = −5/2 of magnetic 
impurity, (b) Spin thermoelectric figure of merit ZT|sp vs. Fermi energy for various strains with parameters 
T = 30 K, J = 232 meV-nm and L = 80 nm, w = 20 nm and spin S = 5/2, magnetic moment m = −5/2 of magnetic 
impurity. (c) ZT|ch, (d) ZT|sp vs. Fermi energy at T = 10 K, with all the other parameters same as in 6 (a).
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According to Eq. 16, this large ZT|ch will give rise to a large efficiency at maximum power, η = . ηP( ) 0 48ch
max

C, 
corresponding to this value of ZTch the maximum charge power delivered by our QSHE is 0.02(kbΔT)2/h, which 
is quite small. This is the remarkable trade off between power and efficiency in a quantum heat engine, that when 
efficiency is maximum the corresponding power is minimum. That’s why, we choose a set of parameters where 
power and efficiency both are moderately large to give the optimal performance. With a certain set of parameters, 
we obtain ~|ZT 2ch  for which we get the efficiency at maximum charge power η = . ηP( ) 0 166ch

max
C and maximum 

power delivered ≡ . Δ0 16 k T
h

( )B
2
, which is a large value compared with some other charge QHE’s, see Table 1 (sec-

tion VI). In Fig. 6(c,d), we see that the charge and spin thermoelectric figure of merit is large (~30) even at 
T = 10 K, however, this large ZT|ch/sp value is reached only when the strain is large. Here, for calculating the charge/
spin figure of merit we have neglected the phonon contribution to the thermal conductance. At temperature 
t = 30 K, this phonon contribution is small but still can reduce the ZT|ch/sp, if included in the calculation. However, 
at T = 30 K, when the phonon contribution is very small and can be neglected, we see that ZT|ch/sp are still large 
(~30). Here, it is to be noted that at small temperatures ( ~T 10 K) the figure of merit and the efficiency at maxi-
mum power remain huge at higher strain, although, the maximum power at this parameters reduces to very small 
values. That is why we have chosen T = 30 K temperature as the optimum temperature of our model.

In Fig. 7 we plot the maximum power for charge heat engine at various strains, we see that there are two peaks 
in Pch

max. The first peak in Pch
max (which is proportional to S Gch ch

2 ) is observed when the charge conductance Gch 
dominates over the charge Seebeck coefficient Sch, which can be seen at strain (t = 50 meV). The second peak 
appears when the charge Seebeck coefficient Sch dominates over the charge conductance Gch, this can be verified 
easily because the second peak increases with increasing strain. In Fig. 7(b) we plot both maximum power(Pch

max) 
and the efficiency at maximum power (η P( )ch

max ) as function of the Fermi energy (EF). We see that η P( )ch
max  goes to 

almost 0.2ηc, this is also a very large value as compared to other similar heat engines. The efficiency at maximum 
charge power as derived from Eq. (16) depends only on ZT|ch. Since in our case ZT|ch takes quite high values its 
not surprising that we have a highly efficient charge heat engine. Further, we see that the efficiency η P( )ch

max  is 
maximum (0.2ηc) for EF = 18 meV but at this Fermi energy the maximum power delivered is around 0.1(kBΔT)2/h. 
However, at Fermi energy close to 23.5 meV the efficiency although slightly lower at 0.16ηc the maximum power 
output is 0.16(kBΔT)2/h. We not only need high efficiency but we need to deliver large output power too, balanc-
ing these two needs implies operating the charge heat engine at EF = 23.5 meV will satisfy both our needs. 
Similarly, in Fig. 8 we plot the maximum power for spin heat engine for various strains, we see that there are two 
peaks in Psp

max also. The first peak in Psp
max (which is proportional to Ssp

G
G

2 ch

sp

2
) is observed when the factor G

G
ch

sp

2
 domi-

nates over the spin Seebeck coefficient Ssp, which can be seen at strain t = 50 meV. The second peak appears when 
the spin Seebeck coefficient Ssp dominates over the factor G

G
ch

sp

2
, this can be again verified as the second peak 

increases with increasing strain. In Fig. 8(b) we plot both maximum power(Psp
max) and efficiency at maximum 

Helical heat engine, ref.15 This work

Pch
max

. Δ0 8 KB T
h

( )2
. Δ0 16 KB T

h
( )2

Psp
max Δ10 KB T

h
( )2

. Δ0 1 KB T
h

( )2

η P( )ch
max 0.28ηc 0.48ηc

η P( )sp
max 0.4ηc 0.1ηc

Table 1.  Comparison of graphene spin heat engine with quantum spin Hall heat engine. Note-Helical heat 
engine relies on edge modes while graphene spin heat engine relies on ballistic modes.

Figure 7.  (a) Maximum power for charge current (Pch
max) vs. Fermi energy (EF) in meV for various strains at 

J = 600 meV-nm, length of strained graphene layer L = 60 nm, width W = 20 nm, temperature T = 30 K with 
spin of magnetic impurity S = 5/2 and spin magnetic moment m = −5/2. (b) Maximum charge power (Pch

max) 
and efficiency at maximum power (η P( )ch

max ) vs. Fermi energy (EF) in meV for strain t = 30 meV, L = 70 nm, 
W = 20 nm, T = 30 K, J = 232 meV-nm and spin S = 5/2, magnetic moment m = −5/2 of magnetic impurity.
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power (η P( )sp
max ) as function of the Fermi energy (EF). We see that η P( )sp

max  goes to almost 0.15(kBΔT)2/h. The 
efficiency at maximum spin power as derived from Eq. 17, depends on two factors ZT|sp and P′. Since in our case 
ZT|sp takes quite large values its not surprising that we have a highly efficient spin heat engine in addition to a 
highly efficient charge based one too. Further, we see that the efficiency η P( )sp

max  is maximum 0.15ηc for 
EF = 30 meV but at this Fermi energy the maximum spin power delivered is around 0.07(kBΔT)2/h. However, at 
Fermi energy close to 35 meV the efficiency although slightly lower at 0.1ηc the maximum spin power output is 
0.1(kBΔT)2/h. As stated before, we not only need high efficiency but we need to deliver large output spin power 
too balancing these two needs implies that operating the spin heat engine at EF = 35 meV will satisfy both our 
needs. Next, in Fig. 9, we have plotted the heat current JQ as a function of Fermi energy. In Fig. 9(a), we explain the 
effect of magnetic impurity on heat current via examining three cases. First case is in absence of magnetic impu-
rity, i.e., the exchange coupling strength term J = 0. For the second case J = finite, but the spin flip probability of 
the magnetic impurity F = 0 (S = m = 5/2), i.e., it acts as a non-magnetic impurity. Finally, for the third case we 
study the heat current in presence of a magnetic impurity, i.e., J ≠ 0, F ≠ 0 ( = = − =S m F5/2, 5/2, 5). We find 
that introducing a magnetic impurity does not change the heat current much as shown in Fig. 9(a). However, 
increasing strain reduces the heat current, see Fig. 9(b). Thus, we see that spin polarization is not so important for 
the heat current.

Pure spin current.  In our graphene QSHE, in presence of bias voltage and temperature difference, a pure 
spin current can be generated by optimizing the parameters. If we set the voltage bias E  and the temperature dif-
ference ΔT such that, the electrical current due to voltage bias and the electrical current generated from temper-
ature difference are exactly equal and opposite to each other then the total charge current will be zero. Though, a 
finite spin current will be present within the sample, this is the pure spin current. When the total charge current 
Jch = 0 in Eq. (9), we get E = − ΔS Tch . Substituting this again in the Eq. (9), we get the pure spin current 
Jsp = GchSchΔT(P − P′). If the polarization P of the spin conductance is different from the polarization P′ of the 
product of Gch and Sch, then there will be a pure spin current in our device. In Fig. 10, we see that the charge cur-
rent generated is zero, while the spin current is finite.

Graphene bandstructure in presence of strain and spin-flip scattering.  To better understand 
our results we plot the energy bands for 3 cases: (1) in absence of magnetic impurity (J = 0), (2) in presence of 

Figure 8.  (a) Maximum power for spin current (Psp
max) vs. Fermi energy (EF) for various strains with parameters 

J = 600 meV-nm, L = 60 nm, W = 20 nm, T = 30 K, S = 5/2, m = −5/2. (b) Maximum spin power (Psp
max) and 

efficiency at maximum power (η P( )sp
max ) in units of ηc vs. Fermi energy (EF) at L = 40 nm, W = 20 nm, T = 30 K, 

J = −600 meV-nm, strain t = 50 meV, S = 5/2, m = −5/2.

Figure 9.  (a) Heat current vs Fermi energy, for three cases- in absence of any impurity, in presence of non-
magnetic impurity and in presence of magnetic impurity. The parameters are exchange coupling J = 200 
meV-nm, strain  = 30 meV, L = 60 nm, (b) heat currents vs Fermi energy in presence of a magnetic impurity, for 
different values of strains with exchange coupling J = 800 meV-nm, L = 60 nm, S = 5/2, m = −5/2.
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magnetic impurity but without spin flip (J ≠ 0, F = 0) and (3) in presence of both magnetic impurity and spin flip 
(J ≠ 0, F ≠ 0) for both unstrained and strained graphene in Figs 11 and 12 respectively. We calculate band struc-
ture by considering the wave functions for bound state where the incoming wave in the normal region i.e., x < 0 
region and x > L region do not contribute. The wave function for A sublattice in normal region for K-valley is 
mentioned in Eq. 25. When we put bound state condition (φ → iϕ) in Eq. 25 we get-

For x < 0-

Ψ = χ + χκ κ
↑

−
↓

−
+( ) ( )x r e r e( ) 1

0
0
1 (43)A

i x
m

i x
m

1
1

where 


κ = ϕcoshE
vF

. Thus, after putting bound state condition we still get propagating state in Eq. 43. Therefore, 
we rotate the x-y plane and write the wave function in y-x plane similar to ref.40 Eq. 25 in y-x plane becomes-

For y < 0-

Ψ = χ + χ↑
−

↓
−

+( ) ( )y r e r e( ) 1
0

0
1 (44)A

ik y
m

ik y
m

1
1

y y

where 


= φk siny
E
vF

. Similarly, we can write the wave function for other regions (0 < y < L and y > L) in y-x 
plane. After putting bound state conditions, the bound state wave functions for A and B-sublattice in each region 
(normal and strained) for K-valley can be written as-

For y < 0-

Figure 10.  Charge Ich and spin Isp currents are shown for different parameters than that which works for 
quantum charge/spin heat engine setups. The parameters are-L = 40 nm, T = 30 K, J = 232 meV-nm, and strain 
t = 50 meV.

Figure 11.  Bandstructure of our model system as function of kx (in meter−1) in absence of strain (t = 0) with 
length of strain region L = 130 μm.

Figure 12.  Bandstructure of our model system as function of kx (in meter−1) in presence of strain (t = 0.1 meV) 
with length of strain region L = 130 μm.
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Ψ = χ + χ↑
κ

↓
κ

+( ) ( )y r e r e( ) 1
0

0
1 (45)A

y
m

y
m

1
1

Ψ = χ + χ
ϕ κ

ϕ↑
κ

↓ +( ) ( )y r e e r e
e

( )
0

0
(46)B

y
m

y
m

1
1

in region 0 < y < L-

Ψ = χ + χ + χ + χ↑ ↑
−

↓ + ↓
−

+( ) ( ) ( ) ( )y a e b e a e b e( ) 1
0

1
0

0
1

0
1 (47)A

ik y
m

ik y
m

ik y
m

ik y
m

2
1 1

y y y y

Ψ =






χ +







χ +







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





χ

θ θ

θ θ↑ ↑
− −

↓ + ↓
−
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e

( )
0 0

0 0
(48)B
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2
1 1
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and for y > L

Ψ = χ + χ↑
−κ

↓
−κ

+( ) ( )y t e t e( ) 1
0

0
1 (49)A

y
m

y
m

3
1

Ψ = χ + χ
ϕ

ϕ↑
−κ −

↓
−κ

− +( ) ( )y t e e t e
e

( )
0

0
(50)B

y
m

y
m

3
1

From the bound state wave equations it follows that 


= − κ = − +( ) k k t k( )E
v x x y

2
2 2 2 2

F
, 


= ϕk coshx

E
vF

, 


κ = ϕsinhE

vF
, 


− = θk t cosx

E
vF

, 


= θk siny
E
vF

. The boundary conditions at y = 0-

 Ψ = − Ψ = = →.
→

Ψ = + Ψ =i v y y J s S y y[ ( 0) ( 0)]
2

[ ( 0) ( 0)] (51)F B B A A
2 1 1 2

and

 Ψ = − Ψ = = →.
→

Ψ = + Ψ =i v y y J s S y y[ ( 0) ( 0)]
2

[ ( 0) ( 0)] (52)F A A B B
2 1 1 2

and at y = L-

Ψ = = Ψ =y L y L( ) ( ) (53)A A
2 3

and

Ψ = = Ψ =y L y L( ) ( ) (54)B B
2 3

After substituting the wave functions (Eqs 45–50) in Eqs (51–54), at y = 0 we get-

α α α α α α+ + + + − + + + + =θ
↑

− θ
↑

ϕ
↑ ↓ ↓ ↓e i m a e i m b e i m r i Fr i Fa i Fb( ) ( ) ( ) 0 (55)

i i

α α α α α α+ − + + − + + + − + − =↑
θ

↓ ↑
ϕ

↓ ↑
− θ

↓i Fa e i m a i Fr e i m r i Fb i m e b( ( 1)) ( ( 1)) ( ( 1) ) 0 (56)
i i

α α α α α α+ + + − − + + + =θ
↑

− θ
↑

ϕ
↑ ↓

ϕ θ
↓ ↓

− θi me a i me b i me r i Fr e i Fe a i Fb e(1 ) (1 ) (1 ) 0 (57)
i i i i

α α α

α α α

− + + − ′ + − + ′ +

+ + + =

θ
↓

− θ
↓

ϕ
↓

θ
↑ ↑

− θ
↑

ϕ

i m e a i m e b i m e r

i Fe a i Fb e i Fr e

(1 ( 1) ) (1 ( 1) ) (1 ( 1) )

0 (58)

i i

i i

and at y = L we get-

+ − =↑ ↑
−

↑
−κa e b e t e 0 (59)

ik L ik L Ly y

+ − =↓ ↓
−

↓
−κa e b e t e 0 (60)

ik L ik L Ly y

+ − =↑
+ θ

↑
− − θ

↑
−κ −ϕa e b e t e 0 (61)

ik L i ik L i Ly y

+ − =κ
↓

+ θ
↓

− − θ
↓
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Eqs (55–62) consists of 8 unknowns: r↑, r↓, a↑, a↓, b↑, b↓, t↑, t↓. After eliminating these 8 unknowns from Eqs 55–62, 
we will get a one single equation-

αθ ϕ =f k L F m( , , , , , ) 0 (63)y

Since f(kyL, θ, ϕ, α, F, m) is a large expression, we do not explicitly write it here. The solution of Eq. 63 for each 
value of kx gives the bandstructure of our system. In Fig. 11 we plot the energy bands as function of kx in case of 
unstrained graphene (t = 0) for J = 0, flip and no flip process. We see that in all cases the energy band structure is 
identical. Similar to Fig. 11 we plot the energy bands as function of kx in case of strained graphene (t = 0.1 meV) 
in Fig. 12. We see that band gap opening occurs in the energy bands of strained graphene in contrast to the 
unstrained graphene. Further, in case of spin flip process there are more number of states in the energy bands 
as compared to J = 0 and no spin-flip scattering. The extra number of states help in generating large charge/spin 
Seebeck coefficient. Since charge and spin thermoelectric properties are proportional to the square of the charge 
and spin Seebeck coefficient, they increase with increasing Seebeck coefficient. In this way, strain and magnetic 
impurity help to enhance the performance of our graphene spin heat engine.

Experimental Realization
Our proposal of a quantum heat engine based on a strained monolayer graphene layer doped with a magnetic 
impurity is experimentally realizable. There are many theoretical, see ref. 41 which initiated the field of straintron-
ics in graphene and ref.42 for a recent review, as well as experimental papers, see refs43,44 which deal with uniaxial 
strain in monolayer graphene system. There should not be much difficulty in realizing strain in a graphene system. 
In addition, there are theoretical works which deal with effects of magnetic impurities on electronic transport in 
graphene, see refs26,32,33,45,46. In ref.32 it is shown that a delta potential approximation of a rectangular barrier mag-
netic impurity in graphene can be a very effective model of a magnetic quantum dot(a quantum dot with spin). 
For a range of incident angles from −π/6 to π/6, it is seen that the difference between the transmissions through 
delta potential magnetic impurity and that through a rectangular barrier magnetic impurity in graphene is quite 
small. The graphene based system in ref.32 is very similar to our set-up, and the problem too is solved similar to 
ours, only difference being that there is no strain in ref.32. In refs47,48 an extended line defect has been studied in a 
graphene nanostructure experimentally. These line defects can be replaced by a magnetic quantum dot doped with 
Mn+ ions to realize a magnetic impurity, see refs32,33. Ref.33 is an experimental work which shows how doping Mn+ 
ions into semiconductor quantum dots realizes magnetic quantum dots. Further, magnetic quantum dots have 
been experimentally realized in graphene recently, see ref.49. Since in the aforesaid papers, people have worked 
on similar systems, thus the applied aspect of our work is evidently realizable. The amount of strain applied in 
our system is very small. The maximum strain used in our system is 110 meV, which is equivalent to 4% strain in 
graphene. In pristine graphene, maximum 20% strain can be reached without opening a band gap. All the numer-
ical values of different parameters are physically realizable and are used in other works also, see refs26,31.

In a monolayer graphene sample, a local strain can be introduced by depositing the graphene sample onto 
a homogeneous substrate with different geometrical patterns drawn on it (like grooves, creases, steps, or wells 
etc). These geometrical patterns are drawn only on the central region of the substrate, thus, creating a finite strain 
limited to the central region of the graphene sample. In the other regions, there are no geometrical patterns 
drawn thus creating no strain. These different geometrical patterns, drawn on the substrate, interact differently 
with the graphene sheet, generating different strain profiles, see ref.50. Strain can also be introduced by stretching, 
compressing or suspending the central region of graphene layer only without affecting the unstrained region, 
see ref.51 In ref.51 only the central region of the graphene sample is suspended across a wide trench in a Silion 
substrate, generating a finite strain which is limited to the central region alone, see figure in Box. 1(a) (at page 573 
of the ref.51). Since regions 1 and region 3 of the graphene sheet are not suspended, strain in these regions will 
be zero. In this way, one can change the in plane hopping amplitude for the central region of the graphene sam-
ple while it remains unchanged for the unstrained regions. In our model, strain is strictly applied to the central 
region of the graphene sample. However, experimentally it could be possible that the finite strain is not limited 
to the central region only. It can gradually decrease to zero as one moves from strained to unstrained region, see 
ref.31. In our model, we have finite and constant strain in the central region of graphene sample, while in regions 
1 and 3 it is completely zero. This consideration of the sharp drop of strain potential at the boundary between two 
regions is for our convenience only. We can consider a small slope for strain between the strained and unstrained 
regions also. However, theoretical calculations predict that the tunneling probability for electrons will not be that 
affected whether the strain potential is perfectly sharp or has a small slope at the boundary between strained and 
unstrained regions. This has also been discussed in other works, see refs40,52. Moreover, in recent times significant 
advances have been made in controlling strain in a graphene sample via strain engineering, see ref.50.

Conclusion and Perspective on Ballistic Verses Edge Modes Based Quantum Spin 
Heat Engines
We have shown in this manuscript that a strained graphene layer, embedded with a magnetic impurity, can act 
both as a charge as well as a spin heat engine, with higher efficiency than other similar systems. In Table 1, we 
compare our graphene QSHE with quantum spin Hall based heat engine15. We see that the maximum charge 
power for our graphene QSHE is 0.16(kBΔT)2/h, which is less than that of the quantum spin Hall heat engine 
(maximum charge power of 0.8(kBΔT)2/h). However, efficiency at the maximum charge power in graphene 
QSHE is 0.48ηc, larger than that observed in quantum spin Hall heat engine, which is 0.28ηc. Further, maximum 
spin power for graphene QSHE is 0.1(kBΔT)2/h while efficiency at that spin power is 0.1ηc which are less than that 
of the quantum spin Hall heat engine. Thus from Table 1 we see that in some respects ballistic modes are better 
and in some respects edge modes are better for thermoelectric applications.
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