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Abstract: Fatty acid profiling on gas chromatography–mass spectrometry (GC–MS) platforms is
typically performed offline by manually derivatizing and analyzing small batches of samples. A GC–
MS system with a fully integrated robotic autosampler can significantly improve sample handling,
standardize data collection, and reduce the total hands-on time required for sample analysis. In this
study, we report an optimized high-throughput GC–MS-based methodology that utilizes trimethyl
sulfonium hydroxide (TMSH) as a derivatization reagent to convert fatty acids into fatty acid methyl
esters. An automated online derivatization method was developed, in which the robotic autosampler
derivatizes each sample individually and injects it into the GC–MS system in a high-throughput
manner. This study investigated the robustness of automated TMSH derivatization by comparing
fatty acid standards and lipid extracts, derivatized manually in batches and online automatically
from four biological matrices. Automated derivatization improved reproducibility in 19 of 33 fatty
acid standards, with nearly half of the 33 confirmed fatty acids in biological samples demonstrating
improved reproducibility when compared to manually derivatized samples. In summary, we show
that the online TMSH-based derivatization methodology is ideal for high-throughput fatty acid
analysis, allowing rapid and efficient fatty acid profiling, with reduced sample handling, faster data
acquisition, and, ultimately, improved data reproducibility.

Keywords: GC–MS; fatty acid profiling; online automated derivatization; trimethyl sulfonium hy-
droxide

1. Introduction

Fatty acid profiling is a commonly applied analytical methodology in academic re-
search, health care, and industrial production and is used in a variety of applications that
span from analyzing metabolic biomarkers to tracking environmental pollutants [1–8].
Advances in robotic platforms and associated software have enabled the automation of
many tasks that previously required repetitive and extensive manual labor [9–13]. In
addition to reducing sample handling, the integration of automatic sample preparation
has improved data reproducibility for large sample batches [13–16]. The development
of automated metabolite preparation and profiling methodologies that reduce researcher
handling while maintaining or improving data quality are in high demand. Thus, advance-
ments in automated sample preparation methodologies are beneficial to both academic
and industrial laboratories.

Gas chromatography–mass spectrometry (GC–MS) platforms are well established
for fatty acid analysis and are widely used in lipidomic and metabolomic
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research [8,17–28]. GC–MS analysis of fatty acids requires the derivatization of these ana-
lytes into non-polar derivatives, such as fatty acid methyl esters (FAMEs) [29]. This trans-
formation improves sample volatility and subsequent chromatographic separation of the in-
dividual fatty acids [30–32]. Lipid researchers use numerous derivatizing agents, and each
derivatization process can vary significantly in the number of steps and time required for
sample preparation before GC–MS acquisition. Additionally, many derivatization processes
involve lengthy incubations at high temperatures that can potentially induce metabolite
degradation [33]. Derivatizing reagents, such as N,O-Bis(trimethylsilyl)trifluoroacetamide
(BSTFA), boron trifluoride (BF3), and anhydrous hydrogen chloride (HCl), require long
heated incubation steps at temperatures as high as 95 ◦C [34–36]. Metabolic degradation
has been observed at 100 ◦C. However, fatty acids and their representative FAMEs have
been reported to be stable when exposed to temperatures higher than 300 ◦C [33,37,38].
HCl, BF3, and potassium hydroxide (KOH) require a second extraction after the initial
derivatization [39]. M-(trifluoromethyl)phenyltrimethylammonium hydroxide (TMTFTH)
derivatization commonly calls for an overnight incubation before analysis [40]. These addi-
tional steps result in a high level of sample handling and time dedicated to prepare samples
for fatty acid profiling compared to alternative metabolomic and lipidomic techniques that
do not require derivatization. Additionally, without recourse to multiple analytical plat-
forms analyzing samples simultaneously, extensive sample preparation leads to varying
incubation times for individual samples. These factors reduce data reproducibility.

The automation of sample preparation is a viable method to eliminate researcher
handling-induced variability. Similar approaches in automating sample preparation and
derivatization have improved reproducibility in the analysis of sugars, organic acids,
and amino acids [13,15,22,41]. In this study, we introduce a novel high-throughput au-
tomated GC–MS-based methodology that is ideal for uninterrupted fatty acid analysis.
Trimethyl sulfonium hydroxide (TMSH), a derivatization reagent with a simple deriva-
tization reaction and minimal sample handling that has been previously applied to fatty
acid profiling [42–46], was selected and applied to work in an automated high-throughput
manner. Capitalizing on the robotic autosampler attached to a GC–MS system, an auto-
mated online derivatization method was developed. The robotic sampler independently
derivatizes each sample and injects it in an online high-throughput manner. In the devel-
oped automated method, each sample was derivatized immediately before injection in
direct comparison with the common practice of manual batch derivatization followed by
batch analysis, which results in time discrepancies between derivatization and injection for
each sample. This study tested the robustness of the GC–MS method by comparing the
automated and manual TMSH derivatization performed in batches or performed on the
same set of batches.

2. Results and Discussion
2.1. Adaptation of Method to Automation

Commonly utilized fatty acid derivatization methods were compared (Figure 1), in-
cluding the number of handling steps required for each derivatization reagent and the time
before the sample is ready for injection and analysis. Several widely used derivatization
reagents for fatty acids require extensive handling in the forms of secondary extractions
or long heated incubations, such as those required by the standard KOH, HCl, and BF3
derivatization reactions.
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Figure 1. Time-based comparison of common fatty acid derivatization methodologies. Step-by-step workflow of common 
fatty acid derivatization techniques reported by various groups. Each independent step in sample preparation is illus-
trated, and the time required to prepare individual samples increases from left to right across the workflow. Required 
sample handling increases from top to bottom down each derivatization technique. 

Due to the lack of need for a secondary extraction step and the short incubation time 
and simplicity, the TMSH derivatization method was selected and adapted for the Triplus 
RSH autosampler through the editor software. TMSH methylation occurs through a base-
catalyzed transesterification reaction. Figure 2 shows the mechanism in which TMSH in-
duces O-methylation of the carboxyl group of fatty acids when heated by the pyrolytic 
conditions of a GC injection port [47–49]. When performed manually, researchers can have 
a batch of samples ready for analysis within 30 min. However, as the samples are prepared 
in batches, the length of time each sample is incubated for can vary greatly between the 
first and last injected samples. Regarding the method outlined above, with batches of eight 
samples and a 20 min GC–MS runtime, there is a 160 min difference in incubation times 
between the first and last samples analyzed. In contrast, the automated method prepares 
each sample immediately before injection, and it is programmed to begin preparing each 
sample during the analysis of the previously injected sample. Automated sample han-
dling ensures a consistent incubation period among all analyzed samples and reduces the 
variability between samples [15,22]. 

Figure 1. Time-based comparison of common fatty acid derivatization methodologies. Step-by-step workflow of common
fatty acid derivatization techniques reported by various groups. Each independent step in sample preparation is illustrated,
and the time required to prepare individual samples increases from left to right across the workflow. Required sample
handling increases from top to bottom down each derivatization technique.

Due to the lack of need for a secondary extraction step and the short incubation
time and simplicity, the TMSH derivatization method was selected and adapted for the
Triplus RSH autosampler through the editor software. TMSH methylation occurs through
a base-catalyzed transesterification reaction. Figure 2 shows the mechanism in which
TMSH induces O-methylation of the carboxyl group of fatty acids when heated by the
pyrolytic conditions of a GC injection port [47–49]. When performed manually, researchers
can have a batch of samples ready for analysis within 30 min. However, as the samples
are prepared in batches, the length of time each sample is incubated for can vary greatly
between the first and last injected samples. Regarding the method outlined above, with
batches of eight samples and a 20 min GC–MS runtime, there is a 160 min difference in
incubation times between the first and last samples analyzed. In contrast, the automated
method prepares each sample immediately before injection, and it is programmed to begin
preparing each sample during the analysis of the previously injected sample. Automated
sample handling ensures a consistent incubation period among all analyzed samples and
reduces the variability between samples [15,22].
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Figure 2. TMSH reaction outline for the conversion of fatty acids into fatty acid methyl esters by base-catalyzed transester-
ification and pyrolysis. 

Moreover, automated derivatization decreases the time needed to analyze large 
batches of samples. Figure 3 depicts how automated derivatization reduces the time 
needed to analyze samples. To manually derivatize and analyze 100 samples in the man-
ner presented above would require a minimum of 40 h just for sample derivatization and 
acquisition. In comparison, an analysis of 100 samples would take only 34 h if the au-
tosampler derivatized and injected the samples in an online manner. Automated sample 
handling produces a 15% reduction in total time, including handling time by researchers, 
to derivatize and analyze the samples. A 15% reduction in analysis time itself may not 
represent a compelling improvement on its own; however, automated sample derivatiza-
tion improves several additional aspects of sample handling and data acquisition. Primar-
ily, automation reduces the negative consequences of researcher interaction required to 
acquire sample data, mainly through decreasing human errors that can be caused by fa-
tigue or variability between researcher efforts. The robotic autosampler does not tire after 
10 samples and has a higher consistency in the small tasks needed to prepare samples for 
analysis. It is important to consider that this methodology, although tested on a GC/single 
quad MS system, can be easily adapted to any analytical platform that has a programma-
ble robotic autosampler. 

Figure 2. TMSH reaction outline for the conversion of fatty acids into fatty acid methyl esters by base-catalyzed transesteri-
fication and pyrolysis.

Moreover, automated derivatization decreases the time needed to analyze large
batches of samples. Figure 3 depicts how automated derivatization reduces the time
needed to analyze samples. To manually derivatize and analyze 100 samples in the manner
presented above would require a minimum of 40 h just for sample derivatization and acqui-
sition. In comparison, an analysis of 100 samples would take only 34 h if the autosampler
derivatized and injected the samples in an online manner. Automated sample handling
produces a 15% reduction in total time, including handling time by researchers, to deriva-
tize and analyze the samples. A 15% reduction in analysis time itself may not represent a
compelling improvement on its own; however, automated sample derivatization improves
several additional aspects of sample handling and data acquisition. Primarily, automation
reduces the negative consequences of researcher interaction required to acquire sample
data, mainly through decreasing human errors that can be caused by fatigue or variability
between researcher efforts. The robotic autosampler does not tire after 10 samples and
has a higher consistency in the small tasks needed to prepare samples for analysis. It is
important to consider that this methodology, although tested on a GC/single quad MS
system, can be easily adapted to any analytical platform that has a programmable robotic
autosampler.
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tected and reported with good reproducibility (%RSD < 20%). Hexacosanoic acid (C26:0) 
exhibited a reproducibility of 23.61% using manual TMSH derivatization methodology. 
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automated derivatization and online injection. Docosahexaenoic (C22:6) and tetracosanoic 
(C24:0) acids demonstrated a %RSD greater than 10% (13.65% and 12.58%, respectively) 
following the automated derivatization. Only docosahexaenoic and tetracosanoic acids 
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nificant differences in reproducibility of the other fatty acid standards. The overall efficacy 
of automated derivatization is shown in Figure 5A, displaying the trend that automated 
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trendline slope is less than one, indicating an overall improvement in %RSD and data 
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Figure 3. Reduction in time needed for analysis. Time-based comparison of manual and automated TMSH derivatization
of fatty acids. Complete analysis of 100 samples manually in 10 batches of 10 samples each would require 40 h if batches
were derivatized as soon as the previous batch finished. Automated derivatization would require 34 h with continuous
derivatization and injection.

2.2. Automated TMSH Derivatization Test on Fatty Acid Standard Mixture

To determine the efficiency of the automated TMSH derivatization, a mixture of
33 fatty acid standards was derivatized both manually and automatically. The reproducibil-
ity of the fatty acid derivatization is reported by the relative standard deviation (RSD) of
each detected and confirmed lipid (Table 1); %RSD is a common indicator for the repro-
ducibility of metabolomic data [13,22]. As previously reported, for a GC–MS analysis, a
%RSD < 20% is considered acceptable reproducibility, whereas a %RSD < 10% is classified
as superb reproducibility [13,20,50]. All except one of the fatty acid standards were de-
tected and reported with good reproducibility (%RSD < 20%). Hexacosanoic acid (C26:0)
exhibited a reproducibility of 23.61% using manual TMSH derivatization methodology. In
total, 19 out of the 33 fatty acid standards utilized demonstrated improved reproducibility
after automated derivatization when compared directly to manually derivatized standards
(Figure 4A). Moreover, 31 out of the 33 fatty acid standards resulted in very high repro-
ducibility (%RSD < 15%), as shown by the red dotted line (Figure 4A), after automated
derivatization and online injection. Docosahexaenoic (C22:6) and tetracosanoic (C24:0)
acids demonstrated a %RSD greater than 10% (13.65% and 12.58%, respectively) following
the automated derivatization. Only docosahexaenoic and tetracosanoic acids exhibited
worse reproducibility after being derivatized through automation, with no significant differ-
ences in reproducibility of the other fatty acid standards. The overall efficacy of automated
derivatization is shown in Figure 5A, displaying the trend that automated derivatization
has on %RSD across the fatty acid standards. When the automatically derivatized fatty acid
%RSD values are plotted against the manually derived fatty acids, the trendline slope is less
than one, indicating an overall improvement in %RSD and data reproducibility through
automated derivatization.
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Table 1. Compiled relative standard deviations of analyzed free fatty acid standards after manual and automated TMSH
derivatization. Improvements in reproducibility are indicated with bolded RSD values.

Fatty Acid HMDB ID Carbons:
Double Bonds

FAME Molecular
Mass

Quantifier
Ion (m/z)

Standards n = 6

Manual Automatic

Heptanoic acid HMDB0000666 C7:0 144.21 73.98 7.00 5.35
Octanoic acid HMDB0000482 C8:0 158.24 73.98 8.18 5.59
Nonanoic acid HMDB0000847 C9:0 172.26 73.98 6.36 5.46
Decanoic acid HMDB0000511 C10:0 186.27 73.98 4.45 2.88

Undecanoic acid HMDB0000947 C11:0 200.29 73.95 4.57 5.73
Dodecanoic acid HMDB0000638 C12:0 214.32 73.93 7.76 6.82
Tridecanoic acid HMDB0000910 C13:0 228.35 73.94 3.96 3.51

9(Z)-Tetradecenoic acid HMDB0002000 C14:1 240.36 55.05 5.97 6.48
Tetradecanoic acid HMDB0000806 C14:0 242.38 73.99 4.53 3.45

9(Z)-Pentedecenoic acid HMDB0029765 C15:1 254.41 55.05 5.49 4.13
Pentadecanoic acid HMDB0000826 C15:0 256.42 73.96 4.97 4.85

9(Z)-Hexadecenoic acid HMDB0003229 C16:1 268.41 55.05 4.61 4.81
Hexadecanoic acid HMDB0000220 C16:0 270.45 73.95 5.56 4.24

10(Z)-Heptadecenoic acid HMDB0060038 C17:1 282.46 55.05 3.94 3.33
Heptadecanoic acid HMDB0002259 C17:0 284.46 73.96 6.03 4.91

(6Z, 9Z, 12Z)-Octadecatrienoic acid HMDB0003073 C18:3 292.44 292.18 2.37 3.21
(9Z, 12Z)-octadecadienoic acid HMDB0000673 C18:2 294.45 294.18 4.33 4.90

9(Z)-octadecenoic acid HMDB0000207 C18:1 296.68 296.20 1.55 5.57
Octadecanoic acid HMDB0000827 C18:0 298.48 73.98 3.50 3.57
Nonadecanoic acid HMDB0000772 C19:0 312.53 73.96 4.11 2.71

(5Z, 8Z, 11Z, 14Z)-Icosatetraenoic acid HMDB0001043 C20:4 318.49 318.20 6.26 4.57
(5Z, 8Z,11Z )-Eicosatrienoic acid HMDB0010378 C20:3 320.51 320.20 10.91 9.47

(11Z, 14Z)-Eicosadienoic acid HMDB0005060 C20:2 322.51 322.25 4.56 9.58
13(Z)-Eicosenoic acid HMDB0035159 C20:1 324.50 324.19 2.10 5.45

Eicosanoic acid HMDB0002212 C20:0 326.56 73.99 5.07 4.57
Heinecosanoic acid HMDB0002345 C21:0 340.58 73.97 4.30 2.60

(4Z, 7Z, 10Z, 13Z, 16Z,
19Z)-Docosahexaenoic acid HMDB0002183 C22:6 342.52 79.06 5.51 13.65

(13Z)-Docosenoic acid HMDB0002068 C22:1 352.57 55.05 2.46 6.35
Docosanoic acid HMDB0000944 C22:0 354.59 74.00 5.97 9.16
Tricosanoic acid HMDB0001160 C23:0 368.62 74.00 2.76 3.70

(15Z)-Tetracosenoic acid HMDB0002368 C24:1 379.62 55.06 7.33 1.99
Tetracosanoic acid HMDB0002003 C24:0 381.36 73.99 7.49 12.58
Hexacosanoic acid HMDB0002356 C26:0 410.69 73.96 23.61 4.27

2.3. Validation of the Automated TMSH Derivatization with Biological Samples

After the automated TMSH derivatization method was successfully applied to the
analysis of fatty acid standards, we tested this methodology using common biological
matrices (Figures 4B and 5B). Fatty acid profiling has numerous applications, such as
disease detection, microbiome identification, and pollution monitoring [2,28,51,52]. The
non-polar extracted fractions of HepG2, DU145, U937 cell samples, and FBS samples
were analyzed. Figure 6 illustrates representative chromatograms for each sample type.
The %RSD values are reported to represent reproducibility and are compared between
manual and automated TMSH derivatization (Table 2). The %RSD values show a direct
comparison for the %RSD values of each fatty acid and the trends that automation has
upon reproducibility (Figures 4B and 5B). Upon automation, the reproducibility of 17 out
of the 33 fatty acids in the FBS samples improved. In terms of cell samples, automated
derivatization improved the reproducibility of 9 fatty acids in the liver cancer cell line
HepG2, 19 in the prostate cancer line DU145, and 15 in the acute myeloid leukemia line
U937. Polyunsaturated fatty acids displayed higher variance than mono-unsaturated and
saturated fatty acids in biological samples. Icosatetraenoic acid (C20:4) and eicosatrienoic
acid (C20:4) demonstrated some of the highest variances in automated and manual TMSH
derivatization when analyzed in DU145. Automation improved reproducibility by in-
creasing %RSD from 71.96% to 28.56% and 40.73% to 20.70%. Overall, there is a definitive
trend of improved %RSD values across all biological matrices, as shown in Figure 5B.
The trendlines generated by the ratios of automated derivatization %RSD values over the
manually derivatized %RSD values have slopes less than one, indicating that automated
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TMSH derivatization improved reproducibility over those of manually derivatized fatty
acids in both standard mixture and biological samples.
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DU145; fetal bovine serum (FBS); human liver cancer cell line HepG2; and U937, a human myeloid leukemia cell line.
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were tested.
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Table 2. Compiled relative standard deviations of analyzed free fatty acids in biological matrices after manual and automated TMSH derivatization. Improvements in reproducibility are
indicated with bolded %RSD values. NF = not found.

Fatty Acid Carbons:Double
Bonds

HepG2 n = 6 DU145 n = 6 U937 n = 6 FBS n = 6

Manual Automatic Manual Automatic Manual Automatic Manual Automatic

Heptanoic acid C7:0 NF NF NF NF NF NF NF NF
Octanoic acid C8:0 12.29 6.74 10.80 5.16 7.88 5.33 24.24 18.95
Nonanoic acid C9:0 NF NF NF NF NF NF NF NF
Decanoic acid C10:0 4.77 4.79 10.36 2.23 3.86 4.76 7.32 4.87

Undecanoic acid C11:0 4.13 3.68 NF NF NF NF 6.52 5.87
Dodecanoic acid C12:0 3.33 2.55 5.29 2.94 3.15 4.48 7.18 5.63
Tridecanoic acid C13:0 5.44 7.24 NF NF 14.27 11.59 21.36 23.31

9(Z)-Tetradecenoic acid C14:1 NF NF NF NF NF NF NF NF
Tetradecanoic acid C14:0 5.23 5.43 NF NF 3.02 4.06 8.70 5.09

9(Z)-Pentedecenoic acid C15:1 3.81 8.69 51.44 5.88 6.97 3.00 5.50 12.39
Pentadecanoic acid C15:0 6.17 7.41 41.89 21.60 3.13 4.66 11.34 7.35

9(Z)-Hexadecenoic acid C16:1 3.37 3.19 30.09 17.32 2.26 1.82 19.98 7.27
Hexadecanoic acid C16:0 3.25 5.00 7.93 11.17 2.19 3.28 6.83 5.04

10(Z)-Heptadecenoic acid C17:1 4.79 14.33 NF NF 4.51 3.04 9.08 9.14
Heptadecanoic acid C17:0 6.49 3.79 19.65 7.05 1.00 1.03 4.69 2.69

(6Z, 9Z, 12Z)-Octadecatrienoic acid C18:3 NF NF NF NF 14.21 19.39 NF NF
(9Z, 12Z)-octadecadienoic acid C18:2 NF NF NF NF 5.42 2.74 20.74 5.43

9(Z)-octadecenoic acid C18:1 1.26 6.18 8.15 5.88 1.25 1.28 15.88 4.60
Octadecanoic acid C18:0 9.03 2.78 11.31 7.59 1.79 2.04 5.28 4.33

(5Z, 8Z, 11Z, 14Z)-Icosatetraenoic acid C20:4 14.34 15.46 71.96 28.56 9.21 3.77 NF NF
(5Z, 8Z, 11Z)-Eicosatrienoic acid C20:3 11.10 15.08 40.73 20.70 10.79 5.57 NF NF

(11Z, 14Z)-Eicosadienoic acid C20:2 7.70 12.23 18.63 12.29 NF NF NF NF
13(Z)-Eicosenoic acid C20:1 6.19 12.72 11.22 4.70 7.81 4.96 NF NF

Eicosanoic acid C20:0 27.20 5.50 10.44 4.78 5.07 3.46 44.30 29.24
Heinecosanoic acid C21:0 NF NF NF NF NF NF NF NF

(4Z, 7Z, 10Z, 13Z, 16Z,
19Z)-Docosahexaenoic acid C22:6 22.28 14.46 NF NF 6.48 5.94 NF NF

(13Z)-Docosenoic acid C22:1 NF NF 11.85 9.28 NF NF NF NF
Docosanoic acid C22:0 8.70 20.28 11.27 3.11 5.10 6.38 28.19 17.57
Tricosanoic acid C23:0 NF NF 47.77 14.83 8.81 6.36 NF NF

(15Z)-Tetracosenoic acid C24:1 8.30 14.30 12.74 6.92 8.66 3.37 42.72 6.93
Tetracosanoic acid C24:0 6.59 33.25 4.77 4.48 8.20 2.44 44.78 7.33
Hexacosanoic acid C26:0 10.07 7.00 8.50 7.60 6.25 3.08 11.95 7.41
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3. Materials and Methods
3.1. Chemicals

Chemicals were purchased at the highest high-performance liquid chromatography
(HPLC) purity grade available. HPLC-grade methanol, iso-octane, and methyl tert-butyl
ether (MTBE) were purchased from Thermo Fisher Scientific (Waltham, MA). The TMSH
solution was purchased from Sigma-Aldrich (St. Louis, MO, USA). The antioxidant 2,6-Di-
tert-butyl-4-methylphenol was purchased from Acros Organics (Geel, Belgium).

Analytical grade standards of fatty acids from 7 carbons of length to 26 were purchased
to test the efficacy of TMSH derivatization in both automated and manual methodolo-
gies. Heptanoic (C7:0), nonanoic (C9:0), decanoic (C10:0), undecanoic (C11:0), tridecanoic
(C13:0), pentadecanoic (C15:0), (Z)-hexadec-9-enoic(C16:1), heptadecanoic (C17:0), (6Z,
9Z, 12Z)-octadeca-6,9,12-trienoic (C18:3), (9Z, 12Z)-octadeca- 9,12-dienoic (C18:2), (Z)-
octadec-9-enoic (C18:1), nonadecanoic (C19:0), (5Z, 8Z, 11Z, 14Z, 17Z)-icosa-5,8,11,14,17-
pentaenoic (C20:5), (5Z, 8Z, 11Z, 14Z)-icosa-5,8,11,14-tetraenoic (C20:4), heinecosanoic
(C21:0), (4Z, 7Z, 10Z, 13Z, 16Z, 19Z)-docosa-4,7,10,13,16,19-hexaenoic (C22:6), (13Z, 16Z)-
docosa- 13,16-dienoic (C22:2), (Z)-docos-13-enoic (C22:1), tricosanoic (C23:0), (Z)-tetracos-
15-enoic (C24:1), tetracosanoic (C24:0), and hexacosanoic (C26:0) acid standards were
acquired from Supelco through Sigma-Aldrich (St. Lious, MO). Dodecanoic (C12:0),
tridecanoic (C13:0), 9(Z)-tetradecenoic (C14:1), tetradecanoic (C14:0), 10(Z)-pentedecenoic
(C15:1), pentadecanoic (C15:0), (9Z)-hexadecenoic (C16:1), hexadecenoic (C16:0), 10(Z)-
heptadecenoic (C17:1), heptadecanoic (C17:0), (6Z, 9Z, 12Z)-octadeca-6,9,12-trienoic (C18:3),
(9Z, 12Z)-octadeca-9,12-dienoic (C18:2), (Z)-octadec-9-enoic(C18:1), octadecanoic (C18:0),
11(Z),14(Z),17(Z)-eicosatrienoic (C20:3), 11(Z),14(Z)-eicosadienoic (C20:2), 13(Z)-eicosenoic
(C20:1), eicosanoic (C20:0), and docosanoic (C22:0) acid standards were acquired from
Cayman Chemical (Ann Arbor, MI, USA). Octanoic acid was acquired from MP Biochem-
icals (Irvine, CA, USA). All standards were injected and analyzed at a concentration of
110 µg/mL.

3.2. Biological Samples

To validate this methodology, fatty acid standards and several sample matrices com-
monly used in research and clinical laboratories were derivatized, including three cell line
extracts and characterized fetal bovine serum (FBS; Fischer Scientific, Hampton, NH, USA).

Three human cancer cell lines from the American Type Culture Collection (ATCC,
Manasas, VA, USA) were selected to validate the derivatization method’s efficacy on
laboratory samples. The hepatocyte cancer cell line HepG2 was grown in Eagle’s Minimum
Essential Media (EMEM). The prostate and acute myeloid leukemia human cancer cell lines
DU145 and U937 were cultured using Roswell Park Memorial Institute (RPMI) 1640 media.
The cell culture media were modified to contain a 2 mM glutamine final concentration and
10% FBS. Cell growth was maintained at 37 ◦C and 5% CO2. HepG2 cells were harvested
when the cell count reached 30 million cells. The total cell extract was split into ten equal
aliquots with 3 million cells in each aliquot. Cells were harvested and washed three times
with ice-cold phosphate buffer saline. Excess liquid was removed as much as possible
before the cell pellets were snap frozen in liquid nitrogen. DU145 and U937 non-polar
extracts were pooled and aliquoted into 12 and 16 equal aliquots, respectively, with the
cell counts being 30 and 50 million, respectively. All samples were stored at −80 ◦C until
analysis.

3.3. Lipid Extraction

Previously frozen sera and cell pellets were thawed on ice before extraction, and the
whole extraction process was performed at 4 ◦C. The extraction of lipid molecules was
accomplished by a modified Folch extraction that utilized HPLC-grade iso-octane as the
non-polar phase instead of chloroform [24,53]. For serum samples, 50 µL of serum was
combined with 100 µL of 0.9% saline and 200 µL of HPLC-grade methanol, followed by
20 µL of 1N HCl acid. Then, 20 µL of internal standard deuterated heptadecanoic acid
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(C17:0) was added for a final concentration of 20 ug/mL, and 10 µL of 200 ug /mL of
the antioxidant butylated hydroxytoluene (BHT) was added to the mixture to reach a
final polar volume of 400 µL. Finally, 800 µL of HPLC-grade iso-octane was added to
each sample and vortexed for 30 s [54,55]. After vortex mixing, samples were shaken for
10 min at 2500 rpm on a Heidolph Vibramax 110 (Schwabach, Germany). Immediately after
shaking, samples were centrifuged at 4750 rpm for 20 min at a temperature of 4 ◦C. The
non-polar iso-octane supernatant was recovered using 500 µL glass Hamiltonian syringes
and transferred to a new 1.5 mL glass vial. These non-polar fractions were dried for 1.5 h
at 4 ◦C in a Labconco Refrigerated Centrivap Concentrator coupled with Labconco −84 ◦C
Centrivap Cold Trap (Kansas City, MO, USA). Dried samples were stored at −80 ◦C until
analysis.

3.4. Manual Derivatization

The use of TMSH for manual derivatization was adapted from previously published
methods with slight modifications [43,56]. Previously dried samples were grouped into
batches of 6–8 samples. Each batch was derivatized manually by the addition of 30 µL
TMSH and 60 µL MTBE into each sample vial. Each vial was vortexed for 30 s to achieve
adequate mixing of reagents and then placed in the temperature-controlled sample tray
attached to the Triplus RSH autosampler (Thermo Scientific, Waltham, MA, USA). Samples
were set to incubate for 20 min inside the sample tray and maintained at a constant 4 ◦C.
After the 20 min incubation, the TriPlus RSH autosampler arm injected 3 µL of each
sample for analysis. FBS and HepG2 samples required an increase in the injection volume
to achieve adequate signal stability. Each batch included an empty vial containing the
mixed derivatizing agents to monitor for reagent contamination and account for reagent
background readings.

3.5. Automated Derivatization

The Thermo Scientific Triplus RSH Sampling Workflow Editor Software (Thermo
Scientific, Waltham, MA, USA) was used to program the automated derivatization method.
The workflow editor allows for the adaptation of various modules and programmable steps
to create an easily modifiable method to handle, derivatize, and inject samples in an online
manner. This automated method utilizes the robotic Triplus RSH Autosampler to add
reagents, vortex, and inject samples in an automated and online manner. QSertVials with
fused glass inserts that contained dried samples were placed in the refrigerated sample
box attached to the autosampler. The normal polytetrafluoroethylene (PTFE) screw caps
were replaced with similar caps that contained a magnetic covering, enabling automated
movement in conjunction with the magnetic syringe adaptor of the autosampler. A 100 µL
airtight syringe was used to add 60 µL of MTBE to a sample vial. The syringe was then
rinsed three times with 80 µL of Optima HPLC-grade methanol before 30 µL of TMSH was
added to the sample vial. The syringe was rinsed again before the sample vial was moved
to the attached vortex module. The sample vial was vortexed for 30 s at 1500 rpm and
then returned to the refrigerated sample tray and incubated for 20 min at 4 ◦C. The 100 µL
syringe was undocked and replaced with a 10 µL syringe used to inject up to 3 µL of the
derivatized sample into the GC–MS for immediate analysis.

3.6. GC–MS Setup and Analysis

The GC–MS system utilized is a Thermo Scientific Trace 1310 GC (Thermo Fisher
Scientific, Waltham, MA, USA) coupled to an ISQ single quadrupole MS. The Triplus
RSH autosampler is mounted to the system with several attached modules, including a
temperature-controlled drawer for sample storage, a mounted vortex unit capable of mixing
several sized sample vials, two large reagent reservoirs capable of containing 100 mL of
chemical reagents or washing solutions, and an automated tool change (ATC) station to
facilitate the use of multiple syringes. To enable the transport of sample vials between
modules for automated derivatization, 9 mm magnetic AVCS screw caps from Thermo
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Scientific were needed and were used to seal the sample vials that undergo automated
derivatization. Then, 3 µL of each derivatized sample was injected into the GC–MS by the
Triplus RSH autosampler. Samples were injected into a 4 mm glass split/splitless liner
packed with quartz wool. The inlet was maintained at 250 ◦C, with a split ratio of 33.3 and a
split flow of 55.0 mL/min into a Phenomenex (Torrance, CA, USA) Zebron ZB 1-ms column.
The column dimensions were the following: 30 m long, a 0.25 mm inner diameter, and a
0.25 µm dimethylpolysiloxane stationary phase. Ultra-high purity helium from Praxair
(Austin, TX, USA) was used as a carrier gas at a flow rate of 1.10 mL/min, and injection
port septa were changed every 50 runs to minimize contamination between samples. The
GC oven was held at the starting temperature of 80 ◦C for two minutes and then set to
increase 20 ◦C/min to 220 ◦C and held there for 1 min before resuming the previous rate
of 20 ◦C/min to a final temperature of 300 ◦C. The oven was retained at 300 ◦C for five
minutes to clean the column of residual cholesterol and its derivatives. The transfer line to
the ISQ mass detector was kept at 280 ◦C, and the ion source was maintained at 230 ◦C.
Ion scanning began 2.5 min after the initial injection and acquired ions in the mass range
of 50–500 amu with a scan time of 0.5 s. Ionization was accomplished through electron
impact at 70 eV.

Individual fatty acids were confirmed by their corresponding standards’ fragmenta-
tion patterns and retention times. The fragmentation pattern retention times were used to
create a component-based processing method to extract ion areas for each confirmed fatty
acid. Individual ion peak features were extracted by Xcalibur version 4.4, which utilized
the ICIS peak detection algorithm with minimal smoothing and a maximum baseline of
10 scans to integrate the standard confirmed fatty acid peaks. Extracted ion peak area
data were extracted and processed with MATLAB and R statistical functions to calculate
averages, standard deviations, and relative standard deviations for each fatty acid and
derivatization method reported below.

4. Conclusions

Previous studies automating metabolite extractions and derivatization have reported
improved efficiency and reproducibility for metabolite analysis [12,16,22,57,58]. The ad-
vent of method editor software enables the rapid adaptation of simple sample preparation
methods, such as the TMSH derivatization method detailed in this study. Automated
TMSH derivatization reduced (i) researcher handling of samples and potential errors asso-
ciated with manual derivatization handling and (ii) the total time needed for the analysis.
Additionally, the data obtained from the automated TMSH derivatization of analytical
standards showed improved data reproducibility compared to manually handled samples.
When applied to biological matrices, the automated TMSH derivatization demonstrated
similar reproducibility on most fatty acids analyzed across several cancer cell lines and
serum samples. This automated derivatization methodology, although validated on a
GC–MS system, could be implemented on any analytical platform with autosampler and
vortex modules. This study presents the application and adaptation of a well-established
fatty acid derivatization technique to be performed in an automated and online manner,
reducing researcher-induced variability and improving data reproducibility while enabling
high-throughput fatty acid profiling.
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