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Fluorescence lifetime has emerged as a unique imaging modality for quantitatively assessing in vivo the molecular
environment of diseased tissues. Although fluorescence lifetime microscopy (in 2D) is a mature field, 3D imaging in
deep tissues remains elusive and challenging owing to scattering. Herein, we report on a deep neural network (coined
AUTO-FLI) that performs both 3D intensity and quantitative lifetime reconstructions in deep tissues. The proposed
Deep Learning (DL)-based approach involves an in silico scheme to generate fluorescence lifetime data accurately.
The developed DL model is validated both in silico and on experimental phantoms. Overall, AUTO-FLI provides
accurate 3D quantitative estimates of both intensity and lifetime distributions in highly scattering media, demonstrating
its unique potential for fluorescence lifetime-based molecular imaging at the mesoscopic and macroscopic scale.

I. INTRODUCTION

In recent years, molecular imaging has become a vital tool
for investigating biological processes in vivo in both preclini-
cal and clinical settings. Due to its high sensitivity, availability
of a wide range of fluorophores, and multiplexing capabilities,
fluorescence optical imaging has emerged as the most promi-
nent molecular imaging technique in the last decade1,2. While
intensity (brightness) remains the primary contrast mecha-
nism in fluorescence optical imaging, fluorescence lifetime
is increasingly leveraged for its unique advantages. Fluores-
cence Lifetime Imaging (FLI) can quantitatively sense various
intracellular parameters, including metabolic state, viscosity,
temperature, and pH3–6. Additionally, fluorescence lifetime
allows for robust quantification of Förster Resonance Energy
Transfer (FRET), enabling nanoscale assays in vivo and the
study of drug-target engagement4,7,8.

FLI has grown steadily over the past three decades, with
increased adoption due to user-friendly FLI Microscopes
(FLIM)4. Simultaneously, FLI has expanded into transla-
tional applications, from mesoscopic (mFLI)9 to macroscopic
regimes (MFLI)10,11. These larger-scale implementations are
more challenging than microscopic ones because they require
Near-Infrared (NIR) fluorophores for deeper tissue penetra-
tion. Red-shifted fluorophores typically have shorter lifetimes
(nanosecond or sub-nanosecond) compared to a few nanosec-
onds in the visible range, and detectors have low quantum ef-
ficiency (a few percent)12. Additionally, 3D lifetime imaging
in deep tissues is hindered by light scattering. Achieving 3D
quantitative maps in these regimes requires solving a diffuse
optical inverse problem, which considers the spatial and tem-
poral characteristics of illumination light, its propagation, en-
ergy transformation, temporal delays generating fluorescence
photons, and the propagation of these photons to the detection
surface. This problem is computationally difficult to solve us-
ing classical methods, limiting mFLI and MFLI mainly to 2D
imaging applications.

The challenge in 3D Fluorescence Lifetime Tomography
(FLT) arises from it being a "double ill-posed problem" be-
cause FLT involves reconstructing a 3D volume from a scat-
tering medium while simultaneously determining the lifetime

for each voxel. Two main approaches have been proposed
to address the FLT challenges: estimating the lifetime from
2D measurements before casting the inverse problem using
this prior information, or linearizing the lifetime exponential
model to stabilize the inverse problem. Pertaining to the first
method, Kumar et al.13 proposed an asymptotic approach in
which 2D fluorescence data are preprocessed to obtain the rel-
ative intensities associated with individual fluorophores, and
then the inverse problem is cast independently for each flu-
orophore using a quasi-Continuous Wave (CW) formulation.
However, this asymptotic assumption is only valid for long
lifetime values(t>0.5 ns). This approach was also combined
with structural priors obtained by CT to further constrain the
inverse problem14. However, the integration of CT data in-
creases the complexity and cost of the imaging process, and
the requirement for high-quality CT images may not always
be feasible. Furthermore, Zhang et al.15 used a mathematical
technique called the fused LASSO method, which involves
reconstructing the fluorescence yield map and object geome-
try as prior information, helping to mitigate the ill conditions
associated with the nonlinear physical model of FLT. How-
ever, this linear approximation is computationally complex
and highly dependent on regularization parameters. Another
approach proposed by our group involves estimating lifetimes
from 2D measurements and incorporating these values as pri-
ors in the 3D inverse problem, utilizing the rich information
of time-resolved datasets16. Although this approach is tech-
nically more challenging due to the increased computational
burden and the need for precise time-stamping, it leverages
the unique strengths of early photons for improved resolu-
tion and late photons for quantification17. To summarize,
the common limitations of these techniques are that they are
time-consuming and heavily reliant on parameter optimiza-
tion. Following recent trends, it is expected that Deep Learn-
ing (DL) methodologies can provide efficient frameworks to
overcome these challenges. The seminal work by Smith et
al.18 introduced FLI-NET, a Convolutional Neural Network
(CNN)-based architecture for rapid lifetime imaging. How-
ever, FLI-NET was designed for 2D FLI and was not extended
to 3D FLT.

The use of Deep Neural Networks (DNNs) in Fluorescence
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Molecular Tomography (for 3D intensity reconstructions) has
flourished in recent years. Long et al.19 proposed one of the
first networks to achieve FMT reconstructions in the meso-
scopic domain, employing a CNN. Other strategies by Zhang
et al.20 utilized CNNs with skip connections to achieve high-
resolution FMT reconstructions. Previously, we introduced
a novel architecture called ModAM21, which combined a K-
space illumination basis and a unique in silico data genera-
tion workflow for 3D FMT reconstructions22. However, de-
spite the proliferation of DNNs specializing in FMT inten-
sity reconstructions, little to no work in the literature has
achieved 3D lifetime reconstructions with high fidelity. The
lack of progress in this field is due to the high degree of diffi-
culty in designing a network that accurately learns the lifetime
from the raw fluorescence decays while simultaneously recon-
structing a 3D inclusion. Furthermore, the reliance on experi-
mental data for training is a massive bottleneck, as collecting
a large experimental dataset for different physical and Optical
Properties (OPs) involved with fluorescence lifetime estima-
tion is extremely time-consuming and serves as a deterrent to
designing a network that can achieve 3D FLT reconstructions.

Here, we propose AUTO-FLI, a CNN that performs end-to-
end 3D FMT reconstructions for both relative quantum yields
and lifetimes. This is the first DL-based technique to achieve
full 3D volumetric reconstruction of lifetime from raw 2D flu-
orescence decays. The two-stage workflow involves 3D quan-
tum yield reconstruction using the ModAM network, which
constrains the 3D lifetime output from a modified FLI-NET.
Using a mono-exponential lifetime model (for simplicity and
a first analysis), we deploy a K-space illumination basis22 and
generate training data with Monte-Carlo Xtreme (MCX), a
MATLAB-based simulator23. This approach ensures accurate
modeling of fluorescence imaging physics and mitigates the
need for extensive experimental data. AUTO-FLI is validated
on in silico and experimental data from tissue-mimicking
phantoms, with results benchmarked against a state-of-the-art
2D fluorescence estimation software, AlliGator24, and evalu-
ated for Mean Squared Error (MSE) and Volume Error (VE).

II. METHODS

A. Data Generation Workflow

The data generation workflow is illustrated in Fig. 1. To
generate the training dataset, we first design in silico phan-
toms in MCX (Fig. 1B). These phantoms contain one or two
fluorescent inclusions, which are randomly picked from our
previously proposed EEMINST dataset (Fig. 1A)22. This
dataset is designed to have high spatial heterogeneity, en-
abling our network to learn to reconstruct complex structures
(often associated with cancer biology). Moreover, the fluores-
cent embedding(s) (with thicknesses varying from 2−4 mm)
are placed at different depths(1−10 mm) within the phantom.
In the case of multiple fluorescent inclusions, the relative con-
centration of the species ranges from 1 : 1 to 1 : 4. Addition-
ally, the background is given OPs relevant to soft tissues with
an absorption coefficient (µa) of 0.004 mm−1 and a reduced

scattering coefficient (µ
′
s) of 1 mm−1. Next, we use wide-

field, K-space illumination patterns (the same patterns used
in Nizam et al.22, Fig. 1D) acquired experimentally from our
gated-Intensified CCD (ICCD) system (discussed in the ex-
perimental setup section) to illuminate the phantom (Fig. 1C).
Through MC simulation, the flux at the position of the em-
beddings (φ ) is gathered and then multiplied with the relative
concentration matrix (1 : 2 as an example in Fig. 1E) to ob-
tain φc (shown for a single K-space pattern in Fig. 1F). In the
next step φc is convolved with an exponential decay profile
corresponding to a mono-exponential lifetime ranging from
0.3− 1.5 ns (an example lifetime map is given in Fig. 1G),
which results in a time-varying profile, φt (shown for a single
K-space pattern in Fig. 1H).

This φt (obtained for each K-space pattern) is now used as a
propagator from inside the medium (in the opposite direction
to simulate fluorescence) and again through MC simulation
(Fig. 1I), the flux at the surface of the phantom, φs (shown
for a single K-space pattern in Fig. 1J), is collected. Finally,
φs is convolved with the Instrument Response Function (IRF)
(obtained experimentally using the gated ICCD system from
a thin sheet of paper placed at the same height as the sur-
face of the experimental phantom and shown for a single pixel
in Fig.1K), to obtain the Temporal Point Spread Functions
(TPSFs), φT (shown normalized for a single K-space pattern
in Fig. 1L). Only the falling edge of the normalized TPSFs
(corresponding to the decay) is preserved for training the net-
work. Also, φT is summed in time, obtaining a CW map for
each pattern, and using K-sparse acquisition (with the help
of 64 virtual point detectors, as shown in Fig. 1M)22), we
obtain a CW measurement vector for the phantom (shown in
Fig. 1N). This CW measurement vector is used to train the
ModAM branch of the network for 3D intensity reconstruc-
tion.

B. CNN Architecture and Training

The CNN architecture is shown in Fig. 2A. It consists of
two branches, the ModAM branch for 3D intensity recon-
struction and the modified FLI-NET branch for 3D lifetime
reconstruction, the output of which is constrained by the 3D
intensity mask. Both these branches are mainly a combination
of 2D and 3D convolutional layers. The output of each layer is
Batch Normalized (BN) and passed through ReLU activation.
The rationale for the different layers in the CNN architecture
has been explained previously in Smith et al.18 and Nizam et
al.22. However, for clarity, we briefly explain the purpose of
the different layers.

The 3D convolution layers (Conv3D) in the modified FLI-
NET branch enable the extraction of spatially independent
features along each TPSF for each pattern. The Residual
Block (ResBlock) allows even more temporal features to be
extracted while resolving problems related to vanishing gra-
dients (without increasing parameter count and, hence, com-
putational complexity)25. Finally, the 2D convolutional layers
(Conv2D) downsample the reconstructed volume to the size
of our experimental phantom (40×40×10mm3).
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FIG. 1. The complete data generation workflow with an example in silico phantom in B containing two fluorescent inclusions randomly
picked from the EEMNIST dataset shown in A. This phantom is illuminated using K-space illumination patterns (on the Plane of Illumination
(POI) marked in C) acquired experimentally, as shown in D. The widefield illumination function in MCX shown in C allows the flux at the
position of the embeddings to be collected, which is correlated with the concentration matrix in E to obtain φc in F. F is convolved with a
mono-exponential lifetime profile associated with the lifetime map in G to obtain H as a time-varying source. H is used as a propagator from
inside the medium on MCX, as shown in I, to obtain J, which is convolved with the system IRF in K to obtain the TPSFs in L and through
64-point K-space acquisition on K, as illustrated by the red dots in M, the CW measurement vector is obtained in N.

The ModAM branch starts with a Dense layer since Dense
layers are widely associated with shape recognition and help
capture the intricate variation in the CW measurement vector
associated with a change in the morphology of the fluores-
cent inclusions. The Conv3D and Conv2D layers are used
for upsampling and downsampling, respectively, the extracted
features from the 1D measurement vector, and eventually, to
reconstruct a 3D intensity volume.

Additionally, we tabulate the details of network training in
Fig. 2B. To summarize, we use a dataset size of 1500 samples,
with an 80/20 training/validation split, while employing an
Adam optimizer. As discussed previously, we use MSE as the
loss function. Furthermore, the relative concentration, depth,
thickness, and lifetime of the in silico phantoms are suitably
varied over a range relevant to soft tissues to train the network.

C. Experimental Setup

The experimental setup consists of a gated-ICCD system.
The optical imaging is performed in reflective geometry with
a Field-of View of approximately 40× 40 mm2. A total of
201 gates are used with a gatewidth of 40 ps. The K-space

illumination patterns are projected using a Digital Micromir-
ror Device (D4110, Digital Light Innovations, TX). For imag-
ing the experimental phantoms, we excite at a wavelength of
700 nm using a Mai Tai high-powered laser (Spectra-Physics,
CA). Further details of the experimental setup can be found
elsewhere8.

D. Phantom Preparation

To prepare the phantom, we combine distilled water,
1% India Ink (Speedball Art Products, NC), 20% intralipid
(Sigma–Aldrich, MO) of volumes of 157.05 ml, 1.05 ml, and
11.90 ml, respectively, with 1.7 g of agar to form a homo-
geneous phantom that has roughly the same background OPs
as the in silico phantoms used in training. Two cylindrical
cavities are formed in the phantom at depths of 2− 5 mm,
with the centers approximately 20 mm apart, in which we
contain AF700 at 50µM concentration in Dimethyl sulfoxide
(DMSO) and Phosphate-buffered saline (PBS) buffers.
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FIG. 2. The Proposed AUTO-FLI architecture, a combination of ModAM and modified FLI-NET is shown in A. The network training details
is tabulated in B.

III. RESULTS

A. In Silico Results

The performance of our proposed AUTO-FLI network is
first tested on in silico phantoms that were not part of the
training stage. For demonstration, we used an in silico phan-
tom containing two fluorescent inclusions, each of which has
a different lifetime (0.9 ns for the left inclusion and 0.7 ns for
the right inclusion) and different relative concentration (1 : 2).
The inclusions are placed at depths of 2− 4 mm, as shown
in Fig. 3A. The 3D lifetime reconstruction by the AUTO-FLI
network, rendered by the Imaris software, is displayed in Fig.
3B. In Fig. 3C, we display the Ground Truth (GT) relative
concentration map, and in Fig. 3D, we show the obtained 2D
intensity maps corresponding to depths 1− 4 mm. Addition-
ally, in Fig. 3E, we present the intensity profile along the red
dotted line in Fig. 3C. It is evident that the ModAM branch
of the AUTO-FLI network reconstructs the 3D intensity with
a high degree of fidelity and manages to recover the relative
concentration accurately. The accuracy is numerically vali-
dated by a low VE of 17.86% and an MSE of 0.0328. The 3D
lifetime reconstruction results are shown in Figs.3F-H. The
3D reconstruction, in terms of structure, is the same as the
output of the ModAM branch since the output of the 3D FLI-

NET branch is constrained by the 3D intensity mask. In Fig.
3G, we display the 2D lifetime maps corresponding to depths
1−4 mm. The GT lifetime map is illustrated for comparison
in Fig. 3F. Additionally, we present the violin plot distribu-
tion of the reconstructed lifetime values for the two fluores-
cent species (along with the GT) in Fig. 3H. It can be deduced
from these plots that the proposed AUTO-FLI framework ac-
curately reconstructs the 3D lifetime (with an MSE value of
0.0088).

B. Experimental Phantom Results

To further validate the proposed AUTO-FLI network, we
tested its performance on an experimental tissue-mimicking
phantom. The same network trained for the in silico phan-
toms is used to reconstruct the experimental phantom. A
schematic of the phantom is shown in Fig. 4A. The exper-
imental phantom consists of two cylindrical fluorescent in-
clusions AF700 in DMSO (left) and PBS (right) embedded
in agar (background OPs set using a mixture of ink and in-
tralipid), the center of which is placed at a depth of 3 mm
from the surface of the phantom. The inclusions are approxi-
mately 4 mm thick. A schematic of the phantom is shown in
Fig. 4A. The two different buffers ensure that the two inclu-
sions have slightly different lifetimes while having approxi-
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FIG. 3. The GT 3D in silico phantom, not part of the training stage of the AUTO-FLI network, is shown in A with the GT intensity and
lifetime maps in C and E, respectively. The 3D reconstruction, rendered by Imaris, by the AUTO-FLI framework is displayed in B, and the
reconstructed 2D intensity maps and 2D lifetime maps are in D and F, respectively. The intensity profile along the red dotted line along with
the GT is plotted in E, while the violin plots showing the reconstructed lifetime distribution of the two fluorescent species (with red lines
representing the GT) are presented in H. The 3D reconstruction results are shown at 50% of the maximum isovolume.

mately the same concentration. However, it should be noted
that DMSO gives a slightly brighter signal compared to PBS.
The results of the 3D volumetric reconstruction, again ren-
dered by Imaris, are presented in Fig. 4B, and the 2D nor-
malized intensity maps corresponding to depths 1−6 mm are
illustrated in Fig. 4C. Moreover, the violin plots showing the
distribution of the relative intensity values are plotted in Fig.
4D. It is observed that the ModAM branch of the network re-
constructs the relative concentration close to what is expected,
with a slightly higher concentration of AF700 in Dimethyl
sulfoxide (DMSO, left) compared to AF700 in Phosphate-
buffered saline (PBS, right). The relative concentration (av-
erage) is obtained as 1.08 : 1 (DMSO:PBS). The 2D lifetime
maps reconstructed (corresponding to depth 1−6 mm) by the
AUTO-FLI framework are shown in Fig. 4E, while the dis-
tribution of lifetime values are presented in Fig. 4F. The re-
constructed lifetime values agree closely with the lifetime val-
ues for AF700 in DMSO and PBS quoted in the literature26.
Furthermore, for benchmarking, we obtain the lifetime values
estimated from the experimental phantom using the state-of-
the-art AlliGator software. The AlliGator software estimates
the lifetime of a 2D mask placed on the 2D widefield image
of the phantom. The mean (± standard deviation) of the left
(DMSO) and right (PBS) inclusion is calculated by AlliGator
as 1.14(±0.02) ns and 1.03(±0.02) ns, respectively. Thus,
the lifetime values obtained from AlliGator are comparable
to those produced by AUTO-FLI. However, it is to be noted

that the AUTO-FLI network can carry out a single 3D lifetime
reconstruction in approximately 1 s (NVIDIA GeForce RTX
2080 Ti). Conversely, on the same GPU, it takes almost 10
minutes for AlliGator to calculate the lifetime on 10 pixels.
Hence, the experimental results further justify the suitability
of the proposed workflow for experimental phantoms.

IV. DISCUSSION

This work proposes a framework for simultaneous 3D in-
tensity and lifetime reconstructions using a two-stage DNN
architecture. Using a single-stage network for simultaneous
3D intensity and lifetime reconstructions from raw TPSFs
presents significant challenges due to the inherent differences
in these parameters. Intensity reconstruction focuses on spa-
tial distribution, while lifetime reconstruction deals with tem-
poral decay characteristics. Additionally, the need for accu-
rate time-stamping in lifetime imaging adds another layer of
complexity. This complexity often results in sub-optimal per-
formance for either or both tasks. Previous studies, for in-
stance, the concept of multi-task learning27, suggests that di-
viding complex tasks into simpler, more focused tasks can
lead to more accurate outcomes in DL models. Our results
align with these findings, as the two-stage AUTO-FLI network
showed improved stability and accuracy compared to a single-
stage network.To show the impact of removing the ModAM
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FIG. 4. The schematic of the experimental phantom is shown in A. The 3D reconstruction (rendered by Imaris) is presented in B, along with
the obtained 2D relative concentration and lifetime maps in C and E, respectively. The distribution of the relative intensity and lifetime values,
along with the mean and the standard deviation, for both fluorescent inclusions are presented in terms of violin plots in D and F, respectively.
The 3D reconstruction results are shown at 50% of the maximum isovolume.

stage, we generate the 3D lifetime reconstruction using only
the 3D FLI-Net stage on the in silico phantom shown previ-
ously. The results are shown in Fig. 5. It is seen that although
the network reconstructs the shapes to an extent, it is not as
accurate as the two-stage AUTO-FLI framework, as exhibited
by an increased VE and an increased MSE of of 44.26%, and
0.023, respectively. The results further demonstrate the need
to split the learning process into two stages. Furthermore, it is
essential to test the stability of the proposed AUTO-FLI net-
work. We exhibit the stability of the network by repeating the
training and validation phase 10 times and plot the resulting
training and validation curves in Fig.6 (with the MSE as the
loss function). All the curves show smooth convergence with
a low standard deviation (±0.005), which reveals the stability
of the proposed DNN.

Additionally, there has been significant interest recently in
using Physics-Informed Neural Networks to solve problems
in diffuse optical imaging28. Such networks consider the
mathematical equations for the underlying physics that gov-
ern, for instance, the diffusion equation for light propagation
in a turbid medium. Although our network follows a more
traditional CNN architecture, the accurate in silico model-
ing of fluorescence emission and detection on MCX considers
the medium’s physical and optical properties. This accurate
modeling of the fluorescence process using the state-of-the-

art MCX software is one of the critical reasons for the success
AUTO-FLI for FLT reconstructions, while similar efforts in
the past have not been as effective.

Moreover, there are some limitations to the proposed work-
flow. We have considered a simplified mono-exponential
model for lifetime estimation, whereas the original FLI-NET
model used a bi-exponential model suitable for FRET stud-
ies. Also, we have not included in vivo results in this work
since this is the first study in simultaneous 3D intensity and
lifetime reconstructions. Future studies will look to develop
the workflow for higher-order exponential models and in vivo
small animal models. In vivo imaging may require the devel-
opment of the data generation workflow to incorporate mesh-
based models by using Mesh-based Monte Carlo (MMC) in-
stead of MCX because complicated animal models require a
higher degree of accuracy in the data generator, which is pro-
vided by mesh-based representations in the MC rather than a
voxel-based one (as provided by MCX).

V. CONCLUSION

In this study, we introduced AUTO-FLI, an innovative DL
framework for 3D FLT that offers significant advancements in
accuracy and computational efficiency. By employing a two-
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B. Reconstructed Lifetime Maps
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A. 3D Reconstruction by only the

Modified FLI-NET Branch
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0.81±0.06 ns
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FIG. 5. The 3D reconstruction obtained using only the Modified FLI-NET stage (by eliminating ModAM) is shown in A for the same in silico
phantom used in Fig. 3 along with the obtained 2D lifetime maps in B, and the violin plot distribution of the reconstructed lifetime values in
C. Again, the 3D reconstruction results are shown at 50% of the maximum isovolume.

FIG. 6. An ensemble of training and validation curves obtained by training the AUTO-FLI network 10 times.

stage CNN architecture, AUTO-FLI achieves high-fidelity re-
constructions of 3D intensity and lifetime distributions from
raw 2D fluorescence decays, outperforming traditional meth-
ods. The integration of MCX for data generation reduces
training time and resources, enhancing the model’s robustness
and versatility across various biological and medical imaging
scenarios. This technique holds promising potential for both
preclinical research and clinical diagnostics.
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