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Isolation and characterization of 
myogenic precursor cells from 
human cremaster muscle
Neia Naldaiz-Gastesi1,2,3, María Goicoechea2,15, Isabel M-ª Aragón4,5, Virginia Pérez-López1, 
Sandra Fuertes-Alvarez1, Bernardo Herrera-Imbroda4,5, Adolfo López de Munain2,3,6,7, Resi de 
Luna-Diaz8, Pedro M. Baptista9,10,11,12, M. Alejandro Fernández13, María Fernanda Lara4,5 & 
Ander Izeta   1,14

Human myogenic precursor cells have been isolated and expanded from a number of skeletal 
muscles, but alternative donor biopsy sites must be sought after in diseases where muscle damage 
is widespread. Biopsy sites must be relatively accessible, and the biopsied muscle dispensable. Here, 
we aimed to histologically characterize the cremaster muscle with regard number of satellite cells and 
regenerative fibres, and to isolate and characterize human cremaster muscle-derived stem/precursor 
cells in adult male donors with the objective of characterizing this muscle as a novel source of myogenic 
precursor cells. Cremaster muscle biopsies (or adjacent non-muscle tissue for negative controls; N = 19) 
were taken from male patients undergoing routine surgery for urogenital pathology. Myosphere 
cultures were derived and tested for their in vitro and in vivo myogenic differentiation and muscle 
regeneration capacities. Cremaster-derived myogenic precursor cells were maintained by myosphere 
culture and efficiently differentiated to myotubes in adhesion culture. Upon transplantation to an 
immunocompromised mouse model of cardiotoxin-induced acute muscle damage, human cremaster-
derived myogenic precursor cells survived to the transplants and contributed to muscle regeneration. 
These precursors are a good candidate for cell therapy approaches of skeletal muscle. Due to their 
location and developmental origin, we propose that they might be best suited for regeneration of the 
rhabdosphincter in patients undergoing stress urinary incontinence after radical prostatectomy.

In striated muscle, adult myogenic stem cells are known as satellite cells, due to their superficial position on mus-
cle fibres1. The myogenic process is a multifaceted transition between precursor states (quiescence, activation, 
proliferation and differentiation) that precede fusion of the myoblasts to regenerative muscle fibres2. Besides, 
satellite cells reside in a complex niche, which includes other precursors such as fibro-adipogenic precursor cells 
(FAPs) that modulate the regenerative response3, along with signals arising from nerve and capillary terminals 
and other interstitial cells. For cell-based therapeutic purposes, it would thus be desirable to obtain and charac-
terize the diverse types of human muscle precursor cells from an accessible source.
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Most protocols of human satellite cell isolation rely on the purification of cell subpopulations by flow cytom-
etry or magnetic separation of muscle-derived cell suspensions through differential expression of membrane 
markers4–21. Despite the important recent advances in the purification and characterization of human satellite 
cells, they are still isolated in small numbers out of muscle biopsies of a limited size (typically of 50–100 mg; there 
are between 500–1,000 satellite cells per mm3 20), and the stem cells present restricted expansion capacities in 
vitro22,23. For these reasons, myoblasts (a heterogeneous mixture of semi-purified CD56+ cells24,25) have been 
mostly used in clinical trials to date, since they expand well in vitro26,27. However, the results of expanded myo-
blast cell infusion in a plethora of clinical trials targeting muscle regeneration have been disappointing28–32. Some 
authors argue that the large expansion rates of myoblasts have brought up excessive differentiation in culture and 
hence low survival, migration and fusogenic capacities when cells are transplanted in vivo33–35. Of note, more 
experiments must be done with human myoblasts to ensure that this is also the case in humans36.

A still relatively unexplored possibility is the growth of human muscle precursor cells in three-dimensional 
myosphere cultures37. In mice, myospheres represent a mixture of ITGA7+ Myf5+ MyoD+Pax7+ myo-
genic (possibly satellite cells) precursor cells and non-myogenic (possibly FAPs) precursors characterized 
as PDGFRα+Sca−1+38,39. Since both precursor cell populations are required for muscular regeneration, 
myosphere cultures would have the advantage of providing two precursor cell types instead of one, when com-
pared to alternative satellite cell isolation strategies. Human myosphere cultures present at least a CD31−CD34−
CD45−CD56−CD117−CD29+CD73+CD90+CD105+ “mesenchymal” stem cell population, which possibly 
is non-myogenic40 and could be equivalent to FAPs, and a CD34−CD45−PAX7+CD56+ALDH1+ myogenic 
precursor cell population that possibly corresponds to satellite cells41.

In this article, we propose human cremaster muscle as a convenient source of muscle-derived stem/precursor cells 
in male donors. This is a striated muscle not inserted through a tendon, and which also contains a variable number 
of smooth muscle fibres42. Predominantly, it is composed of type I (slow) fibres, although it also contains some of IIB 
(very fast) type. The function of this muscle in the adult is to contribute to the thermoregulation and protection of tes-
ticles, and we postulate it should be classified as an evolutionary remnant of mammalian Panniculus carnosus muscle43. 
Thanks to the cremasteric reflex, its electrophysiological properties are well known. The muscle is densely innervated 
and presents numerous motor endplates, which may be the reason underlying its abundant spontaneous discharges42. 
In children, no sexual dimorphism was observed in cremaster muscle except for a larger diameter of fibres in males, as 
it is commonly observed in most muscular groups44. In embryonic development, cremaster muscle derives from the 
gubernaculum, independent of the internal oblique muscle of the abdomen, and it performs a key function in testicu-
lar descent45–47. However, some authors propose that striated cremaster fibres transdifferentiate from smooth muscle 
instead48, as it may happen in other muscles of the genitourinary tract, such as the rhabdosphincter49.

Since alternative donor biopsy sites must be identified in diseases where muscle affection is widespread, we 
here aimed to histologically characterize the cremaster muscle with regard number of satellite cells and regener-
ative fibres, and to isolate and characterize human cremaster muscle-derived stem/precursor cells in adult male 
donors to evaluate this muscle as a novel source of myogenic precursor cells.

Results
Histological characterization of human cremaster muscle.  The cremaster muscle is surgically acces-
sible in the context of male patients undergoing routine surgery for urogenital pathology (mainly hydrocele and 
varicocele). Histological characterization (haematoxylin and eosin stain) of cremaster muscle biopsies of these 
patients (Table 1) showed the presence of a discrete percentage (0.5–3%) of centrally nucleated, regenerative 
striated fibres as well as some interspersed smooth muscle fibres (Fig. 1), as expected. By immunofluorescence, 
striated fibre sarcomeres were clearly delineated by myosin heavy chain (MYHC all fibres) antibody staining, and 
muscle fibres were surrounded by LAMININ positive basal membrane (Fig. 2A,B). Predominance of type I (slow) 
fibres and the presence of fewer number of type II (fast) fibres was corroborated by the expression of specific 
MYHC I and MYHC II isoforms, respectively (Fig. 2C–F). The existence of newly formed fibres was confirmed 
by expression of the embryonic isoform of MYHC, MYH3 (Fig. 3A,B, arrows). To quantify the number of satellite 
cells in situ, the number of PAX7+ nuclei that were surrounded by LAMININ+ basal membrane was determined 
(Fig. 3C,D, arrow). A proportion of 1.8 ± 0.3% satellite cells were calculated.

In vitro myotube formation from human cremaster muscle-derived cells.  To evaluate in vitro 
myogenic potential of human cremaster muscle-derived cells, a protocol previously used in mouse cultures50 
was adapted to human biopsies (Fig. 4A). At day 0 (d0), suspension cultures presented abundant cellular debris 
and dead cells as well as unicellular suspensions and muscle tissue remnants (Fig. 4B, arrow). After 7 days of 
myosphere culture, cells formed spheres of variable size (Fig. 4C). These spheres were then put into differentia-
tion culture51. The cells adhered to the substrate and started forming multinucleated myotubes by d2 (Fig. 4D) 
and, by d9, myotubes occupied most of the culture surface (Fig. 4E,F, arrows). These results suggested that 
human cremaster muscle-derived cells adopted a myogenic commitment in vitro in response to appropriate 
cues.

To demonstrate the presence of myogenic cells in these cultures, myogenic markers PAX7 and MYOGENIN 
were detected by immunofluorescence in d7 myosphere cultures, showing discrete numbers of positive cells in the 
myospheres (Fig. 5A,B, arrows). Satellite (PAX7+) cells were quantified at day 15 of suspension culture (Fig. 5C). 
A median proportion of 16.2% PAX7+ cells (Fig. 5D) indicated that the sphere culture differentially enriched sat-
ellite cells over other cell types present at day 0, as previously observed in mouse dermosphere cultures50. To deter-
mine if endothelial (CD31+) cells and mesenchymal (CD90+) cells were also present in the cremaster-derived 
myosphere cultures, the presence of cells positive for these markers was analysed by immunofluorescence and 
confocal microscopy. Both CD31+ and CD90+ cells were easily detected, although quantification was difficult 
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Donor # Sex Age (y) Department Pathology Tissuea

1 Male 35 Urology Spermatic cord cyst Non-muscle tissue

2 Male 26 Urology Varicocele Cremaster

3 Male 22 Urology Varicocele Cremaster

4 Male 64 Urology Hydrocele Non-muscle tissue

5 Male 48 Urology Hydrocele Non-muscle tissue

6 Male 50 Urology Hydrocele Cremaster

7 Male 31 Urology Varicocele Cremaster

8 Male 17 Urology Varicocele Cremaster

9 Male 20 Urology Hydrocele Cremaster

10 Male 35 General surgery Inguinal hernia Cremaster

11 Male 51 General surgery Inguinal hernia Cremaster

12 Male 71 General surgery Inguinal hernia Cremaster

13 Male 29 General surgery Inguinal hernia Cremaster

14 Male 50 General surgery Inguinal hernia Cremaster

15 Male 70 General surgery Inguinal hernia Cremaster

16 Male 45 General surgery Inguinal hernia Cremaster

17 Male 86 General surgery Inguinal hernia Cremaster

18 Male 74 General surgery Inguinal hernia Cremaster

19 Male 41 General surgery Inguinal hernia Cremaster

Table 1.  Characteristics of biopsy donors in this study. aSome biopsies were taken for negative control and 
included non-muscle tissue adjacent to the Cremaster muscle.

Figure 1.  Histological characterization of human cremaster muscle. (A–C) Histological section of cremaster 
muscle stained with H&E where detailed fibre morphology can be seen (A,B) and the presence of regenerative 
fibres with central nuclei is highlighted (C,D) Percentage of centrally nucleated fibres as quantified in three 
independent biopsies. The blue line represents the median value of the data. Scale bars, 100 μm.
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due to overlapping of the signal with numerous nuclei in the confocal sections (Fig. 5E–J). Interestingly, CD31+ 
cells seemed to form tube-like structures, reminiscent of angiotubes (Fig. 5E–G, arrows).

After 9 days in differentiation culture (Fig. 6), single cells expressing PAX7 were still detected (Fig. 6A), with 
a median proportion of 6.9% PAX7+ cells (Fig. 6B). They were often observed in positions adjacent to MYHC+ 
multinucleated myotubes, which presented characteristic sarcomeric striations (Fig. 6C,D, arrows). The expres-
sion of myogenic genes was confirmed by qRT-PCR after 9 days in differentiation culture (Fig. 7). As negative 
control, patient biopsies that were taken from non-muscle tissue adjacent to the cremaster were used (Table 1). 
The cultures that were derived from cremaster muscle, but never those derived from non-muscle tissue, expressed 
variable but consistent amounts of the myogenic genes PAX7, MYF5, MYOD1, MYOGENIN, MYH3 and MYH2 
(Fig. 7A–F). These results confirmed that cells of myogenic commitment were maintained by myosphere culture 
and were differentiated to myotubes in adhesion culture.

In vivo regenerative potential of human cremaster muscle-derived cells in a mouse model 
of muscular damage.  To evaluate the potential use of human cremaster muscle-derived cells in future 

Figure 2.  Predominance of slow type fibres in human cremaster muscle. (A,B) Muscle sections were analysed 
by immunofluorescence to show MYHC expression in the fibres (all isoforms, green) and LAMININ expression 
surrounding the fibres (red). (C,D) Fibre type predominance study through myosin heavy chain isoform 
expression analysis by immunofluorescence (C,E,F) and resulting distinct fibre quantification graph showing 
median and standard deviation obtained from three independent biopsies (D). In A, B, C, E and F panels 
LAMININ is shown in red and nuclei are counterstained with Hoechst 33258 (blue). Scale bars, 100 μm.

https://doi.org/10.1038/s41598-019-40042-6


5Scientific Reports |          (2019) 9:3454  | https://doi.org/10.1038/s41598-019-40042-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

cell-based therapy trials, we analysed their regenerative potential in a proof-of-concept preclinical assay of mus-
cle regeneration (Fig. 8A)52,53. Four weeks after cell injection, TA muscles were extracted and analysed by immu-
nofluorescence. In the experimental TA muscle group (N = 6), a variable number of human cells was detected 
by their reactivity for the highly specific anti-human LAMIN A/C antibody, which was absent in the control leg 
(Fig. 8B,C). Of the LAMIN A/C+ cells, a relatively small percentage co-expressed the satellite cell marker PAX7 
(Fig. 8D–F, arrows). The number of muscle fibres of human origin, as determined by the expression of human 
DYSTROPHIN by immunofluorescence (Fig. 8G,H), correlated quite well to the number of human cells detected 
per mice. Quantification of these human-specific markers (Fig. 9A,B) showed an average number of 1864 ± 2247 
LAMIN A/C+ cells per section, of which 1.8 ± 0.6% were also PAX7+. The number of fibres of human origin 
(detected as hDYSTROPHIN+) was highly variable, 34.2 ± 34.0 fibres per section (Fig. 9C). These results sug-
gested that human cremaster muscle-derived stem cells survived to the transplants and contributed to muscle 
regeneration in response to cardiotoxin damage.

Discussion
Cell-based therapeutic approaches for muscle regeneration may be applicable in congenital myopathies54, muscu-
lar dystrophies and other neuromuscular diseases55, cardiac dysfunction56, volumetric muscle mass loss, cachexia 
and sarcopenia57. However, several of these pathologies affect relevant volumes of muscle tissue and this fact com-
promises the feasibility of cell-based approaches. For this reason, smaller muscle groups such as those affected 
in oculopharyngeal or in facioscapulohumeral muscular dystrophies may be approached with greater chances of 
success35,58. Anal and urinary sphincter deficiencies may also be excellent targets for these therapies59,60 since the 
muscle volume to be regenerated is small and the defect accessible via minimally invasive surgical approaches. For 
any of these pathologies it will be instrumental that adequate animal models are developed due to the inherent 
variability seen in the clinical setting61.

Despite the fact that the Panniculus carnosus muscle is vestigial in humans43, we were interested in testing 
if those evolutionary remnants still available in human beings would be of use to isolate muscle satellite cells of 
possible use in cell therapy, as we had previously done in the mouse50. The cremaster muscle was selected because 
it can be biopsied through a small inguinal incision which is routinely performed in several common urogenital 

Figure 3.  Satellite cells and regenerative fibres in human cremaster muscle. (A,B) Percentage of MYH3 
(embryonic myosin isoform)-expressing fibres detected by immunofluorescence (green), surrounded by 
LAMININ (red). Arrows in (A) show regenerative fibres and the graph (B) shows regenerative fibres as a 
percentage of total fibres, as quantified in three independent biopsies. The blue line represents the median value 
of the data. (C,D) Immunofluorescence detection of PAX7+ satellite cells (green) located in their niche between 
two LAMININ positive layers (red). The arrow in (C) points to a satellite cell. (D) Percentage of PAX7 positive 
nuclei as quantified in three independent biopsies. The blue line represents the median value of the data. Nuclei 
were counterstained with Hoechst 33258 (blue). Scale bars, 100 μm.
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surgeries in males. It is a predominantly slow twitch muscle and thus the number of satellite cells would be 
expected to be higher, although this seems to be dependent on muscle loading62. In this work, we found a satellite 
cell proportion in situ that seems to be below what has been established for other muscle groups63. The percentage 
of centrally nucleated (regenerative) fibres was on a similar range to other muscle groups64,65.

Nevertheless, we have also shown that cremasteric myogenic precursor cells can be maintained and expanded 
in vitro reaching sizable numbers (about 15% of the myosphere cells), and that the expanded cells retain muscle 
regenerative capacities in vivo. The main limitations of this initial study are: (i) the low number of samples ana-
lysed; (ii) the fact that this muscle can only be found in males, leaving aside half of the adult population; and (iii) 
that we characterized samples from patients and not from healthy individuals. For instance, higher grade varico-
celes might be associated with denervation of cremaster muscle, causing small group atrophy66. These issues will 
be addressed by future investigations.

To apply cremaster-derived myogenic precursor cells in muscle pathology, a number of obstacles must be 
overcome: first, it must be studied if this muscle is affected by the relevant pathology at study, and second, an 
analogous muscle group should be found in adult women. A possible candidate could be the round ligament of 
the uterus, which is also composed of striated and smooth muscle fibres and that extends from uterus to deep 
inguinal ring, sometimes inserting itself into adipose tissue and skin of labia majora.

Figure 4.  In vitro isolation, expansion and differentiation of human cremaster muscle-derived myogenic 
precursor cells. (A) Schematic representation of the male reproductive system anatomy, showing cremaster 
muscle (red) and the biopsy sample zone is highlighted by a rectangle. Outline of the myosphere suspension 
culture and myotube differentiation (adhesion culture) steps. (B,C) Optical microscope images of the 
suspension culture showing cells and tissue fragments (arrow) at day 0 (B) and spheres at day 7 (C). (D–F) 
Optical microscope images of the adhesion culture at day 2 (D) and day 9 (E,F), where multinucleated myotubes 
(arrows) become predominant. Scale bars, 100 μm.

https://doi.org/10.1038/s41598-019-40042-6


7Scientific Reports |          (2019) 9:3454  | https://doi.org/10.1038/s41598-019-40042-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

Importantly, the human cremaster muscle-derived myospheres were also shown to present mesenchymal 
(CD90+) and endothelial (CD31+) cells, and we postulate that, most likely, they will contain Schwann cells as 
well67. Human bone marrow-derived mesenspheres are CD90+, and contain bone marrow-derived stem cells 

Figure 5.  Expression of myogenic, endothelial and mesenchymal markers during in vitro expansion of 
human cremaster muscle-derived myogenic precursor cells. (A–C) Immunofluorescence analysis of myogenic 
protein expression in d7 (A,B) and d15-cultured myospheres (C). Arrows indicate cells positive for PAX7 
(green, A), and MYOGENIN (green, B). Confocal microscope image showing PAX7 positive cells (green, C). 
(D) Percentage of satellite cells (PAX7 positive cells) as quantified in several spheres from three independent 
biopsies. The blue line represents the median value of the data. (E–J) Serial confocal microscope images of d15-
cultured spheres analysed by immunofluorescence for the detection of endothelial cell marker CD31 (E–G) 
and mesenchymal cell marker CD90 (H–J). Nuclei were counterstained with Hoechst 33258 (blue). Scale bars, 
100 μm (A,B) and 50 μm (C,E–J).
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which preserve an immature phenotype68. Tissue-resident CD31+ endothelial precursor cells have previously 
been isolated from mouse muscle69. Endothelial cells in co-culture spheres may self-assemble and form reticu-
lated structures, as demonstrated here and previously seen in other systems70,71. The presence of both of these cell 
types might contribute to an improved vascularization of the affected area, as demonstrated in bone defects72. 
Finally, if Schwann cells and other peripheral nerve-derived cells were also present in these spheres, they might 
support reinnervation and regeneration of the degenerated tissue73. We would like to propose that, due to their 
origin and location, the mix of precursor cells present in the myospheres may be a good candidate to be used in 
cell therapy approaches of stress urinary incontinence after radical prostatectomy. Ideally, the isolation protocol 
should be adjusted so that precursor cell extraction and treatment may be done in the course of a single inter-
vention74,75. Similarly, CD56+ myoblasts from pyramidal muscle have been obtained from radical prostatectomy 
patients76 and myoblasts derived from rectus muscles in patients undergoing open abdominal surgery77. Our 
approach would provide a more comprehensive pro-regenerative cellular mix.

Conclusions
Human cremaster is a predominantly low twitch muscle with relatively few satellite cells and some regenerative 
fibres in situ. Cremaster-derived myogenic precursor cells can be isolated and expanded as myospheres, and the 
expanded cells retain muscle regenerative capacities in vivo. We propose that these precursors are a good candi-
date for cell therapy approaches of skeletal muscle. Due to their location and developmental origin, they might be 
best suited for the treatment of stress urinary incontinence after radical prostatectomy.

Methods
Aim, design and setting of the study.  This study aimed to characterize in vitro and in vivo human cre-
master muscle stem cells isolated from male donor biopsies (N = 19) and propagated in vitro in the form of 
myospheres.

Ethics approval and consent to participate.  The protocol to obtain cremaster and non-muscle tissue 
biopsies from patients after signature of the informed consents followed all relevant legal and ethical regulations, 
and was approved by the Ethics and the Scientific Committees of the HUVV (CEUMA No. 79-2015-A). Animal 

Figure 6.  Expression of myogenic proteins during in vitro differentiation of human cremaster muscle-derived 
myogenic precursor cells. Immunofluorescence analysis of myogenic protein expression in d9-adhesion culture 
showed PAX7 positive cells (green, A), and MYHC (all isoforms) positive myotubes (green, C–D). Arrows 
indicate sarcomeric striations. (C) Percentage of PAX7 positive nuclei as quantified in three independent 
biopsies. The blue line represents the median value of the data. Nuclei were counterstained with Hoechst 33258 
(blue). Scale bars, 100 μm.
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experiments were carried out following all relevant legal and ethical regulations, and according to protocols 
approved by the Biodonostia Animal Care Committee (CEEA16/008).

Human cremaster muscle biopsies.  Upon informed consent signature from male patients undergoing 
inguinal hernia (N = 10), hydrocele (N = 4), varicocele (N = 4), or spermatic cord cyst (N = 1) surgeries at the 
Virgen de la Victoria University Hospital (HUVV), a 1–3 cm2 cremaster muscle biopsy (or adjacent non-muscle 
tissue for negative controls) was collected during regular surgery procedure without adding any morbidity to the 
process. Biopsy samples were managed by the HUVV-IBIMA Biobank. Men with uro-oncologic disease or other 
diseases that could affect the scrotal area were not included as donors. The characteristics of biopsy donors are 
described in Table 1.

Histology and immunohistochemistry.  Deidentified human cremaster biopsies from surgery room (pro-
cessed within 30 min of the procedure) were embedded in OCT medium (Q-Path, VWR), frozen by immersion 
in isopentane previously cooled in liquid nitrogen and stored at −80 °C until usage. Cryostat sections (7–10 μm) 
were stained with haematoxylin and eosin (H&E; Panreac), and mounted with Shandon Consul-Mount mounting 
media (Fisher Scientific) according to standard procedures. For immunohistochemistry, biopsy sections from 
OCT blocks were dried; and fixed in 4% Paraformaldehyde aqueous solution (Electron Microscopy Sciences) 
10 min at room temperature (RT) or directly blocked with 5% bovine serum albumin (BSA) in PBS for 1 h at RT; 

Figure 7.  Expression of myogenic genes during in vitro differentiation of human cremaster muscle-derived 
myogenic precursor cells by qRT-PCR. At d9-differentiation cultures, the expression of myogenic genes PAX7 
(A), MYF5 (B), MYOD1 (C), MYOGENIN (D), MYH3 (E) and MYH2 (F) was quantified by qRT-PCR. The 
expression values from three independent cremaster muscle biopsies and noncremasteric biopsies are shown 
relative to endogenous control mRNA TBP. The blue lines represent the median values of the data.
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and incubated overnight at 4 °C with the primary antibody in 1% BSA solution. Slides were rinsed in PBS con-
taining 0.025% Triton X-100 (Amresco) and incubated for at least 1 h with the appropriate secondary antibody 
in the same solution used for blocking. The slides were rinsed with PBS containing 0.025% Triton X-100. Nuclei 

Figure 8.  In vivo differentiation of human cremaster muscle-derived myogenic precursor cells. (A) Outline 
of the experimental design. (B–H) Immunofluorescence of histological sections from the control TA group 
(B,D,G) and the experimental TA group (C,F,H), respectively. (B,C) Histological analysis of the grafted cell 
survival through human LAMIN A/C detection by immunofluorescence (green). (D–F) Detection of human 
LAMIN A/C (green) and PAX7 (red) expressing satellite cells localized in their niche by immunofluorescence 
(arrows, E). (G,H) Detection of human LAMIN A/C (green) and human DYSTROPHIN (red) positive fibres. 
Nuclei were counterstained with Hoechst 33258 (blue). Scale bars, 100 μm.
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were stained with 10 μg/ml Hoechst solution (Santa Cruz, SC-394039) for 2 min and slides were mounted with 
Fluoro-Gel mounting media (Electron Microscopy Sciences, Cat #17985–10). Sections were imaged with a Nikon 
Eclipse 80i fluorescence microscope.

Isolation, proliferation, and striated muscle differentiation of muscle precursor cells.  
Deidentified human cremaster biopsies from surgery room (processed within 30 min of the procedure) were 
transported immersed on HBSS (ThermoFisher, 14170-088) with 1% Fungizone and 1% Penicillin on ice. 
Biopsies were mechanically dissociated and digested with a collagenase type IA solution (Sigma-Aldrich, 650 
CDU/mg, 2 mg/ml) for 1–2 h at 37 °C under gentle shaking. Collagenase was inactivated with culture media and 
the resulted digested tissue was filtered through 40-μm Nylon Cell Strainers (Corning). Collagenase was removed 
by centrifugation at 1500 rpm for 5 min at RT.

Figure 9.  In vivo regenerative capacity of human cremaster muscle-derived myogenic precursor cells. (A) 
Quantification of the human LAMIN A/C positive nuclei detected in each mouse (N = 6). (B) Percentage 
of satellite cells (PAX7 positive cells) in relation to the total human nuclei detected in each mouse. (C) 
Quantification of the number of human DYSTROPHIN+ fibres per mouse. Median and standard deviation of 
the data are represented with blue and black lines, respectively.
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The cellular pellet containing muscle-derived cells was resuspended and cultured in suspension as described50, 
to promote myosphere expansion in proliferation medium [Neurobasal A (ThermoFisher) with 2% 50X B27 sup-
plement (ThermoFisher), 1% 200 mM L-glutamine [Sigma-Aldrich], and 1% penicillin/streptomycin (100×)], 
supplemented every two days with 2% low serum growth supplement (1×, ThermoFisher), 40 ng/mL epidermal 
growth factor (R&D Systems), and 80 ng/mL basic fibroblast growth factor (FGF2; R&D Systems). Differentiation 
of myospheres was performed in adherent culture as described51. First, extracellular matrix-coated glass cover-
slips were prepared by incubating a solution of Cultrex basement membrane extract (2.77 mg/mL; Trevigen), 
Netrin-4 (0.83 μg/mL), Netrin-G1a (0.83 μg/mL), and low molecular weight hyaluronan (2.5 mg/mL; R&D 
Systems) in phosphate-buffered saline (PBS; pH 7.4). For muscle induction, primary myospheres were gently 
disaggregated with a 0.25% trypsin-EDTA solution (Sigma-Aldrich) and resuspended in proliferation medium 
without added growth factors plus 10% fetal bovine serum (ATCC), before plating onto coated coverslips at a 
density of 79,000 cells/cm2. Every 2 days, half of the medium was replaced with a fresh medium.

Immunofluorescence of myogenic markers in myospheres.  Immunofluorescence was performed 
in suspended sphere cultures. For suspended spheres, 1 ml of suspended culture was collected and centrifuged 
at 1500 rpm for 5′ at RT. The cell pellet was washed with 1X PBS and fixed in 4% Paraformaldehyde aqueous 
solution (Electron Microscopy Sciences) for 10 min at RT in a rotating station. Spheres were washed in PBS, per-
meabilized for 1 h in 0.3% Triton X-100 (Amresco) in PBS (PBS-T) and 5% normal donkey serum (Santa Cruz, 
SC-2044) at RT in the rotation station. Spheres were incubated with the appropriate primary antibody diluted in 
PBS-T overnight at 4 °C, rotating. Next, cells were 1X PBS-washed 3 times (5 min each) and incubated with the 
appropriate secondary antibody diluted in PBS-T for 1 h at RT in darkness and rotating. Prior to mounting in 
Fluoro-Gel, spheres were incubated with 10 μg/ml Hoechst (Santa Cruz, SC-394039) for 2 min rotating at RT and 
in darkness and washed with 1X PBS. Images were obtained by using a Nikon Eclipse 80i microscope coupled to 
a Nikon Digital Sight camera or a Zeiss LSM800 Confocal Laser Scanning Microscope. Confocal z-stack images 
were taken with the 25x objective (1.96 μm between slides). Images were processed using ZEN blue software and 
ImageJ software.

Gene expression in differentiated cultures.  Total RNA was extracted from differentiated cultures from 
cremaster biopsies and non-cremasteric biopsies by miRNeasy Mini Kit (Qiagen) and converted into complemen-
tary DNA with the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems). Each cDNA sample 
was amplified in triplicates for the real-time quantitative PCR (qRT-PCR) analysis which was carried out using 
Taqman gene expression assays in the 7900 HT Fast Real-Time PCR System (Applied Biosystems). The cycling 
conditions were 95 °C/10 min followed by 40 cycles at 95 °C/15 s, 60 °C/1 min in a reaction mixture that contained 
1x Taqman Universal PCR Master Mix and 1x Assay Mix in a final volume of 20 μl. The expression of the genes 
was represented relative to the housekeep gene Tbp expression.

Intramuscular cell transplantation.  Animal experiments were carried out following the experimental 
design of Darabi and colleagues52,53. One day before cell transplantation, 10-week old immunocompromised 
NSG mice (NOD.Cg-PrKdcsidIl2rgtm1Wjl/SzJ, JAX 005557) (N = 6) were anesthetized with isoflurane and Tibialis 
anterior (TA) muscle damage was induced in both rear limbs through injection of 7.5 μL of 100 μM cardiotoxin 
(CTX, Latoxan) by using a 26 s gauge Hamilton syringe (bevelled tip). 24 h later, cells were injected (235,000 cells 
in 15 μl of PBS pH 7.2) into right TA muscles, whereas the left TA muscles received the same volume of PBS (nega-
tive controls). Before transplantation, human cremaster-derived precursor cells had been cultured as myospheres 
for 7 days, dissociated with 0.25% Trypsin-EDTA, filtered through 70 μm Nylon Cell Strainers (Corning) and 
resuspended in 1X PBS. Animals were caged by groups with ad libitum access to food and water and they were 
monitored for 4 weeks until sacrifice. Animals were sacrificed with CO2 and engrafted muscles were removed 
and processed for histological analysis. Seven-micrometer serial transverse cryosections were cut at intervals of 
100 μm throughout the entire muscles.

Antibodies list.  Primary antibodies used were anti-CD31 (CD31) (M0823; 1:30; Dako); anti-CD90 
(CD90) (ab133350; 1:200; Abcam); anti-hDystrophin (DYSTROPHIN) (NCL-DYS3; 1:20; Leica); anti-hLamin 
A/C (LAMIN A/C) (ab108595; 1:200; Abcam); anti-Laminin (LAMININ) (L9393; 1:200; Sigma); anti-MYOD 
(MyoD1) (SC-377460; 1:50; Santa Cruz); anti-myosin heavy chain all fibers (MYHC) (A4-1025-c; 1:200; 
DSHB); anti-myosin heavy chain embryonic (MYH3) (F1.652; 1:50; DSHB); anti-myosin heavy chain fast fibers 
(MYHC II) (A4.74; 1:200; DSHB); anti-myosin heavy chain slow fibers (MYHC I) (A4.840; 1:200 M; DSHB); and 
anti-PAX7 (Pax7) (Pax7-c; 1:50; DSHB). Secondary antibodies used were donkey anti-mouse Alexa Fluor 488 
(A21202; 1:500; Thermo Fisher), donkey anti-mouse Alexa Fluor 488 (A21042; 1:500; Thermo Fisher), donkey 
anti-mouse Alexa Fluor 555 (A31570; 1:500; Thermo Fisher), donkey anti-rabbit Alexa Fluor 488 (A21206; 1:500; 
Thermo Fisher), and donkey anti-rabbit Alexa Fluor 555 (A31572; 1:500; Thermo Fisher).

Data Availability
All data generated or analysed during this study are included in this published article.
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