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Abstract

Staphylococcus aureus is a serious human and animal pathogen threat exhibiting extraordi-

nary capacity for acquiring new antibiotic resistance traits in the pathogen population

worldwide.

The development of fast, affordable and effective diagnostic solutions capable of discrim-

inating between antibiotic-resistant and susceptible S. aureus strains would be of huge ben-

efit for effective disease detection and treatment. Here we develop a diagnostics solution

that uses Matrix-Assisted Laser Desorption/Ionisation–Time of Flight Mass Spectrometry

(MALDI-TOF) and machine learning, to identify signature profiles of antibiotic resistance to

either multidrug or benzylpenicillin in S. aureus isolates. Using ten different supervised

learning techniques, we have analysed a set of 82 S. aureus isolates collected from 67 cows

diagnosed with bovine mastitis across 24 farms. For the multidrug phenotyping analysis,

LDA, linear SVM, RBF SVM, logistic regression, naïve Bayes, MLP neural network and

QDA had Cohen’s kappa values over 85.00%. For the benzylpenicillin phenotyping analysis,

RBF SVM, MLP neural network, naïve Bayes, logistic regression, linear SVM, QDA, LDA,

and random forests had Cohen’s kappa values over 85.00%. For the benzylpenicillin the

diagnostic systems achieved up to (mean result ± standard deviation over 30 runs on the

test set): accuracy = 97.54% ± 1.91%, sensitivity = 99.93% ± 0.25%, specificity = 95.04% ±
3.83%, and Cohen’s kappa = 95.04% ± 3.83%. Moreover, the diagnostic platform comple-

mented by a protein-protein network and 3D structural protein information framework

allowed the identification of five molecular determinants underlying the susceptible and

resistant profiles. Four proteins were able to classify multidrug-resistant and susceptible

strains with 96.81% ± 0.43% accuracy. Five proteins, including the previous four, were able

to classify benzylpenicillin resistant and susceptible strains with 97.54% ± 1.91% accuracy.

Our approach may open up new avenues for the development of a fast, affordable and
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effective day-to-day diagnostic solution, which would offer new opportunities for targeting

resistant bacteria.

Author summary

Antibiotic resistance is one of the biggest threats to human and animal health. The inces-

sant emergence of new multidrug-resistant bacteria needs to be counterbalanced by the

implementation of effective diagnostics solutions to detect resistance and support treat-

ment selection. The objective of this study is the development of effective diagnostic solu-

tions to identify resistance to benzylpenicillin and other drugs in S. aureus strains

infecting dairy cattle. S. aureus is one of the most common pathogens of clinical mastitis

in the dairy industry, affecting productivity, profitability, animal health and welfare, and

has an extraordinary capacity for acquiring new antibiotic resistance traits. Our diagnostic

solution combines machine learning and mass spectrometry. The application to a test set

of 82 S. aureus isolates collected from 67 cows diagnosed with bovine mastitis across 24

farms discriminated between multidrug-resistant and susceptible strains with (mean

result ± standard deviation over 30 runs on the test set) 96.81% ±0.43% accuracy, and

between benzylpenicillin-resistant and susceptible strains with 97.54% ± 1.91% accuracy.

Through a dedicated bioinformatics pipeline developed on the results of machine learn-

ing, we were able to obtain new insights into the molecular determinants and mechanism

underlying the antibiotic resistance phenotypes. We believe that our approach may open

up new avenues for the development of a fast, affordable and effective diagnostic solution

which would offer new opportunities for targeting resistant bacteria and support with

timely, accurate and targeted treatment selection.

Introduction

Staphylococcus aureus is a major opportunistic pathogen, infecting both humans and a wide

variety of animals including dairy cattle, which have been recently proven to pose an impor-

tant zoonotic potential, being the principal animal reservoir of novel human epidemic clones

[1]. Worldwide, S. aureus is one of the most frequently isolated pathogens of bovine mastitis,

which remains a significant problem in the dairy industry by affecting productivity, profitabil-

ity, animal health and welfare [2]. The majority of bovine mastitis infections caused by S.

aureus exhibit subclinical and chronic manifestations resulting in long-term intramammary

persistence [3]. S. aureus can reproduce swiftly upon entering the mammary gland and induce

immune reactions that can lead to tissue injuries [4]. Most of the time, the immune response

of the cow itself cannot successfully eliminate the S. aureus infection and treatment is needed

[4]. Existing S. aureus vaccines are not considered as a preventive solution due to their yet

unproven effectiveness against infections [5].

In 2000, Gentillini et al. [6] indicated that beta-lactams (penicillins and cephalosporins),

aminoglycosides, macrolides and lincosamides were the most commonly used antibiotics for

treatment of bovine mastitis. In addition, according to a recent survey [7] in 2018, penicillins,

aminoglycosides and third/fourth generation cephalosporins were the most common antibiot-

ics used on the treatment for bovine mastitis in the UK. The first examples of using benzylpe-

nicillin for bovine mastitis treatment can be traced back to the 1940s [8]. However, penicillin-

resistant S. aureus strains, carrying a penicillinase/beta-lactamase emerged shortly after its first
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clinical usage and by the early 1950s, they became pandemic [8]. In 1959 a penicillin derivative,

methicillin, that was resistant to β-lactamase hydrolysis was synthetized. However, immedi-

ately after methicillin was used clinically, methicillin-resistant S. aureus (MRSA) strains were

isolated [9,10]. Resistance to methicillin is conferred by the acquisition of a mobile genetic ele-

ment, the staphylococcal cassette chromosome (SCCmec) carrying the gene mecA encoding a

penicillin-binding protein (PBP2a) [9,10]. Over the years, mutations, acquisition and accumu-

lation of antibiotic resistance-conferring genes, divergent mecA gene homologues (mecC)

[11,12] and SCCmec elements [11] have led to the emergence of multi-resistant MRSA strains

[13].

Nowadays, MRSA are resistant to virtually all β-lactam antibiotics [11]. Since its emergence

in the early 2000’s, livestock-associated methicillin-resistant S. aureus (LA-MRSA) has become

an emerging problem in many parts of the world [14–16]. The detection of mecC MRSA from

dairy cattle in England [12] was reported in 2011. The first isolation of both mecA and mecC
LA-MRSA. In bulk milk from dairy cattle in the UK was reported in 2012 [17]. Worryingly, a

number of studies have suggested possible human-livestock MRSA transmissions [16,18–20].

In addition, several studies have reported that persons with occupational livestock exposure

may be at increased risk of becoming colonized with LA-MRSA [21]. More than 90% of cur-

rent human-associated isolates [22] and varying from 84% to 92% of dairy-related isolates

were observed to be penicillin-resistant [23, 24]. However, the UK surveillance report between

2016 and 2018 showed that penicillin resistance in S. aureus was relatively low (20.4% on aver-

age) in British dairy cattle [25].

It is not uncommon in dairy cattle practice to give antibiotics to healthy animals to prevent

the insurgence of diseases, and to sick animals often without certainty about the actual bacte-

rial origin of the disease. Even when the disease is of recognised bacterial origin, broad-spec-

trum antibiotics are often used, instead of targeting the specific bacterial strain causing the

illness. Underlying such prescription practices is the lack of fast, affordable and effective diag-

nostic solutions, which leaves the veterinarian to primarily rely on educated guesses. These

practices have serious consequences, amongst which is the appearance and diffusion of multi-

drug antibiotic resistance profiles in the pathogen population.

S. aureus has an extraordinary capacity of acquiring new resistance traits by the integration

into its genome of exogenous genetic material via horizontal gene transfer and mutational

events [26,27]. In Staphylococcus spp, the major targets underlying mechanisms of resistance

are the cell envelope, the ribosome and nucleic acids [28]. However, several studies have iden-

tified hypothetical proteins as also being associated with drug resistance specifically in S.

aureus [29].

Characterising the proteins, alone or in combination, that contribute to resistance, can

potentially lead to improved diagnostic tools and therapeutics against antibiotic-resistant S.

aureus and may hold the key to unlocking this global health problem. In veterinary medicine,

the identification of multidrug-resistant (MDR) pathogens and the identification of their anti-

biotic resistance profiles is done by conventional methods such as disk diffusion, epsilometer

test, Vitek, macrodilution and microdilution [30]. However, such diagnostic tools are not

affordable and quick enough to offer real-time control of invasive infections.

Matrix-Assisted Laser Desorption/Ionisation–Time of Flight Mass Spectrometry (MALDI--

TOF) has been an alternative way of detecting antibiotic resistance thanks to its low-cost and

speed [31]. Antibiotic resistance profiles of several organisms could be determined by MAL-

DI-TOF [32–34], and, in combination with machine learning techniques, larger datasets, a

wide range of microbial species identification and complex antimicrobial resistance profile

could be analysed faster and more easily and economically, revolutionizing the field of micro-

biology [35]. S. aureus was one of the most frequently studied genera for antimicrobial
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resistance prediction [36–40]. Rapid and accurate classification of MRSA and methicillin-sensi-

tive S. aureus (MSSA) based on MALDI-TOF spectral of clinical samples were obtained by sev-

eral studies [36,38,39]. Analogously, high accuracy results have been obtained when applying

machine learning approaches to MALDI-TOF spectral data for the prediction of the broad-spec-

trum antibiotic vancomycin. In particular, successful separation of vancomycin-intermediate

(VISA) from vancomycin-susceptible S. aureus (VSSA) on the basis of MALDI-TOF data col-

lected from clinical samples [37,40,41]. Recently, van Oosten and Klein [42], developed classifi-

cation models for S. aureus which assign the mechanisms of action of antibacterial drugs.

The objective of this study was to find a fast and more accurate alternative to standard sus-

ceptibility tests, to profile multidrug and benzylpenicillin resistance in S. aureus isolates. To

this end, we tested the discriminatory power given by the combination of supervised machine

learning and MALDI-TOF, complemented by a protein-protein interaction (PPI) network

and a protein structural analysis workflow. Here for the first time, we demonstrate that this

approach can be used to develop diagnostic solutions that can discriminate with high perfor-

mance between benzylpenicillin- and multidrug-resistant and susceptible bovine mastitis-

causing S. aureus isolates.

Results

Sample analysis

In this study, 82 S. aureus isolates had been cultured from milk samples collected between

March 2004 and May 2005. The samples were from 24 herds each in a different farm (24

farms) where 23 farms were in England (most of them in the south) and one farm was in

Wales (Llangathen, Carmarthen). The locations of the farms and S. aureus isolates collected

from each farm are shown in Fig 1 and the breakdown of isolates per farm is shown on S1

Table. Moreover, S2 Table indicates the antimicrobial susceptibility profile of the resistant iso-

lates that were obtained from the same animal.

VITEK analysis showed that the cohort consisted of 31 benzylpenicillin-resistant and 51

benzylpenicillin-susceptible isolates. Amongst the resistant isolates, 16 isolates were found to

be only penicillin-resistant, while 15 isolates had resistance to multiple antibiotics, among

these 15 isolates 13 were found to be resistant to three or more antibiotics, with at least one

antimicrobial agent in three antimicrobial classes (multidrug-resistant, MDR), while two iso-

lates were resistant to two or more antibiotics with at least one antimicrobial agent in two anti-

microbial classes (extensively drug-resistant, XDR). We considered the MDR and XDR as one

class and named it as MDR for simplicity. As shown in Fig 2, out of 15 multidrug-resistant iso-

lates, 11 isolates were resistant to benzylpenicillin, clindamycin, erythromycin, tilmicosin and

tylosin; 1 isolate was resistant to benzylpenicillin, clindamycin, tilmicosin and tylosin; 1 isolate

was resistant to benzylpenicillin, tetracycline and tilmicosin; 1 isolate was resistant to benzyl-

penicillin and tetracycline, and 1 isolate was resistant to benzylpenicillin, cefalotin, cefoxitin

and oxacillin. 51 isolates were found to be susceptible to all antibiotics used in this study which

were benzylpenicillin, cefoxitin, oxacillin, cefalotin, ceftiofur, cefquinome, amikacin, gentami-

cin, kanamycin, neomycin, enrofloxacin, clindamycin, erythromycin, tilmicosin, tylosin, tetra-

cycline, florfenicol and trimethoprim/sulfamethoxazole.

Generation of MALDI-TOF peak lists and set-up of the classifiers

A total of 312 MALDI-TOF raw data spectra had been obtained from 82 S. aureus isolates, on

average 4 replicate spectra per isolate. The peak lists, i.e. the lists of paired mass/charge (m/z)

ratios and corresponding intensity values, were extracted from the raw spectra as specified in

the Methods Section.
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Supervised machine learning algorithms were used to implement classifiers to verify if the

MALDI-TOF peaks associated with isolates could be used to predict their resistance or suscep-

tibility to benzylpenicillin and multidrug. Being based on supervised learning, all methods

Fig 1. Location of the enrolled farms in the United Kingdom. The circles represent the location of the farms and the

size of the circles indicate the number of S. aureus isolates in the farms. The highest number of isolates provided by a

single farm was 21, while the lowest was 1. The green colour represents the susceptible S. aureus isolates while the dark

and light blue is for multidrug-resistant and benzylpenicillin-resistant only S. aureus isolates, respectively. Natural

Earth was used as base to construct the map for the United Kingdom (https://www.naturalearthdata.com/downloads/

10m-cultural-vectors/10m-admin-0-countries/), the map was created with rnaturalearth package in R.

https://doi.org/10.1371/journal.pcbi.1009108.g001
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required the availability of training datasets for model building and validation datasets for

assessing the performance of the classifier. The prediction performance of each classifier was

evaluated measuring accuracy, sensitivity, specificity and kappa. Thirty iterations of nested

cross-validation (described in Methods) were used to train each classifier.

The following classification methods, available in the scikit-learn library in Python, were

tested: naïve Bayes, linear and non-linear (RBF kernel) support vector machines (SVM), deci-

sion tree, random forests, multi-layer perceptron neural networks (MLP), AdaBoost (Ada-

Boost-SAMME version), logistic regression, linear discriminant analysis (LDA) and quadratic

discriminant analysis (QDA).

Analysis of multidrug-resistant vs susceptible isolates

We first focused on investigating the possibility to develop a classifier to verify if MALDI-TOF

peak lists associated with isolates could be used to predict their multidrug phenotype. Specifi-

cally, we considered the spectra of 15 multidrug-resistant isolates (13 MDR and 2 XDR) and

51 susceptible isolates (susceptible to all antibiotics tested in this study). A total of 249 raw

spectra were analysed. The pre-processing led to the identification of four different peaks

(Table 1) found to appear in at least 30% of all number of spectra. Due to the unbalanced

nature of this specific data set (76% of samples were susceptible and only 24% were resistant),

we first standardised the four features by a down-sampling method to build robust classifiers

Fig 2. UpSet plot comparing the profiles of benzylpenicillin-resistant Staphylococcus aureus isolates. The total size of resistant S. aureus isolates is shown on the left

bar plot. Antibiotic-resistant profiles of S. aureus isolates are visualized by the bottom plot and the occurrence is represented on the top bar plot.

https://doi.org/10.1371/journal.pcbi.1009108.g002
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[43]. At each one of the 30 runs, 15 samples were randomly chosen out of the initial 51 suscep-

tible samples and a final balanced (50% resistant, 50% susceptible) dataset was generated. The

four peaks were then used as features to build ten classifiers and to develop predictive models

for the multidrug phenotype. Before the classification, features were standardised (mean cen-

tred and unit variance) then resistant and susceptible isolates were labelled as 0 and 1, respec-

tively. 30 runs using nested cross-validation were performed. Amongst the investigated

machine learning approaches, LDA, linear SVM and RBF SVM were found as the top three

best performance showing algorithms, respectively. Diagnostic systems trained on individual

isolates coming from 24 different farms achieved up to (mean result ± standard deviation over

30 runs on the test set): accuracy = 96.81% ±0.43%, sensitivity = 99.88% ± 0.41%, specific-

ity = 95.96% ± 0.52%, and kappa = 91.83% ± 1.37% in LDA algorithm. Detailed performance

results of all classifiers on test data can be found in Fig 3.

Analysis of benzylpenicillin-resistant only vs susceptible isolates

Next, we investigated resistance and susceptibility to benzylpenicillin only. This was to isolate

specific patterns underlying resistance to this specific antibiotic. We chose benzylpenicillin

because it was the only antibiotic for which we had singly resistant isolates.

To this aim, the spectra of the 16 benzylpenicillin-resistant only isolates and 51 susceptible

isolates (susceptible to all antibiotics tested in this study) were first pre-processed as described

in the Methods Section. Five peaks were found in at least 30% of the overall number of spectra

(Table 2). Due to the unbalanced nature of this specific data set (76% of samples are susceptible

and only 24% are resistant), we first standardised the five features by a down-sampling method

to build robust classifiers [43]. At each one of the 30 runs, 16 samples were randomly chosen

out of the initial 51 susceptible samples and a final balanced (50% resistant, 50% susceptible)

dataset was generated. The five peaks were then used as features to build ten classifiers and to

develop predictive models for the benzylpenicillin phenotype. Before the classification, features

were standardised (mean centred and unit variance) then resistant and susceptible isolates

were labelled as 0 and 1, respectively. 30 runs using nested cross-validation was performed.

Amongst the investigated machine learning approaches RBF SVM, neural network and logistic

regression were those that achieved the best performance. Diagnostic systems trained on indi-

vidual isolates coming from 24 different farms achieved up to (mean result ± standard devia-

tion over 30 runs on the test set); accuracy = 97.54% ± 1.91%, sensitivity = 99.93% ± 0.25%,

specificity = 95.04% ± 3.83%, and kappa = 95.04% ± 3.83% in RBF SVM algorithm. Detailed

performance results of all classifiers on test data can be found in Fig 4.

Notably, four peaks (4.807kDa, 6.422kDa, 6.891kDa and 9.621kDa) were found common in

the analysis of benzylpenicillin-resistant vs susceptible and multidrug-resistant vs susceptible

Table 1. Statistical evaluation of the 4 peaks with an overall frequency of appearance higher than 30% based on the multidrug resistant vs susceptible data set.

Mass (kDa) PTTA PWKW Ave1 Ave2 StdDev1 StdDev2 PA PA1 PA2

4.807 3.78E-12 1.34E-07 7.27 19.55 5.89 3.72 66.88 35.71 98.04

6.422 0.00036 0.041891 6.92 10.30 4.54 2.00 45.31 35.71 54.90

6.891 0.02021 0.12752 31.98 43.04 23.96 14.89 80.18 64.29 96.07

9.621 6.81E-08 3.73E-07 32.39 43.00 3.28 6.23 100.00 100.00 100.00

PTTA is the p-value of Welch‘s t-test; PKWK is the p-value of Wilcoxon test; index 1 refers to resistant isolates; index 2 refers to susceptible isolates; Ave is the overall

intensity average; Ave1 is the intensity average of class ‘Resistant’; Ave2 is the intensity average of class ‘Susceptible’; StdDev is the overall intensity standard deviation;

StdDev1 is the intensity standard deviation of class ‘Resistant’; StdDev2 is the intensity standard deviation of class ‘Susceptible’; PA is the overall proportion of

appearance; PA1 is the proportion of appearance of class ‘Resistant’; PA2 is the proportion of appearance of class ‘Susceptible’.

https://doi.org/10.1371/journal.pcbi.1009108.t001
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isolates. When comparing the intensities of these four peaks in the two datasets (resistant vs.

susceptible) we observed that 4.807kDa, 6.891kDa and 9.621kDa had a higher average in sus-

ceptible isolates consistently while 6.422kDa had a higher average of intensity in

Fig 3. Supervised machine learning prediction of multidrug resistance spectral signature profiles. Prediction performance results of different classifiers (logistic

regression, linear SVM, RBF SVM, MLP neural network, decision tree, random forest, AdaBoost, naïve Bayes, quadratic discriminant analysis (QDA) and linear

discriminant analysis (LDA)) that were used to classify the multidrug resistance profiles are shown on the X-axis. Four performance indicators have been used to

evaluate the classification: accuracy, kappa, sensitivity and specificity. The scores for each performance metric are indicated in the Y-axis.

https://doi.org/10.1371/journal.pcbi.1009108.g003
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benzylpenicillin-resistant only isolates class. 4.305kDa which was specific to benzylpenicillin-

resistant only analysis had higher average intensity in resistant than susceptible isolates.

Machine learning analyses undertaken to prove the effectiveness of our

method to differentiate susceptibility/resistance profiles rather than strain

differences

Because two of the five discriminant proteins found in this work were of ribosomal origins

and ribosomal proteins have been used for the discrimination of major S. aureus lineages

based on MALDI-TOF analysis [44–47], we performed further analyses in support that our

classifiers were picking up susceptibility/resistance differences rather than strain differences.

First, we investigated if and how in the sole presence of the ribosomal peaks as input features

or in their absence the performance of the classifiers changed and how. As shown in S3 Table

by removing only the ribosomal proteins from the analysis of both multidrug and benzyl-peni-

cillin datasets, the performance of the classifiers decreases but not significantly, all indicators

are still above 80%. However, when using only the ribosomal proteins as input features for the

analysis of both multidrug and benzyl-penicillin datasets, the specificity and Cohen’s kappa

indicators drop to unacceptable values for both the multidrug and benzyl-penicillin predicted

phenotypes. Altogether these results indicate that the ribosomal proteins in combination with

the other discriminant proteins are contributing to the susceptibility/resistance classification

but do not play a major role in the classification.

Biomarker characterization–identification of the proteins found to

correspond to the MALDI-TOF spectral peaks recognised as discriminant

by the trained classifiers

The five peaks identified as providing optimal discrimination between benzylpenicillin-resis-

tant only and susceptible isolates were further analysed to identify their correspondent S.

aureus proteins. It should be noted that the four peaks identified as providing optimal discrim-

ination between multidrug-resistant and susceptible were also amongst these peaks. When

compared to the reference S. aureus Newbould 305 (ATCC 29740) proteome, the five peak

masses identified the following five S. aureus proteins: two hypothetical proteins (molecular

weights of 4801.95 and 6901.37 Da), RpmJ, RpmD and DNA-binding protein HU. The molec-

ular weights of the corresponding proteins changed slightly from those in the original spectra

as a result of the search criteria outlined in the Methods (Table 3). In order to better under-

stand the functions and roles of these proteins within the drug resistance phenotype, we

Table 2. Statistical evaluation of the 5 peaks with an overall frequency of appearance higher than 30% based on the benzylpenicillin resistant only vs susceptible

data set.

Mass (kDa) PTTA PWKW Ave1 Ave2 StdDev1 StdDev2 PA PA1 PA2

4.305 0.258564 0.213998 10.20 9.34 2.60 2.64 34.33 37.50 33.33

4.807 7.02E-08 5.96E-07 12.94 19.55 4.02 3.72 92.54 75.00 98.04

6.422 0.39999 0.50342 10.81 10.30 2.44 2.00 58.21 68.75 54.90

6.891 5.69E-12 8.31E-08 10.00 43.04 8.80 14.89 76.12 56.16 96.07

9.621 1.81E-10 3.35E-08 29.84 43.00 5.54 6.23 100.00 100.00 100.00

PTTA is the p-value of Welch‘s t-test; PKWK is the p-value of Wilcoxon test; index 1 refers to resistant isolates; index 2 refers to susceptible isolates; Ave is the overall

intensity average; Ave1 is the intensity average of class ‘Resistant’; Ave2 is the intensity average of class ‘Susceptible’; StdDev is the overall intensity standard deviation;

StdDev1 is the intensity standard deviation of class ‘Resistant’; StdDev2 is the intensity standard deviation of class ‘Susceptible’; PA is the overall proportion of

appearance; PA1 is the proportion of appearance of class ‘Resistant’; PA2 is the proportion of appearance of class ‘Susceptible’.

https://doi.org/10.1371/journal.pcbi.1009108.t002

PLOS COMPUTATIONAL BIOLOGY Mass spectrometry and machine learning to diagnose drug resistant Staphylococcus aureus

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009108 June 11, 2021 9 / 28

https://doi.org/10.1371/journal.pcbi.1009108.t002
https://doi.org/10.1371/journal.pcbi.1009108


characterised the molecular functions (MF), cellular components (CC), and biological pro-

cesses (BP) they may carry out. RpmJ and RpmD are the 50S ribosomal proteins L36 and L30,

respectively. HU is a histone-like DNA-binding protein, which interacts with DNA to protect

Fig 4. Supervised machine learning prediction of benzylpenicillin resistance spectral signature profiles. Prediction performance results of ten different classifiers

(logistic regression, linear SVM, RBF SVM, MLP neural network, decision tree, random forest, AdaBoost, naïve Bayes, quadratic discriminant analysis (QDA) and linear

discriminant analysis (LDA)) that were used to classify the benzylpenicillin resistance profiles are shown on the X-axis. Four performance indicators have been used to

evaluate the classification: accuracy, kappa, sensitivity and specificity. The scores for each performance metric are indicated in the Y-axis.

https://doi.org/10.1371/journal.pcbi.1009108.g004
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from denaturation [48]. For the hypothetical proteins, we used 3D threading methods to pre-

dict the Gene Ontology (GO) functions (Fig 5). The hypothetical protein of 4801.95Da was

annotated as COPII-coated vesicle cargo loading (BP), intracellular protein transport (BP),

Table 3. Annotation of the S. aureus proteins corresponding to the five MALDI-TOF peaks recognized as significant by the trained classifiers: peak mass charge

ratio, predictedprotein mass, top PSI-BLAST matches, conserved domain analyses, cellular locations and overexpressed classes are shown.

MALDI-TOF

Peak

Protein (MW) PSI-BLAST Match Identity (e-

value)

Domain (e-value) PSORTB location

(score)

Overexpressed Class

m/z 4305.59 RpmJ (4305.36Da) 50S ribosomal protein

L36

100.00% (4e-

16)

Ribosomal_L36 (1.2e-19) Cytoplasmic (10.00) Benzylpenicillin

resistant isolates

m/z 4807.21 HP1 (4801.95Da) Uncharacterized protein 100.00% (4e-

14)

No conserved domain was

identified.

Cytoplasmic

membrane (9.55)

Susceptible isolates

m/z 6422.37 RpmD (6422.48Da) 50S ribosomal protein

L30

100.00% (4e-

33)

Ribosomal_L30 (3.4e-21) Cytoplasmic (9.67) Benzylpenicillin

resistant isolates

m/z 6891.17 HP2 (6901.37Da) Membrane protein 100.00% (1e-

07)

No conserved domain was

identified.

Cytoplasmic

membrane (9.55)

Susceptible isolates

m/z 9621.26 DNA-binding protein

HBsu (9626.01Da)

HU family DNA-

binding protein

100.00% (2e-

56)

Bacterial DNA-binding

protein (6.2e-37)

Cytoplasmic (9.67) Susceptible isolates

HP: hypothetical protein. Column 1 shows the mass charge ratio of the MALDI-TOF peaks identified by the machine learning framework; column 2 shows the

predicted molecular weights of the proteins corresponding to the MALDI-TOF peaks; column 3 shows best PSI-BLAST matches; column 4 shows the identities and e-

values obtained with the PSI-BLAST matches; column 5 shows the domain and e-value predicted with CDD database; column 6 shows the results obtained with the

PSORTB predictor; and column 7 shows the overexpressed class where the corresponding proteins have the highest intensity.

https://doi.org/10.1371/journal.pcbi.1009108.t003

Fig 5. 3D structures of the five proteins found to correspond to the MALDI-TOF spectral peaks recognized as discriminant between benzylpenicillin

resistant and susceptible isolates. Top row from left to right: homology model of ribosomal protein L36p (RpmJ, mw: 4305.36Da), threading model of

hypothetical protein (HP1, mw: 4801.95Da) and homology model of ribosomal protein L30p (RpmD, mw: 6422.48Da). Bottom row from left to right: threading

model of hypothetical protein (HP2, mw: 6901.37Da) and homology model of bacterial DNA-binding protein (HU, mw: 9626.01Da).

https://doi.org/10.1371/journal.pcbi.1009108.g005
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proteolysis (BP), homophilic cell adhesion via plasma membrane adhesion molecules (BP) and

ion binding (MF). The hypothetical protein of 6901.37Da was annotated as being involved

with the small molecule metabolic process (BP), antibiotic metabolic process (BP), lipid trans-

port (BP) and ion binding (MF).

With the aim to further characterise the function of these proteins we did a PSI-BLAST

comparative analysis; all discriminant proteins with 100% coverage and significant e-values

are shown in Table 3.

Next, we investigated the drug resistance interactome by building the protein-protein inter-

action network. The benzylpenicillin PPI network, including the four significant proteins

(RpmJ, RpmD, HU and HP2) and their 149 first neighbours, was generated (Fig 6). It should

be noted that HP1 could not be found in the S. aureus proteome that was available in STRING

database. GO and KEGG analyses of the network showed enrichment for ribosome, nucleic

acid binding and catalytic activity (Fig 7).

Tetracycline resistance protein (TetM) and elongation factor G (FusA) were found as the

first neighbours of RpmJ and RpmD based on the experimental findings of their homologs in

E. coli [49, 50]. Additional four proteins (MecA, BlaZ, PbpA and metallo-beta-lactamase

Fig 6. Protein-protein interaction network of the proteins found to correspond to the MALDI-TOF spectral peaks recognized as discriminant between

benzylpenicillin resistant and susceptible isolates. The PPI network showing the four discriminant proteins, green circles, (RpmJ, RpmD, HU and hypothetical

protein 2 (HP2)) and their first neighbour interactors (orange colours). Amongst these first shell interacting partners, purple nodes represent the antibiotic-

resistant proteins (BlaZ, NorA, MecA, PbpA, ErmA, ABC-2, TetM, FusA and MBL) predicted by ResFinder v3.1 [94].

https://doi.org/10.1371/journal.pcbi.1009108.g006
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Fig 7. Functional enrichment analysis of the benzylpenicillin network in Staphylococcus aureus based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathways. The network contains the 4 discriminant proteins, that were found to be discriminant between benzylpenicillin resistant and

susceptible isolates, and their 149 first neighbours. GO consists of cellular component (CC), molecular function (MF) and biological process (BP). In each ontology, the

enriched categories and the number of genes populating them are shown. Likewise, the enriched KEGG pathways and the number of genes populating each pathway are

indicated.

https://doi.org/10.1371/journal.pcbi.1009108.g007
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(MBL)) were associated with beta-lactams, rRNA adenine N-6-methyltransferase (ErmA),

macrolides resistance, multidrug efflux pump (NorA) and ABC transporter protein (ABC-2).

These proteins were found to interact with some first neighbours of the discriminant proteins

in the network. Penicillin-binding protein 2 prime (MecA) was shown to share a common

interactor, cell division protein (DivIB), with the discriminant protein RpmD. The interactions

of MecA-DivIB (interaction score: 0.639) and DivIB-RpmD (interaction score: 0.864) are

based on experimental/biological data coming from homologs in other species [51]. MecA was

also shown to share a common interactor, DNA polymerase I (PolA), with the discriminant

protein HU. While the interaction of MecA-PolA was based on text mining (interaction score:

0.432), the interaction of PolA-HU was based on experimental/biological data (interaction

score: 0.668) obtained from homologs in other species [52, 53]. PolA was the only protein

which links (based on text mining) HU to other beta-lactam resistance proteins such as peni-

cillin-binding protein I (PbpA) (interaction score: 0.499) and beta-lactamase (BlaZ) (interac-

tion score: 0.425) [52,54]. PbpA was also shown to share the common interactor DivIB with

discriminant proteins RpmD and RpmJ. ErmA was shown to share common nodes (ribosomal

proteins) with the discriminant proteins RpmD and RpmJ. ErmA was shown, based on text

mining, to also interact with PolA, linked to HU as previously described, (interaction score:

0.611) [55] and to other proteins (RpsA, MetG and GuaA), based on co-expression, gene

fusion and co-occurrence (interaction scores>0.400). NorA was shown to share a common

interactor, DNA topoisomerase (TopA) with the discriminant protein HU. ABC-2 was shown

to share common interactors, signal recognition particle proteins FfH and FtsY with discrimi-

nant proteins RpmD and RpmJ. MBL was shown to share a common interactor, putative fatty

oxidation complex protein (AID38649.1), with discriminant protein RpmJ based on co-

expression, gene fusion and co-occurrence (interaction scores > 0.400).

Notably, the PPI analysis of the benzylpenicillin-resistant proteome, 153 proteins–a total of

4 discriminant proteins and 149 first neighbour proteins–showed higher connectivity (cluster-

ing coefficient 0.728) than the complete S. aureus proteome network (clustering coefficient

0.421). The average number of neighbours per protein was 68.719 in the benzylpenicillin-resis-

tant proteome network and 27.190 in the complete S. aureus proteome network. In terms of

network density, the values ranged between 0.452 (benzylpenicillin-resistant proteome net-

work) and 0.009 (complete S. aureus proteome network) and for the network heterogeneity

the values ranged between 0.528 benzylpenicillin-resistant proteome network) and 1.243

(complete S. aureus proteome network).

Discussion

Antibiotic-resistant S. aureus infections are a major concern in human and veterinary medi-

cine. Recently, dairy cattle have been shown to be an important risk factor for zoonotic transfer

[1]. Fast, affordable and effective diagnostic solutions which are able to detect the specific S.

aureus strains and their antibiotic resistance and susceptibility profiles are key to support effec-

tive and targeted treatment selection.

Motivated by identifying the most effective method to discriminate (MDR- and benzylpeni-

cillin-) resistant and susceptible S. aureus strains, we approached the task in a principled way

by applying optimization techniques to overcome uncertainty in data features and by using a

wide repertoire of classification methods. In general, most of the classifiers tested achieved

high performance and had kappa values over 85.00%. However, amongst the investigated

machine learning approaches RBF SVM, neural network and logistic regression were those

that achieved the best performance. Diagnostic systems trained on individual isolates coming

from 24 different farms achieved up to (mean result ± standard deviation over 30 runs on the
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test set): accuracy = 97.54% ± 1.91%, sensitivity = 99.93% ± 0.25%, specificity = 95.04% ±
3.83%, and kappa = 95.04% ± 3.83% in RBF SVM algorithm. We showed that our classification

methods while offering high out-of-sample accuracy can also be solved in practical computa-

tional times.

While our primary aim was to develop machine learning-powered diagnostics discriminat-

ing benzylpenicillin-resistant and susceptible isolates of bovine mastitis-causing S. aureus, we

also characterized the molecular determinants and interactions underlying the identified anti-

biotic resistance and susceptible patterns. Several isolates were obtained from the same animal,

some of them also presented the same antimicrobial susceptibility profile, possibly suggesting

that they represent the same strain. Moreover, none of the S. aureus isolates, except one, were

found resistant to cefoxitin or oxacillin, despite being resistant to penicillin, suggesting that

penicillin-resistant S. aureus isolates in this study were maybe indeed producers of penicillin-

ase instead of being MRSA. This might be related to the fact that since the first report of S.

aureus resistant to methicillin detected in a dairy herd in the United Kingdom [12] and from

the first isolation in 2012, of both mecA and mecC LA-MRSA in bulk milk from dairy cattle in

the UK [17], frequency of detection of mecA and mecC LA-MRSA in the UK, gathered from

surveillance and large-scale dairy cattle studies, [11,17] remained low [15]. The low frequency

of resistance to cefoxitin or oxacillin found in our cohort is possibly reflecting that LA-MRSA

is present in the UK, possibly at a low prevalence level.

Our findings showed that the five MALDI-TOF peaks recognized as significant by the

trained classifiers were found to correspond to two ribosomal proteins (RpmJ and RpmD),

DNA-binding HU protein and two hypothetical proteins. RpmD, DNA-binding HU protein

and two hypothetical proteins were also found to give the best discrimination between multi-

drug-resistant and susceptible profiles of S. aureus.
The notion that components of the ribosome are important in the growth rate and antibi-

otic resistance of bacteria is a well-known concept [56]. Among those determinants involved

in intrinsic resistance, ribosomal proteins have been found to deal with the general response to

stress [57]. Similarly, recent findings highlighted the existence of ribosomal mutations confer-

ring resistance to antibiotics of several classes not targeting the ribosome [56]. Specifically, it

has been shown that ribosomal mutations can contribute to the evolution of multidrug-resis-

tant profiles, by inducing ribosomal mis-assembly, that in turn leads to a systematic transcrip-

tional cell alteration, ultimately impacting resistance to multiple antibiotics by interfering with

different cellular pathways [56]. RpmJ was shown to be up-regulated in Pseudomonas aerugi-
nosa when treated with ciprofloxacin and fluoroquinolone [58] and similarly in S. epidermidis
[59]. Moreover, rpmJ was shown to confer intrinsic multidrug resistance to a varied set of anti-

biotics (nitrofurantoin, sulfamethoxazole, rifampicin, tetracycline, vancomycin, ampicillin,

colistin, erythromycin) in E. coli, where deletion of this gene caused the bacteria to become

more sensitive than wild type [60]. In comparison, fewer literature works have been published

about rpmD and antibiotic resistance. Sharma-Kuinekel and collaborators showed that rpmD
was downregulated in S. aureus strains which had the antibiotic tolerance related LytSR system

silenced [61].

The discriminant protein DNA-binding HU protein was found essential in the bacterial

survival and growth of S. aureus [62]. It was also previously found to be correlated to antibiotic

resistance by being upregulated in the mutant S. aureus isolates with silenced serine/threonine

kinase PknB, which also has a penicillin-binding domain [63]. Besides the proteins with

known functions, we also identified two hypothetical proteins, but we were unable to find any

evidence so far linking them to antibiotic resistance. Although it was not possible for us to

identify the function of these hypothetical proteins, by applying PSI-BLAST and PSORTb v3.0

together with 3D threading modelling searches, the hypothetical proteins are predicted to be
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involved in pathways such as antibiotic metabolic process, lipid/protein transport and ion

binding.

Although the elected mechanism to acquire resistance in S. aureus is through horizontal

gene transfer, spontaneous mutations in the core genome and positive selection are also mech-

anisms used by the bacteria to acquire several resistances (e.g., fluoroquinolones, linezolid and

daptomycin) [27]. The spontaneous mutation mechanisms involving ribosomal proteins in S.

aureus has been previously found to raise antibiotic resistance (e.g. vancomycin) [64]. Future

efforts may integrate genome sequencing analysis of the isolated strains towards elucidating

and understanding the mechanisms underlying the antibiotic resistance.

We were not surprised that known genes such as blaZ, mecA, pbpA, conferring resistance to

penicillin in S. aureus were not amongst the MALDI-TOF peaks recognized as significant by

the trained classifiers. This is because the mass range resolution of the MALDI-TOF was set to

be between 2kDa and 12kDa, and the BlaZ, MecA, PbpA are all proteins with molecular

weights higher than 20kDa. However, our PPI cluster analysis results showed that these pro-

teins known to confer resistance have all been found to interact with most of the proteins cor-

responding to the MALDI-TOF peaks and to form a highly connected benzylpenicillin

proteome network.

While our approach successfully developed a diagnostic solution to identify antibiotic-resis-

tant signatures, there are limitations to our method which future work may build upon. For

one, the working range of 2-12kDa does not give the possibility to study the complete S. aureus
proteome in relation to a specific phenotype.

The MDR and XDR isolates, collectively named multidrug-resistant isolates, used in this

study were all resistant to benzylpenicillin in addition to other antimicrobial agents. Therefore,

there is a bias towards peaks determining resistance or susceptibility to benzylpenicillin, which

may explain why all 4 multidrug discriminant peaks occurred within the set of benzylpenicil-

lin-only discriminant peaks.

In this work, we have opted to pre-process all the data together as previously done by sev-

eral studies [42,65–68] instead of splitting it into a training and validation sets for several rea-

sons. First, given the low number of samples in each of the two minority classes (multidrug

resistant and benzylpenicillin-only resistant) it would have been not possible to have a suffi-

cient number of observations in each set and each partition being enough representative to

yield a good peak selection. Moreover, because some of the peaks appeared in just a subset of

these samples (minority classes), the random sampling of the data performed could increase

the chances of getting spurious peaks in the training set that would not represent the whole

minority class. To avoid these problems, we pre-processed all the data together.

Moreover, this study has been confined to a relatively small number of isolates. Ideally, a

larger number of isolates would have allowed to refine the machine learning predictions. How-

ever, other studies attempted the analysis of antimicrobial resistance on S. aureus with MAL-

DI-TOF and machine learning and similar sample size. For example, Tang et al. [39], to

implement heterogenous VISA (hVISA) detection models, examined 10 MSSA and 10 MRSA

clinical isolates recovered from individual patients. Wang et al. [40], used MALDI-TOF mass

spectra obtained from 35 hVISA/ VISA and 90 VSSA isolates. Mather et al. [37], tested 21

VISA, 21 hVISA, and 38 VSSA isolates to develop their SVM based models. Usually, the larger

the dataset the greater is the statistical power for pattern recognition. However, in our machine

learning approach, we have used the Nested CV approach which is known to produce robust

and unbiased performance estimates regardless of sample size [69]. The machine learning per-

formance indicators associated with our models are high suggesting that models were suffi-

ciently trained.
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In addition, we acknowledge, as a limitation of this study, that our data were collected from

farms only in England and Wales. However, this should not pose a restriction on our method’s

ability to predict resistance or susceptibility in other farms across the globe. If it is given a suffi-

ciently diverse distribution of data to train the supervised learning algorithms, this would

reduce any geographical bias that could affect predictive capability. This study should be con-

sidered a proof-of-principle where we conducted a feasibility work to invest on with larger

samples and geographical areas.

Finally, the downside of requiring larger sample sizes is limitations in data availability,

often requiring reliance on public databases and thus compromise on the type of available data

and possible studies. Unfortunately, in omics and other technology-based data collection anal-

ysis, very often only small samples are available, this is because of limited in vivo experiments,

protocols, involvement of human participants and costs. For example, whilst not being able to

rely on large amounts of data, we had the unprecedented possibility to demonstrate that our

methodology is associated with high classification accuracy even when using small sample size,

this applicability may facilitate research scenarios where only limited data is available.

In addition to the machine learning analyses undertaken to prove the effectiveness of our

method to differentiate susceptibility/resistance profiles rather than strain differences, we also

compared the MALDI-TOF spectral peaks spectral peaks (4305.59Da, 4807.21Da, 6422.3Da,

6891.17Da and 9621.26Da) recognised as discriminant by our trained classifiers with the peaks

previously found in literature to discriminate the main clonal lineages of S. aureus [41,44–47].

When we compared our peaks with those found by Wolters et al. [45], Böhme et al. [46] and

Camoez et al. [47], no common peaks were found between the studies. However, similarities

were found between our results and the findings reported by Josten et al. [44] and Lasch et al.
[70].

In particular, the peaks at m/z 4305.59 (RpmJ), 6422.37 (RpmD), 6891.17 (HP2) and

9621.26 (DNA binding protein HU) were revealed to be in common between our study and

Josten et al. [44]. However, the variant (m/z 6397) of the ribosomal protein RpmD found by

Josten et al. [44] to be discriminant for the subgroup of CC22 strains was not present in our

spectra as we only detected the peak at m/z 6422.37 corresponding to RpmD. Moreover,

although the protein RpmD was considered a biomarker by Josten et al. [44], it only showed a

limited sensitivity (0.167), reflecting a low level of conservation of the mutations in the clonal

lineages. For example, the CC22 biomarker was not conserved in all spa types of this clonal

complex [44]. The peaks m/z 4305.59 (4306 in Josten et al. [44]), 6891 (6889 in Josten et al.
[44]) and 9621.26 (9627 in Josten et al. [44]) although identified in the S. aureus spectra by Jos-

ten et al. [44] were not included in the list of markers distinguishing the different strains.

Moreover, Lasch et al. [70] analysed 59 diverse S. aureus isolates from 6 different lineages

using MALDI-TOF mass spectrometry. Based on their results over a gel view representation

and a hierarchical cluster analysis, the authors indicated that, with a few exceptions, CC-spe-

cific biomarkers for S. aureus are an exception rather than a rule. The authors found 3 regions

that could be considered biomarkers for some lineages: m/z 3875 and 3891 (CC5); m/z 6552

and 6592 (CC8); m/z 5002 and 5032 (CC22). Therefore, none of the peaks used in our study

were considered biomarkers by Lasch et al. [70]. The results found by Lasch et al. [70] clearly

suggests that typing S. aureus can be rather unsuccessful due to a lack of stable biomarkers to

distinct clonal groups, a low classification accuracy based on different CC types and a cluster

analysis that indicate the limited possibilities to differentiate S. aureus below species levels.

Further comparisons were also made with existing literature coupling MALDI-TOF mass

spectrometry with a refined analysis framework to accurate classify resistant and susceptible S.

aureus strains. In particular, the peaks (m/z 4305.59, 4807.21, 6422.3, 6891.17 and 9621.26) rec-

ognised as discriminant for the susceptible and resistant profiles in this study with those
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previously found [36, 39] differentiating MSSA and MRSA recovered from clinical samples or

at distinguishing VSSA from hVISA/VISA [37,40] no similar peaks were detected under the

experimental conditions chosen here. In particular, our peaks often mapped in the higher and

non-overlapping mass range of the spectrum. Whereas, when we compared our peaks with

those found by Asakura et al. [41] to differentiate VISA, hVISA, and VSSA clinical isolates, we

found that one peak (m/z 4306) was in common between the two studies. This peak is among

23 other peaks that were found to be statistically significant among VISA, hVISA and VSSA

(p< 10−4, Kruskal-Wallis test). This peak corresponds to the ribosomal protein RpmJ. Indicat-

ing that ribosomal proteins can be correlated with resistance phenotypes. This was also

reported by Josten et al. [44] when analysing the peak pattern of 401 MRSA and MSSA strains

(see above).

Although we have not typed our strains, which we acknowledge as a limitation of our study,

we believe that it is not unreasonable to assume that we have classified the resistance/suscepti-

bility phenotype and not the strains. Our supervised learning-based classifier consisted of a

binary classification (resistant/susceptible), where each observation (isolate) was labelled

according to the MIC values obtained for each specific isolate. Given the high performance

indicators accompanying our classification and given the variety of different peaks among

strains as shown by Josten et al. [44], Wolters et al. [45], Böhme et al. [46], Camoez et al. [47]

and Lasch et al. [70], it is very unlikely that we could separate all the different strains circulat-

ing in just two groups and importantly with such high performance indicators. From a

machine learning point of view, given the limited number of observations, relative high num-

ber of possible strains, binary outcome, number of genetic/molecular traits different among

the strains it would not had been possible to separate the different strains in just two groups

especially with such high-performance scores. This is also in agreement with Lasch et al. [70]

that although performing an elegant modular/hierarchical ANN analysis of spectra from the S.

aureus data set (we only did a one-step machine learning classification), apart from a fairly

good classification accuracy for CC8 strains of S. aureus and, to a lesser extent for strains of

CC5 (80%) and CC30 (78%), the classification accuracy for the other strains was unacceptably

low. Despite intensive efforts aiming at improving these outcomes, neither variations of the

spectral pre-processing nor of the network topology resulted in better classification results

according to the authors.

Overall, we demonstrated that the combination of supervised machine learning and MAL-

DI-TOF mass spectrometry can be used to develop an effective computational diagnostic solu-

tion that can discriminate between benzylpenicillin/multidrug-resistant and susceptible S.

aureus strains. Our solution could save time and money with respect to traditional susceptibil-

ity testing which is not viable for day-to-day monitoring of antibiotic resistance. Our solution

could support farmers with timely, accurate and targeted treatment selection.

Methods

Ethics statement

This study received an ethical review and approval from the Clinical Ethical Review panel at

the School of Veterinary Medicine and Science, University of Nottingham (approval Reference

number: 2067 170717). All data is owned by QMMS ltd.

Data source

82 S. aureus isolates were collected from 67 animals that were diagnosed with bovine mastitis

in 24 different farms, in England and Wales between March 2004 and May 2005. The animals

with mastitis were either primiparous (n = 9) or multiparous (n = 73, median parity = 4). On
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the day of sample collection, the days in milk of the cows varied from 1 to 569 days with a

median value of 160 days.

Sample analysis

Bovine mastitis-causing S. aureus isolates were tested on VITEK 2 AST-GP79 using one Anti-

biotic Susceptibility Testing (AST) card per isolate. Each card was filled with at least one posi-

tive control well with no antibiotic and multiple wells with increasing concentrations of

antibiotics. We tested susceptibility to the following antibiotics: benzylpenicillin, cefoxitin,

oxacillin, cefalotin, ceftiofur, cefquinome, amikacin, gentamicin, kanamycin, neomycin, enro-

floxacin, clindamycin, erythromycin, tilmicosin, tylosin, tetracycline, florfenicol and trimetho-

prim/sulfamethoxazole. Using the VITEK 2 we measured the growth and viability of the

isolates in all wells compared to the control wells. Relative bacterial growth in each antibiotic

well was calculated and compared with the positive control wells. The minimum inhibitory

concentration (MIC) values were calculated by comparing the growth of the bacteria to the

growth of isolates with known MICs. The S. aureus isolates were labelled as either resistant or

susceptible according to their antibiotic resistance profiles based on CLSI breakpoints

(VET01-S3) [71].

Generation of MALDI-TOF spectra

All S. aureus isolates were stored at -80˚C since their recovery in 2004/5 using a microbead

preservation system (Technical Service Consultants Ltd, Lancashire). Isolates were recovered

onto Blood agar and incubated at 37˚C for 24 hours. If no growth was initially observed the

isolates were sub-cultured another 24 hours. All isolated were sub-cultured on blood agar at

37˚C for 24 hours prior to MALDI-TOF analysis. The same storage and growth conditions

were applied to all isolates.

The pure cultures were then analysed using the Time-of-flight (TOF) MALDI mass spec-

trometer (Bruker Daltonics, Billerica, MA), Microflex–Flex Control Version 3.4, Bruker Dal-

tonics. The order of sample analysis was randomised, the Bruker Bacterial Test Standard

(BTS) (Bruker Daltonics) was used for calibration control on every plate. For each isolate, six

technical replicates were generated from 240 desorption’s per replicate (6 x 40 shots), and pro-

tein mass spectra acquired in the range 2000 to 20,000 Da were generated. Spectra were com-

pared visually using Biotyper 3.1 (Bruker Daltonics) to remove low intensity spectra or spectra

with substantial background noise. All the samples used in this study were further analysed

visually on Matlab for insufficient resolution (defined as a measure to distinguish two peaks of

slightly different m/z values [72]), low intensity or substantial background. However, no sam-

ples were discarded for these reasons. The. Technical replicates were further compared using

composite correlation indices (CCI) to remove dissimilar spectra with CCI < 0.99 [73]. At

least three good quality spectra per isolate were required for inclusion of the isolate in the anal-

ysis. Moreover, when three qualifying technical replicates could not be obtained the sample

was re-analysed in order to get at least 3 replicates. All the 82 isolates used in this study had

three good quality technical replicates.

Data processing

The pre-processing steps of MALDI-TOF mass spectra were performed using MATLAB Bioin-

formatics Toolbox Release 2017b, The MathWorks, Inc., Natick, Massachusetts, United States.

Our analysis was done using 82 S. aureus isolates with each sample having 3 to 6 replicates.

The pre-processing followed these 8 steps:
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1. Mean Computing: the replicates of each biological isolate were averaged.

2. M/Z Cropping: the mass range was cropped to be between 2kDa and 12kDa.

3. Resampling: the data was up-sampled from 13,740 to 20,000 points.

4. Baseline Correction: for each biological isolate, baseline correction was applied by using a

window of 200 Da with a step size of 200 Da to shift the window. The quantile method

(10% value) was used to find the likely baseline value in every window. Shape-preserving

piecewise cubic interpolation approximation was applied to regress the varying baseline.

The regressed baseline was not smoothed. The resulting baseline was subtracted from the

spectrum.

5. Normalisation: the area under the curve (AUC) of every spectrum was normalised to the

median and post-rescaled such that the maximum intensity was 100.

6. Noise reduction: each sample was denoised using least-squares polynomial with a window

of 35 Da and a 2-degree polynomial function.

7. Alignment: to align the spectrograms, a set of reference peaks was required. Specifically,

the peaks were selected if present in at least 30% of all spectra. The 30% threshold was cho-

sen following the workflow suggested in the ClinProTools software documentation [74]. In

addition, the first pre-processing step of our workflow consists of averaging all the 3 or

more technical replicates of each sample. Therefore, after this averaging step we have one

spectrum per sample and consequently the 30% threshold used to select the peaks is applied

to all samples. By applying the 30% threshold we are selecting only the peaks that are pres-

ent and hence relevant across both the resistant and susceptible classes, as shown in Tables

1 and 2 in the Results section. The alignment was estimated using the default values of msa-

lign function (Bioinformatics Toolbox).

8. Peak Detection: To retain a reasonable intensity a signal-to-noise ratio threshold was

defined at 10% to discard all peaks below it. Therefore, since the spectra were previously

normalised to an overall maximum intensity of 100, any point below 10 is considered noise.

A minimum distance of 20Da between neighbouring peaks was set, i.e., two peaks must be

at least 20Da apart to be considered different.

Spectral features

After detecting all the peaks in each spectrum, a peak list report was prepared similarly to Clin-

ProTools 3.0 [74]. Specifically, the peaks were selected if present in at least 30% of all spectra.

The selected peaks were further pre-processed to have zero mean and unit variance. Such

peaks represented the spectral features used in the classification analysis.

Classification methods

The performance of the classifiers, naïve Bayes [75], linear and non-linear (RBF kernel) sup-

port vector machines (SVM) [76], decision tree [77], random forests [78], multi-layer percep-

tron neural networks (MLP) [79], AdaBoost (AdaBoost-SAMME version [80]), logistic

regression [81], linear discriminant analysis (LDA) [82] and quadratic discriminant analysis

(QDA) [82], was investigated using the scikit-learn library in Python [83].

For the classifiers, the following set of values were employed for the hyper-parameter

searches:

• Logistic Regression: inverse of regularization strength C = [0.001, 0.01, 0.1, 1, 10, 100, 1000].
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• Linear SVM: penalty parameter of the hinge loss error C = [0.001, 0.01, 0.1, 1, 10, 100, 1000].

• Decision tree: maximum depth of tree = [10, 20, 30, 50, 100].

• Random Forests and Adaboost: Number of estimators = [2, 4, 8, 16, 32, 64].

• MLP Neural Network: α (L2 penalty parameter) = [0.001, 0.01, 0.1, 1, 10, 100], learning rate

(initial learning rate used to control the step size in updating the weights with adam solver)

= [0.001, 0.01, 0.1, 1] and hidden layer sizes = [10, 20, 40, 100, 200, 300, 400, 500].

• Non-linear SVM with RBF kernel: γ (RBF kernel coefficient) = [0.0001, 0.001, 0.01, 0.1] and

C (L2 penalty parameter) = [0.001, 0.01, 0.1, 1, 10, 100, 1000].

• Naive Bayes, LDA and QDA do not have hyper-parameters.

Prediction performance

The prediction performance of each classifier was evaluated by considering the following indi-

cators, assuming P and N as the total number of positive (benzylpenicillin/multidrug-resistant)

and negative (multidrug susceptible) isolates, respectively and using T for true (correct) and F

for false (wrong) predictions:

• Sensitivity (True Positive Rate) = TP / P

• Specificity (True Negative Rate) = TN / N

• Accuracy = (TP+TN)/(P+N)

• Kappa = (po−pe)/(1-pe) where po = (TP+TN)/(P+N) and pe = (P�(TP+FN) + N�(FP+TN))

/(P+N)2

Performance analysis

Nested Cross-validation (NCV) [84], which is a well-established cross-validation technique

was employed to assess the performance and select the hyper-parameters of the proposed

classifiers.

In NCV there is an outer loop split of the data set into test and training sets. For each train-

ing set, a grid search (inner loop) is run, in order to find the best hyper-parameters of the clas-

sifier using accuracy as a performance metric. Then, the test set is used to score the best

classifier found in the inner loop. These scores tell us how well the classifier model generalises,

given the best hyper-parameters found in the inner loop.

Thirty iterations were carried out, wherein each iteration an NCV was employed. The inner

loop of the NCV finds the best hyper-parameters of each classifier (when suited) using a strati-

fied 3-fold cross-validation; the outer loop measures the accuracy, sensitivity, specificity and

kappa using a 5-fold stratified cross-validation, in order to compare all the classifiers [85].

Biomarker characterization–identification of the protein corresponding to

MALDI-TOF spectral peaks recognised as discriminant by the trained

classifiers

A dedicated bioinformatics pipeline was developed to find correspondences between individ-

ual peaks selected by the machine learning-based classifiers and actual proteins of S. aureus.
First, amino acid sequences of the proteins in the S. aureus Newbould 305 (ATCC 29740) pro-

teome, which is considered the model bovine mastitis strain [86], were retrieved from the
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PATRIC database in FASTA format. The molecular weights of the proteins were calculated

using the Compute pI/Mw tool on ExPASy [87]. The proteins were filtered in the range

of ± 200Da of the mass of individual peaks. Then, N-terminal methionine cleavage was pre-

dicted using the online prediction tool TermiNator [88] and the theoretical molecular weights

of the proteins were re-calculated using compute pI/Mw tool according to presence or absence

of the initial methionine. Finally, proteins with a maximum of 0.2% difference in mass to the

individual peaks for the successful identification of correspondence were selected.

To further investigate the function of the identified proteins, we studied protein-protein

interactions (PPI) as previously described [89]. The PPI dataset of S. aureus (strain NCTC

8325/PS 47) was obtained from the STRING database [90] and nodes (proteins) with interac-

tion scores lower than medium confidence level (interaction scores<0.400) were filtered out.

The remaining nodes (proteins) were analysed in Cytoscape 3.7.1 based on the following

parameters: the average number of neighbours, clustering coefficient, network density and

network heterogeneity [91–93].

The characterisation of antibiotic-resistant genes of the beta-lactam, macrolide and tetracy-

cline antibiotic classes in the PPIs, were obtained from ResFinder v3.1 [94] and using them as

queries in a comparative BLAST search against the S. aureus proteome. The functions of the

genes in the network were annotated with Gene Ontology terms (biological process, molecular

function and cellular component) and KEGG pathways. Finally, to gain a more in-depth

understanding of the protein functions, homology and threading 3D models for discriminant

proteins were built. 3D homology modelling was used for the proteins with good quality tem-

plates in the Swiss-Model repository [95] and the models built by using Swiss-PdbViewer [96].

The 3D models of hypothetical proteins were generated by using the threading technique on

I-TASSER, where biological functions were predicted as well [97]. The 3D Models of all dis-

criminant proteins were visualized and edited in UCSF Chimera [98].

Homologs of the discriminant proteins were checked in the NCBI database by position-spe-

cific iterative basic local alignment tool (PSI-BLAST). Functional domains were searched

against the CDD v3.17–52910 PSSMs database. PSORTb v3.0 was used to predict cellular loca-

tions of the discriminant proteins [99].
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