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Abstract
Background Mechanisms underlying blood pressure changes in obstructive sleep apnoea (OSA) are
incompletely understood. Increased respiratory effort is one of the main features of OSA and is associated
with sympathetic overactivity, leading to increased vascular wall stiffness and remodelling. This study
investigated associations between a new measure of respiratory effort (percentage of total sleep time spent
with increased respiratory effort based on measurement of mandibular jaw movements (MJM): REMOV,
%TST) and prevalent hypertension in adults referred for evaluation of suspected OSA.
Methods A machine learning model was built to predict hypertension from clinical data, conventional
polysomnography (PSG) indices and MJM-derived parameters (including REMOV). The model was
evaluated in a training subset and a test subset.
Results The analysis included 1127 patients: 901 (80%) in the training subset and 226 (20%) in the test
subset. The prevalence of hypertension was 31% and 30%, respectively, in the training and test subsets. A
risk stratification model based on 18 input features including REMOV had good accuracy for predicting
prevalent hypertension (sensitivity 0.75 and specificity 0.83). Using the Shapley additive explanation
method, REMOV was the best predictor of hypertension after clinical risk factors (age, sex, body mass
index and neck circumference) and time with oxygen saturation <90%, ahead of standard PSG metrics
(including the apnoea–hypopnoea index and oxygen desaturation index).
Conclusion The proportion of sleep time spent with increased respiratory effort automatically derived
from MJM was identified as a potential new reliable metric to predict prevalent hypertension in patients
with OSA.

Introduction
Obstructive sleep apnoea (OSA) is a highly prevalent condition [1] that is associated with a variety of
adverse consequences, including excessive daytime sleepiness [2], cognitive dysfunction [3] and
cardiovascular disease [4], especially hypertension [5–7].

The main acute physiological consequences of OSA are intermittent hypoxia, intrathoracic pressure
changes generated by increased respiratory effort and arousals [8]. Increased respiratory effort is therefore a
key component of obstructive apnoeas/hypopnoeas and respiratory effort-related arousals (RERAs). The
apnoea–hypopnoea index (AHI) has traditionally been used to estimate OSA severity and describes the
average number of respiratory events occurring per hour of sleep. However, the AHI does not convey
relevant information about hypoxic burden and total sleep time (TST) spent with increased respiratory
effort despite the fact that these metrics have been linked to OSA cardiovascular and mortality outcomes
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[9, 10]. As a result, it is now widely accepted that the AHI is unable to capture fully the complex
pathophysiological processes of OSA [11, 12], and that more comprehensive and combined metrics are
required to define fully cardiovascular risk in a given patient with OSA.

The role of increased respiratory effort in cardiovascular mortality has been poorly studied to date. The
only physiological data currently available show that intrathoracic pressure swings during respiratory events
generate subsequent sympathetic nervous system overactivity [13, 14], and might accelerate arterial
stiffness and arterial wall remodelling. In addition, currently available evidence suggests that respiratory
effort contributes to increases in nocturnal blood pressure [15–25].

The lack of data on the cardiovascular impact of increased respiratory effort can be partly explained by the
challenge of assessing and measuring the proportion of TST spent with increased respiratory effort. We
have previously demonstrated that mandibular jaw movements (MJM) during sleep provide powerful
information about respiratory effort and sleep time spent with increased respiratory effort [26, 27]. In
normal physiological sleep, the mandibular jaw slightly moves a few tenths of a millimetre at the breathing
frequency around a fixed position and the mouth is almost closed. This sleep physiological displacement is
controlled by the respiratory and pre-motor trigeminal nuclei, and reflects respiratory drive and variations
in respiratory efforts. MJM therefore reflects respiratory drive level and efforts as a function of variations
in upper airway resistance that typically occur during abnormal respiratory events [26, 27].

This study evaluated the association between sleep time spent with increased respiratory effort
automatically derived from measurements of MJM (REMOV, %TST) and prevalent hypertension in
patients being investigated for suspected OSA. We hypothesised that an increase in MJM during sleep
would be independently associated with hypertension beyond the classical metrics of hypoxic burden and
sleep fragmentation.

Methods
Study design and population
This was a cross-sectional analysis of consenting consecutive adult patients referred for assessment of
suspected OSA. The study was approved by the Comité d’Ethique Hospitalo-Facultaire-Universitaire de
Liège (Liege, Belgium; IRB-00004890-NB707201523388) and all participants provided written informed
consent prior to enrolment.

Overnight sleep study
In-laboratory polysomnography (PSG) was recorded with a digital acquisition system (SOMNOscreen Plus;
SOMNOmedics, Randersacker, Germany). The parameters monitored included electroencephalogram
(EEG), right and left electro-oculogram, submental electromyogram (EMG), tibial EMG, chest and
abdominal wall motion by respiratory inductance plethysmography (SleepSense; SLP, St Charles, IL,
USA), nasal and oral flows by a pressure transducer and a thermistor, respectively, and peripheral oxygen
saturation (SpO2

) by a digital oximeter displaying pulse waveform (Nonin Medical, Plymouth, MN, USA).

PSG recordings were manually scored by two experienced investigators who were unaware of participant
identity. All sleep stages, EEG arousals and sleep-related respiratory events were visually scored based on
American Academy of Sleep Medicine criteria [28, 29]. OSA diagnosis was confirmed based on
International Classification of Sleep Disorders-3 criteria and required either signs/symptoms or related
medical/psychiatric disorders together with ⩾5 predominantly obstructive respiratory events (i.e. obstructive
and mixed apnoeas, hypopnoeas or RERAs; referred to as PSG_ORDI) per hour of sleep. Alternatively,
occurrence of ⩾15 obstructive respiratory events per hour was sufficient to diagnose OSA, even in the
absence of associated symptoms or disorders [30]. The conventional rules for severity grading based on
AHI were used to categorise into non-OSA (<5 events·h−1), mild (5–15 events·h−1), moderate
(15–30 events·h−1) and severe (>30 events·h−1) [12]. Interobserver agreement for PSG scoring was
evaluated by the intraclass correlation coefficient using a two-way random model for single measures (ICC
2,1); this was 0.921 (95% CI 0.891–0.942; p<0.001).

MJM recordings
MJMs were recorded using the Sunrise system (Sunrise, Namur, Belgium). This is composed of a
coin-sized tri-axial sensor including a gyroscope and an accelerometer that was attached to the patient’s
chin between the inferior labial sulcus and the pogonion by the sleep technician. The embedded inertial
measurement unit enables MJM sensing and communicates with a smartphone application for external
control. Displacement of the mandible is calculated from the rotational speed measured by the gyroscope.
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The position of the mandible resulting from elevation or depression is determined by the accelerometer.
This inertial measurement unit provides six derived channels in total.

MJM signal automated machine learning algorithms were trained with a large number of fragments
obtained from periods of normal breathing and epochs that included the full spectrum of obstructive events
(RERAs, obstructive apnoeas, obstructive hypopnoeas and mixed episodes) and central events. Details of
absolute values generated by the Sunrise system have been reported previously [27].

MJM data were automatically transferred to a cloud-based infrastructure at the end of the night and data
analysis was performed using a dedicated machine learning algorithm. This algorithm is designed to
identify automatically obstructive and mixed apnoea/hypopnoea or RERA based on stereotypical MJM
patterns. It automatically processes MJM signal components and determines whether MJM patterns could
be classified as sleep, arousal or wake. To identify wake, the algorithm tested whether MJM signals were
fast, irregular and non-predictable [31]. For the identification of arousal movements, the algorithm detected
brisk MJM of large amplitude indicating the abrupt closure of the mouth characteristic of arousals [31, 32].

Respiratory effort burden
This new metric provides an indication of the time spent with increased respiratory effort assessed using
MJM. Periods of increased respiratory effort were identified through oscillating MJMs of increased and
variable amplitudes at the breathing frequency (figure 1) [26, 27]. The MJM algorithm identifies respiratory
disturbances as a period with increased respiratory effort ended by an arousal or an awakening. The Sr_ORDI
consists of the total number of respiratory disturbances accompanied by increased respiratory effort divided
by TST, as estimated from the Sunrise analytics [33]. The new variable is increased respiratory effort during
sleep based on MJM measurement as a proportion of TST (REMOV, %TST).

SpO2

Rib cage and abdominal

movements

Nasal pressure

Oronasal thermal flow

MJM gyroscope

MJM accelerometer

Snore

Pulse rate

Tonometry

Sleep stages

30 s A B

FIGURE 1 15-min fragment of recording showing mandibular jaw movements (MJM) during increased respiratory effort across sleep disordered
breathing. From left to right, a typical period of respiratory effort-related arousal is seen during the first 4 min where inspiratory flow limitation is
clearly seen on the nasal pressure channel with snoring while the abdomino-thoracic belts remain synchronous. The respiratory displacements of
the mandible are well captured by the gyroscope and the accelerometer, showing a mild increase in respiratory effort. During periods of stable
flow limitation, the amplitude of the mandibular displacement increases as a function of the intensity of effort. In contrast, after short awakening,
there are successive central apnoeas (blue arrows). During central apnoeas, mandibular movements decrease dramatically and can disappear until
arousal occurs. Then, there are obstructive apnoeas (red arrows) and hypopnoeas (green arrows) that are accompanied by a greater increase in
respiratory effort (see amplitude of mandibular movements) in parallel with desynchronisation of the belts. Highlighted portions “A” and “B” are
shown in more detail in supplementary figure S4a and b. SpO2

: peripheral oxygen saturation.
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Prevalent hypertension outcome
A sleep specialist performed a clinical examination in the morning (between 08:30 and 12:00) during
which blood pressure was measured three times with the patient seated in a quiet room. All medications
were recorded in an electronic medical record. History, office blood pressure and medication usage were
used to define hypertension status. The presence of hypertension was defined as a documented history of
hypertension and treatment with at least one antihypertensive drug.

Data analysis
Data preparation, exploratory analysis, model development, validation and interpretation were carried out
using Python programming language. The data analytics plan is summarised in figure 2. Key elements are
described in the following subsections.

Data splitting and optimisation of machine learning algorithm
The dataset was randomly divided into two subsets: a larger set for model development and a smaller set
for secondary independent validation. We built a binary classification rule to recognise patients with
comorbid hypertension based on input data for 18 anthropometric features and sleep studies indices: male
sex (binary value), age, body mass index (BMI), neck circumference, Epworth Sleepiness Scale (ESS)
score, nine PSG-derived indices (PSG_TST, respiratory disturbance index (PSG_RDI), obstructive RDI
(PSG_ORDI), PSG_AHI, obstructive AHI (PSG_OAHI), oxygen desaturation index (ODI), arousal index
(PSG_ArI) and proportion of TST spent with SpO2

<90% or <95% (Desat_dt <90% and <95%)) and four
indices provided by Sunrise’s automatic MJM signal analysis (Sr_TST, Sr_ArI, Sr_ORDI and REMOV).

The extreme gradient boosting (XGB) classifier algorithm was adopted for this classification task (see
supplementary material for more details). The learning objective is set as a binary classification, with
hypertension as the positive label. The training implied a gradient tree booster and histogram-optimised
approximate greedy tree construction algorithm.

Original 

dataset

80% 20%

Test

set 

Independent

validation

Model

explanation

SHAP

Model’s performance

XGB classifier

10-fold

cross-validation

1

2

3

4

Training

set 

FIGURE 2 Overview of the experimental and analysis protocol. XGB: extreme gradient boosting; SHAP: Shapley
additive explanation method.
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Cross-validation on training set
The model’s performance was evaluated using the 10-fold cross-validation procedure, which implied
multiple data splitting and random resampling, thus allowing unbiased evaluation of model performance on
10% of unseen data.

Secondary validation on independent dataset
A final model was trained on the whole training subset using the optimised parameter values. This model
was validated on unseen data in the testing subset. The following evaluations were conducted for both
repeated 10-fold cross-validation and independent validation: normalised confusion matrix (to evaluate
model accuracy; the rows represent the true observation and the columns indicate the classification by
model) and conventional metrics for evaluating the binary classification accuracy and diagnostic efficiency,
including sensitivity, specificity, F1 score (harmonic mean between sensitivity and positive predictive
value), balanced accuracy, positive/negative likelihood ratios, positive predictive value, negative predictive
value and area under the receiver operating characteristic curve (AUC).

Model explanation and evaluation of features contribution
To evaluate the contribution of each feature to the model final prediction, the Lundberg Shapley additive
explanation (SHAP) method was applied [34]. This method unifies the concept of Shapley values from
cooperative game theory (1953) with a local interpretation approach. The SHAP method allows depiction
of the respective power of association of different factors on the explanatory variable (in this case
hypertension). It also allows inclusion of all variables of interest even if collinearity exists between some
of the variables.

The association between respiratory effort burden and the risk of comorbid hypertension was also explored
using a conventional statistical inference based on regression coefficients from a 10-fold cross-validation of
the Ridge logistic regression model. The model implies a linear regression with binomial distribution and a
L2 regularisation, which provides more stable parameters.

Results
Study population
A total of 1127 subjects were included in the study: 901 (80%) in the training subset and 226 (20%) in the
test subset (table 1). The prevalence of hypertension was 31% and 30%, respectively, in the training and
test subsets. In the training subset, mean blood pressure was 136/82 mmHg in patients with hypertension
and 128/78 mmHg in those without hypertension (table 1); six patients met the criteria for resistant
hypertension. Patients with versus without hypertension differed in several clinical characteristics and
respiratory parameters (table 1).

Clinical characteristics and respiratory effort burden
Clear differences in the distribution of a variety of features based on the presence or absence of
hypertension (figure 3a) provide an indication of the potential for association between that feature and
hypertension. The features were categorised by their pathophysiological characteristic and method of
measurement (PSG (“PSG_”) or Sunrise (“Sr_”) system) and were combined with anthropometric
parameters influencing blood pressure (as described in the Methods section).

The PSG-derived ORDI and ArI metrics distribution and the corresponding MJM-derived indices
reflecting number of events and desaturation were similarly distributed between the groups with and
without hypertension (figure 3a). Respiratory effort burden (REMOV, %TST) was higher in patients with
versus without hypertension (figure 3a), suggesting a high ability of REMOV to differentiate between
patients with and without hypertension. On principal component analysis, TST and the ESS score did not
contribute to hypertension risk, whereas other respiratory measures and demographic/clinical features were
associated with the presence of hypertension (figure 3b).

Machine learning model for predicting prevalent hypertension
A machine learning model including a variety of anthropometric parameters and physiological features
from PSG and Sunrise technology showed good performance for the prediction of hypertension in the test
subset (table 2). The final model showed good performance in the test subset, with AUC 0.88 (95% CI
0.85–0.90), sensitivity 0.75 (95% CI 0.66–0.83) and specificity 0.83 (95% CI 0.78–0.88) (figure 4 and
table 2). A ROC without REMOV showed worse performance with respect to the sensitivity/specificity
trade-off (supplementary figure S1 and supplementary table S1).
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Model explanation by SHAP method
The five strongest predictors of prevalent hypertension in patients with OSA were age, male sex, time with
SpO2

<90% (Desat_dt <90%), BMI and neck circumference (figure 5). The three next most important

TABLE 1 Characteristics of the study population

Training subset (n=901 (80%)) Test subset (n=226 (20%))

Hypertension
(n=279 (31%))

Without
hypertension
(n=622 (69%))

Hypertension
(n=68 (30%))

Without
hypertension
(n=158 (70%))

Male 129 (46.2) 265 (42.6) 35 (51.5) 80 (50.6)
Age, years 56.58±15.72 44.17±18.24 55.06±13.03 44.57±17.70
Neck circumference, cm 41.00±5.00 39.00±5.00 40.00±3.00 39.00±5.00
Blood pressure
Systolic, mmHg 135.7±17.1 128.0±12.4 138.4±22.3 125.4±14.5
Diastolic, mmHg 82.1±13.6 78.2±11.9 80.9±17.2 75.9±11.1

BMI, kg·m−2 32.87±10.17 28.52±11.06 31.78±9.52 30.15±10.30
ESS score 11.00±8.00# 11.00±7.00 10.00±7.00# 11.00±6.00
OSA severity
Non-OSA 19 (6.8) 104 (16.7) 4 (5.9) 27 (17.1)
Mild 49 (17.6) 223 (35.9) 13 (19.1) 57 (36.1)
Moderate 81 (29.0) 149 (24.0) 22 (32.4) 39 (24.7)
Severe 130 (46.6) 146 (23.5) 29 (42.6) 35 (22.2)

PSG indices
TST, min 420.52±109.76# 437.27±98.12 415.76±76.13 430.75±89.87
ArI, events·h−1 29.57±23.71 22.89±17.45 28.96±22.40 22.96±16.98
AHI, events·h−1 27.32±29.12 14.00±22.31 26.52±27.90 14.04±19.64
OAHI, events·h−1 19.44±27.99 9.87±19.23 19.18±26.45 9.26±16.71
RDI, events·h−1 34.33±31.29 20.84±24.70 32.76±27.54 21.28±21.18
ORDI, events·h−1 26.73±27.00 15.84±21.42 27.95±25.84 16.26±18.58
ODI, events·h−1 24.86±35.26 10.73±23.01 23.87±32.97 9.54±20.94
Desat_dt <90%, %TST 3.43±12.90 0.28±3.06 4.35±9.73 0.36±3.79
Desat_dt <95%, %TST 19.45±22.40 7.63±16.03 17.88±21.80 7.38±15.35

Sunrise indices
TST, min 439.00±81.25# 439.74±75.73 450.75±65.25 439.25±68.00
ORDI, events·h−1 20.66±15.20 13.50±14.34 22.52±16.80 13.62±13.01
ArI, events·h−1 21.97±16.16 17.79±13.55 23.35±21.42 17.24±13.69
REMOV, %TST 75.96±26.96 56.05±47.95 77.34±26.40 55.41±43.83

Antihypertensive
medication
β-blocker 127 (45.5) 54 (79.4)
ACE inhibitor 79 (28.3) 38 (55.9)
ARB 71 (25.4) 27 (39.7)
CCB 87 (31.2) 14 (20.6)
Diuretic 63 (22.6) 19 (27.9)
Other 12 (4.3) 1 (1.5)

Antihypertensives
0 622 (100.0) 158 (100.0)
1 176 (63.1) 13 (19.1)
2 52 (18.6) 31 (45.6)
3 46 (16.5) 18 (26.5)
4 4 (1.4) 6 (8.8)
5 1 (0.4)

Data are presented as n (%) or mean±SD. BMI: body mass index; ESS: Epworth Sleepiness Scale; OSA:
obstructive sleep apnoea; PSG: polysomnography; TST: total sleep time; ArI: arousal index; AHI: apnoea–
hypopnoea index; OAHI: obstructive apnoea–hypopnoea index; RDI: respiratory disturbance index; ORDI:
obstructive respiratory disturbance index; ODI: oxygen desaturation index; Desat_dt <90% or <95%: proportion
of TST spent with oxygen saturation <90% or <95%; REMOV: increased respiratory effort during sleep (based on
mandibular jaw movements measurement); ACE: angiotensin-converting enzyme; ARB: angiotensin receptor
blocker; CCB: calcium channel blocker. #: all metrics, except for TST (PSG and Sunrise) and ESS, showed a
statistically significative difference in distribution between two outcome subgroups, based on a Mann–Whitney
test at a significance threshold of 0.005.
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contributors were REMOV, Sr_ORDI and PSG_ORDI (figure 5). These were followed by other PSG
indices (in descending order of importance): PSG_TST, time with SpO2

<95% (Desat_dt <95%),
PSG_OAHI and PSG_ArI (figure 5).

Of these metrics, only REMOV and Sr_ORDI showed a clear asymmetric pattern in SHAP values
distribution, where the highest values of REMOV and Sr_ORDI would drive positive prediction of
hypertension. In contrast, SHAP values were cumulated at the centre for most PSG indices, indicating a
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FIGURE 3 Distribution of clinical features and principal component analysis (PCA). a) Density plots showing the distribution of 12 features that
showed the most significant difference between participants with or without hypertension. b) Loading plot summarising the PCA. The graph
consists of a bi-dimensional density layer, representing the joint distribution of two principal components, and coordinates of the 17 original
variables as vectors, including age, body mass index (BMI), neck circumference, Epworth Sleepiness Scale (ESS) score, nine PSG-derived indices
(PSG_TST, respiratory disturbance index (PSG_RDI), obstructive RDI (PSG_ORDI), apnoea–hypopnoea index (PSG_AHI), obstructive AHI (PSG_OAHI),
oxygen desaturation index (ODI), arousal index (PSG_ArI), proportion of TST spent with peripheral oxygen saturation (SpO2

) <90% or <95% (Desat_dt
<90% and <95%)) and four indices provided by Sunrise’s automatic mandibular jaw movements signal analysis (Sr_TST, Sr_ArI, Sr_ORDI and
REMOV). Each vector represents a variable; its orientation with respect to a principal component axis and length indicate how much the variable
contributes to that principal component. The angles between the vectors and direction allow evaluation of their correlation: small angles indicate
strong positive correlation; opposite angles represent a negative correlation.

TABLE 2 Evaluation of model performance by repeated 10-fold cross-validation and independent validation on
test subset

Repeated 10-fold cross-validation
(n=901)

Independent validation on test subset
(n=226)

F1 score 0.76 (0.70–0.81) 0.70 (0.62–0.77)
Balanced accuracy 0.76 (0.71–0.81) 0.79 (0.74–0.84)
Sensitivity 0.77 (0.69–0.85) 0.75 (0.66–0.83)
Specificity 0.75 (0.67–0.83) 0.83 (0.78–0.88)
Positive predictive value 0.65 (0.56–0.74) 0.75 (0.67–0.82)
Negative predictive value 0.89 (0.84–0.93) 0.77 (0.70–0.87)
Positive likelihood ratio 3.17 (2.33–4.32) 4.52 (3.29–6.21)
Negative likelihood ratio 0.30 (0.19–0.40) 0.30 (0.19–0.41)
AUC 0.84 (0.79–0.89) 0.88 (0.85–0.90)

Data are presented as estimate (95% CI). AUC: area under the receiver operating characteristic curve.
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mixed, inconsistent and less effective contribution of these metrics to the model prediction. On average,
the contribution of REMOV to hypertension prediction was approximatively twice that of PSG_ORDI,
PSG_AHI or ODI.

The ranking of predictive features was consistent in Ridge logistic regression analysis, which confirmed
the important association between increased respiratory effort and the risk of hypertension (supplementary
figure S2). Increased respiratory effort for >60% of the night remained an independent predictor of
hypertension even in the absence of oxygen desaturation and when sleep fragmentation was limited
(supplementary figure S3).

Discussion
The novel finding of this study was that increased respiratory effort detected by MJM analysis was
independently and strongly associated with prevalent hypertension in a large clinical cohort of patients
with OSA. Respiratory effort burden was a stronger predictor of hypertension than common PSG-derived
metrics such as the AHI. While increased respiratory effort was not the only, or the strongest, predictor of
hypertension in patients with OSA, the current data provide a more comprehensive picture of the
intermediary mechanisms and factors contributing to the development of hypertension in this patient
group.

There is a pathophysiological rationale for the observed association between increased respiratory effort
during sleep and hypertension. Obstructive events during sleep are the consequence of partial or complete
collapse of the upper airway. These alterations in upper airway patency result in repetitive forced
inspiration against the obstructed upper airway with substantial negative changes in intrathoracic pressures
[20, 23]. These large intrathoracic pressure swings not only generate sympathetic activation but also
generate significant shear stress and vessel wall remodelling. The impact of increased respiratory effort has
been poorly studied and is probably underestimated as a risk factor for OSA-related hypertension. The
current findings showed that respiratory effort load was an independent predictor of prevalent hypertension
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unseen data from 226 subjects. c) Receiver operating characteristic curve evaluating the global performance of
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in OSA beyond intermittent hypoxia. Therefore, we suggest the utility of a pragmatic tool using MJM for
objectively measuring sleep time spent with increased respiratory effort. This seems like the most
appropriate tool given that increased respiratory effort is poorly documented by respiratory bands, with
clear overestimation of central events in obese patients [35]. Snoring is a qualitative and indirect surrogate
of increased respiratory effort, and inspiratory flow limitation reflects an increase in upper airway
resistance. However, there is not a linear relationship between increase in respiratory effort and flattening
of the inspiratory curve [36].

Based on indirect assessment of respiratory effort-related snoring or flow limitation, it has been suggested
that increased nocturnal respiratory effort may play a role in the occurrence of hypertension in several
different clinical scenarios, including upper airway resistance syndrome (UARS), OSA in children and
pre-eclampsia [37–39]. In UARS, measures of nasal flow limitation have been associated with
hypertension independently of the AHI [37, 40]. Also, several studies have postulated that snoring and
RERAs are associated with significant daytime sleepiness and have repercussions in cardiovascular risk
[37, 41, 42]. In these situations, hypoxic burden is limited and treatment indications for continuous
positive airway pressure (CPAP) or oral appliances are still the subject of debate. Reliable and convenient
assessment of respiratory effort burden throughout the night might allow better risk stratification and
personalised treatment solutions in these contexts.

Beyond suppression of intermittent hypoxia and apnoeas/hypopnoeas, the goal of CPAP titration is the full
normalisation of respiratory effort, allowing complete restoration of the sleep architecture [37, 43]. This
effect contributes to the suppression of persistent sleepiness during CPAP therapy [43] and our study
suggests that this might be necessary to improve blood pressure control in patients with OSA. Prospective
evaluation of the effects of CPAP therapy on blood pressure in patients with evidence of increased
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respiratory effort but without significant oxygen desaturations or sleep fragmentation would also be an
interesting area for future research.

Large intrathoracic pressure swings related to increased respiratory effort particularly affect intrathoracic
blood vessels, including the aorta. Increased respiratory effort not only favours the development of
hypertension, as shown in our study, but might in the long run trigger or exacerbate the progression of
aortic dilatation [44]. In addition, a recent meta-analysis suggested an association between OSA and aortic
enlargement [45]. Increased respiratory effort is probably a major contributor to this association and the
risk is particularly relevant in at-risk populations such as those with previous aortic dissection [46–48].
Better control of diurnal and nocturnal hypertension [49] and the reduction of intrathoracic pressure swings
might help to slow the progression of aortic dilation in patients with concomitant OSA.

Our study was conducted in a large consecutive prospective sample covering the broad spectrum of OSA.
This suggests that our results have good external validity, but additional validation in other cohorts is
desirable. Previous studies in the field have been conducted using less reliable measurement of respiratory
effort, i.e. snoring and flow limitation. In contrast, our quantitative and direct estimation of respiratory
effort level with MJM analytics has been validated against PSG [33] and provides a new metric indicating
the total respiratory effort load during sleep. Although an association between increased respiratory effort
and hypertension was documented, we do not have 24-h ambulatory blood pressure data and so cannot
determine whether increased nocturnal respiratory effort is specifically associated with nocturnal
hypertension.

In conclusion, our study highlights the underestimated role of increased respiratory effort as a risk factor
for prevalent hypertension in OSA. Respiratory effort load is an independent risk factor for hypertension
beyond classical anthropometric cardiovascular risk factors and usual PSG metrics. Risk stratification using
new metrics beyond AHI is the new paradigm in OSA [49], and our data suggest that increased respiratory
effort based on measurement of MJM, allowing objective measurement of sleep time spent with increased
respiratory effort, should be included in the range of new indices for OSA management. This measurement
is of particular interest in specific populations such as those with UARS without desaturations or in
patients with cardiovascular diseases at high risk for aortic expansion and dissection. A digital medicine
solution incorporating MJM and artificial intelligence analysis is ready to operate with home recordings
over multiple nights of evaluation, before and after therapeutic interventions.
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