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Abstract: This paper presents a new wearable e-textile based system, named SWEET Sock,
for biomedical signals remote monitoring. The system includes a textile sensing sock, an electronic
unit for data transmission, a custom-made Android application for real-time signal visualization,
and a software desktop for advanced digital signal processing. The device allows the acquisition
of angular velocities of the lower limbs and plantar pressure signals, which are postprocessed to
have a complete and schematic overview of patient’s clinical status, regarding gait and postural
assessment. In this work, device performances are validated by evaluating the agreement between
the prototype and an optoelectronic system for gait analysis on a set of free walk acquisitions. Results
show good agreement between the systems in the assessment of gait cycle time and cadence, while the
presence of systematic and proportional errors are pointed out for swing and stance time parameters.
Worse results were obtained in the comparison of spatial metrics. The “wearability” of the system and
its comfortable use make it suitable to be used in domestic environment for the continuous remote
health monitoring of de-hospitalized patients but also in the ergonomic assessment of health workers,
thanks to its low invasiveness.

Keywords: wearable devices; e-textile; gait analysis; m-health; plantar pressure; validation; Internet
of Things

1. Introduction

The term Electronic-Textiles, or E-Textiles, refers to a wide range of studies and products that
extend the usefulness and functionalities of common fabrics. The innovative feature taken by this novel
application regards the embedding of digital components, such as batteries, LEDs, and, in general,
electronic components, in common fabrics. Thus, through E-Textile technology, every kind of digital
application can be potentially developed on a textile substrate. This attractive opportunity is bringing a
revolution in the market of wearable devices, with the involvement of big companies which are trying
to shift from the wearable electronic hardware to the more comfortable electronic textiles. The market
of wearable technologies has a compound annual growth rate of 15.5%, with great opportunities of
expansion, it is expected to reach 51.6 billion USD by 2022 (IDTechEx). E-textile is gradually covering
this market, offering cheap and comfortable solution in different sectors, such as fashion, entertainment,
military and defense, space exploration, health, and wellness.
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Healthcare remains one of the most interesting and promising markets: e-textile features are
very suitable for the development of innovative medical devices or applications that can potentially
establish significant cost reductions for healthcare systems. Wearable devices for health monitoring
can be easily used by patient in domestic environment and, when they are integrated in a complete
communication chain, they allow smart remote monitoring with great benefits for caregivers and
patient himself. E-textile sensitive fabrics can be developed to acquire and react to clinical signals
detectable on body, with some interesting advantages: first, the nature of fabrics makes them the best
solution to realize sensors in direct contact with the skin; second, fabrics are flexible and well adaptable
to human body offering technological possibilities not available with the common electronics; and third,
fabrics are cheap, comfortable, washable, and easily customizable [1]. Thus, smart biomedical clothes
potentially represent an innovative tool for the continuous monitoring of vital signs, combining the
function of sophisticated medical devices with the comfort and ease of use of clothing products.

Moreover, the opportunity to integrate these innovative devices in IoT networks makes possible
to establish smart solution for remote health monitoring, exploring the growing field of m-health and
supporting cost reduction in healthcare system by facilitating early hospital discharges. Many E-Textile
solutions for health monitoring have been proposed in literature, but most of them are blocked in the
research field and are not intended to flow to the pragmatic healthcare world. Regulatory issues regarding
patient safety, privacy, data management [2,3], and the need of a safe degree of reliability for device
performances represent the main obstacles to the large commercial diffusion of such types of devices.

This manuscript presents a prototypical system, based on an e-textile sensing sock, able to collect
the angular velocities of lower limbs, using Inertial Measurement Units (IMUs), and the plantar
pressures, by means of textile sensors. Our aim is to provide a wearable and portable system for the
assessment of both postural and gait tasks, exploiting the recent advances in the field of e-textile,
electronic and signal processing. In particular the system is intended to provide the assessment of
spatio-temporal gait parameters by processing the angular velocities signals while the pressure signals
will be used to assess Center of Pressure (COP) displacements during static postural tests.

Static posturography in clinical environment is usually achieved by means of commercial platform
systems. These systems include a big number of sensors arranged in a matrix resulting in high
spatial resolution and high accuracy [4]. However, platform systems are expensive, not portable,
and require a trained technician to be used. In-shoe systems can overcome the usability limitations
of platforms, enabling measurements of plantar pressure distribution within a shoe, in indoor and
outdoor environments. In [5–7], three insoles with, respectively, 10, 4, and 3 sensors are used to
measure the COP for the assessment of balance. All these applications are based on force sensing
resistors (FSRs), whose hard structure can reduce the comfort for the user. Moreover, insoles create
an additional layer inside the shoe, which can essentially change the distribution of plantar load of
the foot compared to the natural in-shoe condition [8]. Textile pressure sensors represent an attractive
solution because they improve comfort for users and their thickness ensure no distortion of plantar
pressure. Several experimental custom-made smart socks, with textile pressure sensors embedded,
are described in literature. Most of them are developed for the assessment of spatio-temporal gait
parameters [9–11], while other solutions [8,12] provide for postural assessment in dynamic tasks.
Nevertheless, the latter offers only a qualitative representation of pressures distribution during walking
tasks. Unlike these, the proposed system uses the textile pressure sensors not for gait analysis nor
for dynamic postural assessment, but pressure signals are considered and processed to provide
quantitative estimation and analysis of COP displacement during static tasks.

Regarding gait assessment, we decided to exclusively exploit kinematic data collected from
IMUs because plantar pressure signals would not provide significant support for the estimation of
spatio-temporal parameters. IMUs are nowadays broadly used in biomedical field. These devices
are light, small, and can be easily integrated in electronic circuits, so they are very suitable for
wearable application. Different kinds of IMU-based medical applications are available in literature,
from the activity classification [13–18] to the balance assessment [19,20], but gait analysis is the most
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explored [21,22]. IMUs overcome the limitations of laboratory measurements enabling the assessment
of spatio-temporal gait parameters in indoor and outdoor environments. Moreover, IMUs are cheaper
and more practical than full gait analysis systems, thus broadening the range of its potential users.
As reported in [23], gait analysis is typically gained using the accelerometer, while the gyroscope is
arguably the next most commonly used sensor. The different gait phases can be detected from angular
velocities, measured by gyroscopes attached to lower limbs [24]. Accelerometers by themselves can
measure angular rotation but they cannot give a good result as gyroscopes. Thus, gyroscopes are
often used in fusion with accelerometer readings [25–27], when deployed together such as in an IMU,
or alone [28–31] in the assessment of gait parameters.

There is a variety of commercially available IMU-based systems for gait analysis that are currently
used in clinical environment, such as Opal by APDM or G-Sensor by BTS. They are wearable and
portable systems, but they are expensive and require the presence of a technician to place sensors and
carry out the acquisition using the computer software. Therefore, they cannot be used in domestic
environment nor without the supervision of an expert. In contrast, our system is intended to be used in
real-life conditions without any aid, as it only requires to wear socks and follow the easy steps guided
by a mobile application that can be installed on the patient’s smartphone.

In this manuscript, we describe the details of prototype design and development. We also provide
a validation analysis of the system concerning the assessment of spatio-temporal gait parameters
deriving from IMU signals digital processing. This analysis has been obtained by performing
comparative assessments with a stereophotogrammetry system for gait analysis, used in clinical
environment and considered to be the gold standard in this kind of assessment.

2. Materials and Methods

The aim of this work is to present the novel wearable device SWEET Sock for remote health
monitoring and to validate its performances in the acquisition and analysis of angular velocity signals
of the lower limbs for the assessment of spatio-temporal gait parameters. The first version of this
device, presented in [32], has been improved with new more efficient textile and electronic components
and through the addition of a set of signal processing algorithms. In this chapter, we will present in
detail the units making up the update version of the system and the materials and methods used to
perform the validation analysis.

2.1. Wearable Device: SWEET Sock

SWEET Sock is a wearable sensing device which allows the acquisition of accelerometric and
pressure signals. It can be integrated in a complete system for remote health monitoring, presented in
the schematic diagram in Figure 1.

Figure 1. System Architecture: (1) SWEET Sock—Textile Unit; (2) SWEET Sock—Control Unit;
(3) SWEET App; (4) Web Server; (5) SWEET Lab.

The wearable sensor unit allows the acquisition of bio-signals when connected to the analogue
front-end located in the electronic unit. This unit also contains a microcontroller and allows data
transmission through an integrated Bluetooth Low Energy (BLE) module. A custom-made Android
mobile application has been developed to receive and visualize real-time signals on a smartphone,
and to upload data on a dedicated web server afterwards. This is a restricted area that is accessible



Sensors 2020, 20, 6691 4 of 20

after prior authentication, exclusively by authorized and appointed health professionals, who can
download, analyze, and process data using the custom-made MATLAB desktop software.

In the following sections, the functional modules of the system are individually presented.

2.1.1. Wearable Sensing Unit

The wearable sensing unit consists of a commercial sports sock in which three pressure sensors,
in e-textile technology, have been integrated as sensing elements in three strategic points of the foot
arch. The number and placement of sensors were based on anatomical considerations: in standing
position, the main force transmitted onto the foot originates at the bones of the lower leg. At the ankle,
this force is divided into three smaller forces in the style of a tripod. Within the foot, one of these
three forces is directly transmitted onto the calcaneus, the second one onto the first metatarsal, and the
third one is distributed across the second to fifth metatarsal [33]. We therefore decided to use three
pressure sensors per foot: one under the heel (HEEL), one under the first metatarsal bone (MTB1), and
one under the fifth metatarsal bone (MTB5) (Figure 2c). Besides the experimental device presented
in [33], also the commercial smart socks Sensoria are designed with the same number and placement
of the pressure sensors. The performances of the latter in static postural assessment have been also
investigated, with good results, in comparison with a stabilometric platform [34]. The use of the
minimum number of sensors needed for the analysis reduces the complexity of textile design and can
improve the comfort and wearability for users.

Sensors have been realized by using 2-by-4 cm sheets of EeonTex fabric, a conductive and
nonwoven microfiber with piezo-resistive functionality (surface resistivity 2000 ohm/sq), offering a
reduction of the electrical resistance to the application of force. Their characterization was carried out
with load tests using a controlled mechanical clamp with decreasing/increasing loads [32]. The three
conductive sensors have been covered by non-conductive fabric to prevent degradation by contact with
the skin and are thin enough to provide postural monitoring at natural in-shoe conditions, without
distortion of plantar pressure. A conductive ribbon (5 mm tick), with a resistance of less than 0.1 ohm
per cm, has been used to connect sensors to the output connectors of the wearable unit. Compared
to the conductive wires available on the market, the ribbon has a lower resistance (0.1 vs. 0.9 ohm
per cm) and is more robust as it does not break due to stretch. The design of conductive pathways
provides a placement of all connectors of the data acquisition system, represented by snap buttons, on
the lateral part of the sock, which essentially improves the system usability. The textile connections
have been sewn on the side of the sock avoiding, when possible, the passage under the sole of the
feet, where they could be deteriorated. Connection lengths have also been minimized by studying the
shortest path in order to reduce noise and interference. Figure 2 shows the complete device with its
sartorial design.

Figure 2. SWEET Sock sensing unit: (a) external view; (b) internal view of textile connections; (c) textile
pressure sensors.

2.1.2. Electronic Unit

The electronic unit is a compact module containing all the electric and electronic elements to allow
acquisition, digitalization, storage, and wireless transmission of the signals.
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A conditioning circuit, for each conductive sensor, has been realized in order to read a voltage
signal proportional to the applied force. This circuit is realized by means of a voltage divider consisting
of two resistors: one of which is of known value and the other represented by the e-textile sensor.
The known resistance value is fixed to 18 kohm, around which the conductive sensor resistance ranges,
to reach the condition of maximal sensitivity. The IMU FLORA 9-DOF (Adafruit Inc.: New York,
NY, USA) has been integrated in the electronic unit to acquire gyroscopic signal. It consists of a
small electronic board mounting LSM9DS1 module, a system-in-package featuring a 3D digital linear
acceleration sensor, a 3D digital angular rate sensor, and a 3D digital magnetic sensor.

A LilyPad SimbleeTM BLE Board (Sparkfun Inc.: Niwot, CO, USA) has been used as the
microcontroller. It provides the digitalization of pressure signals, and it is connected to Flora IMU
through the I2C serial bus interface. LilyPad Simblee also allows to send data via Bluetooth Low-Energy
protocol (BLE, or Bluetooth 4.0), using SimbleeTM Bluetooth R© Smart Module integrated on the shield.
BLE technology represents a perfect trade-off between energy consumption, latency, piconet size,
and throughput. Its control features are implemented exploiting the ARM R© Cortex M0 microcontroller
that can be programmed using the Arduino IDE. The control unit is programmed to sample pressure
analogue signals with a sample period of 15 ms (66.7 Hz), and to receive digital data from the
gyroscope with the same rate. Data are collected in 16-bytes-sized packets (2 bytes for each information:
Packet, Time, x-y-z axes of the gyroscope, MTB1, MTB5, and HEEL pressure data) and real-time sent,
via BLE, to the smartphone using SWEET App. Other signals deriving from IMUs (signals from
accelerometer and magnetometer) are not recorded by the device because they do not provide any
essential information for the planned assessments. We actually choose to implement a gyroscope-based
algorithm to evaluate all spatio-temporal metrics because accelerometer signals are affected by gravity
and are sensitive to sensor location [35]. When using accelerometers, it is important that they are
placed in the same location each time as the signal is affected by how far from the center of rotation
they are. The advantage of using a shank mounted gyroscope compared to accelerometers is that, as
long as the gyroscope is recording data in the correct plane, it does not matter where on the shank the
sensor is placed [36,37]. This reduction in the amount of acquired and sent data allows to improve
signals sampling and sending rate.

All modules making up the electronic unit are powered by a 190 mAh/3.7 V lithium battery,
placed on the back of the same unit. The electronic unit is housed in a 3D-printed plastic case (73 mm
× 52 mm × 21 mm). On the top part of the case, 4 snap buttons allow the connection to the wearable
sensing unit, in order to provide the input signals for the analogue front ends. In Figure 3 the electronic
unit, with its main details, is shown.

Figure 3. SWEET Sock ElectronicUnit: (a) internal electronic unit; (b) complete unit external view.

2.1.3. SWEET App

SWEET App is a custom-made Java language application for mobile devices requiring Android
6.0 or higher operating system and BLE technology. The application allows the smartphone to
communicate and receive data coming from the electronic unit, via BLE protocol. When the application
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is started it is possible to associate and connect the wearable device, using its MAC address. Then, the
measurement session can start, data are transferred from the electronic unit to the mobile device, which
allows signals real time plotting. At the end of the session data are automatically saved in a “.csv” file,
which is stored locally and can be uploaded at any time to a dedicated web server. In Figure 4 the
main frames of the app are shown.

Figure 4. SWEET App main frames: (a) login; (b) unit connection; (c) signal recording; (d) results summary.

2.1.4. Signal Processing Algorithms

A custom-made Matlab GUI software, named SWEET Lab, has been developed to allow signal
visualization and digital processing. Health professionals have the possibility to download data
from the server and analyze them using the tools offered by this software. Pressure and gyroscope
signals gathered by the hardware are individually processed to respectively perform posturographic
assessment and spatio-temporal gait analysis. The two types of signal were not integrated because
they are used in the analysis of two separate phases: pressure signals for static postural assessment
while angular velocities in dynamic walking tasks analysis.

A gyroscope-based algorithm for gait analysis has been developed. The angular velocity signals
on the sagittal plane are selected and low-pass filtered with 5th order Butterworth filter (cut-off
frequency 5 Hz) to reduce noise. Mid-swing, heel-strike, and toe-off events are then identified on
the filtered signals for both feet, using a threshold-based algorithm [38]. The starting point of the
algorithm is the identification of the time events corresponding to the mid-swing, identified as the local
maximum peaks of the signal. In the next step, local minimum peaks prior and after the mid-swing
point are selected as, respectively, toe-off and heel-strike time events. Starting from these gait events
times, all temporal parameters of gait analysis are calculated. In Table 1, the list of temporal parameters
is provided with a description clearly outlining the methods used to calculate them. Spatial parameters
are assessed using a single pendulum model described in [36], where the distance from the foot to the
top vertex of the rotation is modeled as equal to the height of the subject multiplied by a scaling factor.
Equation (1) shows how the stride length is calculated:

StrideLength(m) = S × H × 2(1 − cos θ) (1)

S represents the scaling factor chosen equal to 0.52 [36], H represents subject height [m] and θ is
the angular displacement in the sagittal plane during the stride [rad], assessed by integration of the
gyroscope signal.

Plantar pressure signals collected by the sensorized socks are used to perform sway analysis,
as a systematic assessment of the readiness and stability of the human body to achieve and maintain
equilibrium. This analysis starts with the estimation of the center of pressure (COP), whose displacement
during stand task is a meaningful parameter for a quantitative evaluation of the ability to maintain
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equilibrium. At each instant, COP coordinates in the medio-lateral (XCOP) and antero-posterior (YCOP)
directions have been calculated by processing raw pressure data according to the following Equation (2),

XCOP =
∑N

i=1 XiPi

∑N
i=1 Pi

YCOP =
∑N

i=1 YiPi

∑N
i=1 Pi

(2)

where N denotes the total number of sensors, and X and Y are the sensor coordinate inside the whole
foot shape area and P the pressure value. The resulting signals express COP displacement along time
in the medio-lateral (ML) and antero-posterior (AP) directions, with respect to a reference point located
in the middle between the feet. The mono-dimensional representations of these signals constitute the
ML and AP stabilograms, while the combined bidimensional plot is referred to as statokinesigram,
representing the ground projection of the COP during the stand task.

Table 1. Spatio-temporal gait parameters.

Temporal Measures

Variable Description

Gait Cycle Time (GCT) [s] Defined as the time between two successive heel strikes of the same foot.
Stance Time [s] The amount of time a foot is in contact with the ground within a single

gait cycle. It is the time between the heel-strike and the successive toe-off
of the same foot.

Stance Phase [%] Stance time expressed in percentage of the GCT.
Swing Time [s] Duration of the swing phase, in which the foot is not in contact with the

ground. It is calculated as the time between the toe-off and the successive
heel strike of the same foot.

Swing Phase [%] Swing time expressed in percentage of the GCT.

Single Support [%] Part of the GCT in which a single foot is in contact with the ground. It is the
time between the toe-off of the opposite foot and the successive heel-strike
of the opposite foot, expressed in percentage of the GCT.

Double Support [%] Part of the GCT in which both feet are in contact with the ground. It is
the time between the heel-strike of a foot and the successive toe-off of the
opposite foot, expressed in percentage of the GCT.

Cadence [steps/min] Number of steps per minute.

Spatial Measures

Variable Description

Stride Length [m] Distance covered during GCT.
Stride Velocity [m/s] Defined as the ratio between Stride Length and GCT.

Signals are filtered with a low-pass 4th-order Butterworth digital filter with a cut-off frequency of
5 Hz [39], and then analyzed in time domain to calculate a set of parameters describing the stability of
the subject during the task (Table 2) [34,40,41].

Stabilometric signals are also analyzed in frequency domain. The Matlab periodogram algorithm
is used to estimate power spectral density (PSD), modified using the Hamming window. Frequency
assessment is provided by means of a set of measures describing the distribution of PSD, such as peak
and centroidal frequencies, band powers, and others. All the parameters assessed are listed in Table 2.
The description clarifies the methods used to evaluate both spatial and frequency domain metrics
starting from stabilometric signals and ground projection of the COP trajectory.
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Table 2. Static postural assessment parameters.

Time Domain Measures

Variable Description

Mean COP coordinates [cm] ML and AP mean COP displacements during time.

Mean Distance [cm] Mean distance of COP trajectory from the center of the trajectory itself.

COP Trajectory Range [cm] Maximum distance between 2 points of COP trajectory in ML and AP directions.

Root Mean Square (RMS) [cm] RMS of COP trajectory. It is provided also for single ML and AP directions.

Angle form AP axis [deg] Mean angle formed by the segments composing COP trajectory and AP direction.

Sway Path [cm] Total length of COP trajectory, computed as the sum of distances between successive
points of the trajectory.

Mean Velocity [cm/s] Mean velocity of COP trajectory, computed as the ratio between sway path length
and duration of the test.

95% Ellipse Area [cm2] Area of 95% confidence ellipse encompassing the COP trajectory in transverse plane.

95% Ellipse Angle [deg] 95% confidence ellipse inclination with respect to the ML direction.

Frequency Domain Measures

Variable Description

Peak Frequency [Hz] Peak frequency for ML and AP power spectrum.

Median Frequency [Hz] Frequency below which the 50th percentile of total power is present.

80% Frequency [Hz] Frequency below which the 80th percentile of total power is present.

Centroidal Frequency [Hz] Spectral centroid of power spectrum. It indicates where the center of mass of the
spectrum is located.

Band Power [cm2] Power comprised in low [0.1–0.2 Hz], mid [0.2–0.3 Hz], and high [0.3–1 Hz] frequency
bands, expressed as absolute and percentage values.

2.2. Validation Analysis

This manuscript presents a validation analysis concerning SWEET Sock gait assessment.
In [42], a first validation analysis was performed by comparing the raw accelerometric and plantar

pressure signals acquired by the prototype with those recorded by reference systems. Following the
results obtained, in this work we want to proceed the process of validation of device performances
exploring the results of gait assessment, in order to carry out any possible unconformity in measurement
and/or processing phases managed by the new prototype. We compared spatio-temporal gait
parameters calculated by SWEET Sock with those found by an optoelectronic stereophotogrammetric
system. The comparison has been carried out by means of statistical methods. This section describes
the methods used for data acquisition and analysis.

2.2.1. Stereophotogrammetric System for Gait Analysis

The reference system chosen for the validation analysis is SMART-DX 700 by BTS Bioengineering,
an optoelectronic stereophotogrammetric system used for movement analysis. Stereophotogrammetry
is usually considered a “gold standard” in gait analysis when used appropriately. The system is made
of 6 infrared digital cameras, with a sensor resolution of 1.5 megapixel, an acquisition frequency from
250 fps (at maximum resolution) to 1000 fps and an accuracy lower than 0.1 mm. The recognition of body
segments during movement is achieved through the use of twenty-two retro-reflective passive markers
(diameter 14 mm), which are attached to subject’s skin at specific landmarks. Video data are processed
on a PC workstation running SMART Clinic software, able to store and compute a set of parameters
concerning kinematic (spatiotemporal parameters, joint angles) and dynamic (forces exchanged).

2.2.2. Experimental Setup

One-hundred-and-eight records were acquired on three healthy subjects: two males (aged 27
and 26) and one female (aged 25). Participants were free of neurological, muscular, and skeletal
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comorbidities affecting mobility and gait. The subject wore the sensorized socks connected to the
electronic unit and was equipped with the markers of the stereophotogrammetric system, in order
to perform simultaneous recording of the walking tasks with the two systems under test (Figure 5).
The markers were attached to subject’s skin according to the protocol described by Davis et al. [43].

Figure 5. Subject equipped with both systems: SWEET Sock and reflective markers.

The trials involved free walking tests on a 11 m walkway in the movement analysis laboratory
of University Hospital “Ruggi D’Aragona” of Salerno (Italy). Each subject was instructed to perform
eight independent trials respectively at preferred, slow and fast self-selected walking speed. After that,
the use of a metronome was introduced to force subjects walking at fixed normal, slow and high
speed. Metronome rate was set at 100%, 67%, and 133% of the average cadence previously assessed
for each subject over 5 free walking tests using the accelerometers-based gait analysis system Opal
by APDM. Subjects performed four walking trials at each speed imposed by metronome. The trials
were performed at different walking speed in order to obtain a dataset covering a wider range of
values. Doing so, we expect a more specific characterization of the relationship existing between the
two methods over all the range of measurement.

In order to validate the proposed e-textile wearable system, the gait analysis parameters obtained
from this device have been compared with those obtained by the reference system. Starting from
gyroscope signals measured by SWEET Sock, spatio-temporal gait parameters were computed
by the custom-made MATLAB algorithms shown in the previous paragraph. The corresponding
parameters assessed by the reference system were retrieved from the reports generated by SMART
CLINIC software.

The following spatiotemporal parameters were considered for the benchmarking analysis;
Gait Cycle Time (s), Cadence (step/min), Stance Time (s), Swing Time (s), and Step Length (m).

2.2.3. Statistical Analysis

The agreement between measurements computed by the two systems—SWEET Sock and
SMART-DX 700—was investigated by means of two-tailed paired t-test, Passing–Bablok regression,
and Bland–Altman analysis. The paired t-test has been performed for all the parameters selected for the
analysis, in its parametric or nonparametric form (Wilcoxon matched pairs signed-rank test) in according
to D’Agostino–Pearson omnibus normality test result. With the paired t-test, the null hypothesis of
no difference between the two systems in mean values of each spatio-temporal parameter was tested.
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A two-tail test was used and the nominal alpha level was set to 0.05 [44]. In combination with the t-test,
the linear correlation between each pair of measurements has been assessed, using Pearson’s correlation
coefficient (r). The agreement was further investigated using PB regression and BA plots, with the aim to
find out any proportional or constant systematic error between the two methods of measurement.

Passing–Bablok regression is a method proposed in 1983 for testing the agreement of two sets of
measurement achieved by different systems [45]. The novelties taken by this method, with respect
to the standard linear regression are that it is based on nonparametric model, it is not sensitive
towards outliers, and it assumes imprecision in both measurement methods and that errors in both
methods have the same distribution, not necessarily normal. As quantitative outcomes, this method
returns slope (proportional systematic error) and intercept (constant systematic error) of the fitting
linear model. The quantitative-based rules to accept the agreement between systems are whether the
confidence intervals (CI) of slope and intercept contain respectively 1 and 0 [45].

Bland–Altman analysis is a graphical method based on the plots of the differences between two
measurements against their averages, and it is the most popular method used to measure agreement
between two measurement systems [46]. If the differences are randomly distributed around the
zero-value axis, no proportional nor systematic error is underlined by the analysis. Quantitative
assessment is given through the bias, as the mean of the differences, and the limits of agreement (LoA)
assessed as the bias ±1.96 times standard deviation of the differences [47,48]. If the differences between
methods do not have a normal and/or symmetric distribution, LoA are considered to be between the
2.5% and 97.5% percentiles. Significant statistical errors are said to be present if the confidence interval
does not contain zero value. Bland and Altman propose to accept the agreement between the methods
under test if this interval contains zero value [47].

Statistical analyses were performed using R software (ver. 4.0.3).

3. Results

We approached the analysis of agreement between the two methods of measurement performing a
paired t-test on all the parameters considered for the analysis. For each parameter, the values deriving
from all the trials performed were considered, with no separation between subjects or walking speeds
adopted. Table 3 shows mean and standard deviation values of each analyzed parameter dataset
for each system of measure. The results of the two tailed paired t-test, with a confidence interval of
95%, are reported using a symbol in accordance with the following convention: ns p-value > 0.05,
* p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001, **** p-value < 0.0001. The hypothesis of no
difference between systems was tested, so lower p-values suggest rejecting the accordance of systems.
In the same table Pearson’s r values are reported.

The Bland–Altman analysis produces the plots shown in Figures 6a–10a. They provide a
qualitative assessment of the distribution of the differences between methods. The descriptive numeric
values deriving from the analysis are reported in Table 4. The bias represents the mean of the differences
between the measures computed by the systems, it is provided with the limits of its 95% CI. In the
plots, biases are reported as continue red lines, while the red dashed lines represent the corresponding
confidence intervals. The LoA reported in table are also shown in the graphical representations as
black dashed lines. They are assessed as the 2.5 and 97.5 percentiles of differences, as they do not have
a symmetric gaussian distribution.

The last analysis on data was performed using Passing–Bablok regression. In addition to the
previous analyses, this analysis can reveal the presence of a trend between the measures of the two
systems, thus indicating a proportional error in the tested method according to the slope of the fitting
regression line. Figures 6b–10b show the scatter plot of the dataset for each parameter, with the
Passing–Bablok regression line in black. The shaded area around the regression line represents its
CI, while the red dashed line corresponds to the reference identity line, to which the regression line
should be tend in a scenario of perfect agreement. In the Passing–Bablok plots, Pearson’s correlation
coefficient (r) is also shown because high values of r justify the choice to perform a linear regression
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analysis. The quantitative outcomes of Passing–Bablok analysis are reported in Table 5: slope and
intercept of the regression line are listed for each parameter, along with the corresponding 95%
CI limits.

Table 3. Paired-T test.

Variable SWEET BTS p-Value Pearson’s r
(mean ± std) (mean ± std) Summary 1

Gait Cycle Time [s] 1.15 ± 0.25 1.15 ± 0.26 ns 0.992
Cadence [step/min] 109.30 ± 21.85 109.60 ± 22.25 * 0.996
Stance Time [s] 0.63 ± 0.19 0.70 ± 0.18 **** 0.994
Swing Time [s] 0.52 ± 0.07 0.45 ± 0.08 **** 0.969
Step Length [m] 0.73 ± 0.08 0.68 ± 0.10 **** 0.283

1 ns p > 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

Table 4. Bland–Altman analysis.

Variable Bias Lower Bound Upper Bound Lower Bound Upper Bound
Bias CI Bias CI LoA LoA

Gait Cycle Time [s] 0.00 −0.01 0.01 −0.06 0.05
Cadence [step/min] −0.35 −0.74 0.03 −3.83 3.26
Stance Time [s] −0.07 −0.07 −0.06 −0.11 −0.01
Swing Time [s] 0.07 0.07 0.08 0.04 0.10
Step Length [m] 0.06 0.03 0.08 −0.13 0.25

Table 5. Passing–Bablok regression analysis.

Variable Slope Lower Bound Upper Bound Intercept Lower Bound Upper Bound
Slope CI Slope CI Intercept CI Intercept CI

Gait Cycle Time [s] 1.00 0.99 1.02 0.00 −0.02 0.02
Cadence [step/min] 0.99 0.97 1.00 0.74 −0.95 2.38
Stance Time [s] 1.06 1.03 1.08 −0.11 −0.13 −0.09
Swing Time [s] 0.90 0.87 0.94 0.12 0.10 0.13
Step Length [m] 0.70 0.52 0.95 0.25 0.08 0.36

Figure 6. Gait cycle time: (a) Bland–Altman plot; (b) Passing–Bablok regression analysis.
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Figure 7. Cadence: (a) Bland–Altman plot; (b) Passing–Bablok regression analysis.

Figure 8. Stance Time: (a) Bland–Altman plot; (b) Passing–Bablok regression analysis.

Figure 9. Swing Time: (a) Bland–Altman plot; (b) Passing–Bablok regression analysis.
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Figure 10. Step length: (a) Bland–Altman plot; (b) Passing–Bablok regression analysis.

4. Discussion

This work aims to evaluate the agreement between a novel wearable and portable device for
gait analysis and the gold standard of stereo-photogrammetry system. The comparative analysis has
been performed on a selected group of the principal temporal and spatial parameters assessed in
gait analysis by both systems. Three different statistical methods were used to properly characterize
the relationship between the measurement systems under test: paired t-test, Bland–Altman plots,
and Passing–Bablok regression analysis.

In the assessment of the mean gait cycle time, significant agreement has been pointed out by
the statistical analysis. The paired t-test leads to a non-significant p-value (p > 0.05), suggesting to
accept the hypothesis of no difference between systems. The bias value in the Bland–Altman analysis
is null (0.00 from Table 4) and the LoA are very low (in the order of few hundredths of a second).
The Pearson’s correlation coefficient is very high (0.992), supporting the concept of a linear dependence
between the measures, explored by means of Passing–Bablok analysis. The regression line obtained
with this method coincides with the identity line (slope = 1.00, intercept = 0.00), confirming the
significant agreement between the two methods in assessing gait cycle time.

Concerning the measure of cadence, a deeper discussion is required. The T-test result suggests
to refuse the hypothesis of absence of difference between the methods, but with low significance
(0.05 < p-value < 0.01). The bias pointed out by Bland–Altman analysis is very low (−0.35, about 0.3%
of the average value of cadence), with its 95% CI containing the zero value and limited to few units of
steps per minute (−0.74 to 0.03). Passing–Bablok regression is legitimated by a high value of Pearson’s
r (0.996): its slope is very close to 1 (0.99 with CI of 0.97–1.00), the intercept is different from 0 (0.74) but
its CI contains this value (−0.95 to 2.38). Starting from these results and analyzing the Bland–Altman
Plot in Figure 7a, we can observe that the SWEET system slightly underestimates the value of cadence
compared to BTS system. Further exploring data, we identified the cause of the non-perfect agreement
in the different range of steps analyzed by the two systems. The reference system SMART-DX 700 by
BTS performs gait analysis on a limited range of steps, contained in the central 3 or 4 strides of the
walking trial, as they are completely included in the field of view of the cameras. The detected volume
cannot be extended because it is limited by the configuration of the system which considers the limited
volume of the laboratory. Instead, SWEET Sock system elaborates the entire signal coming from the
IMUs, removing only the first and the last steps performed to start and stop walking. The analysis of
the punctual values of cadence assessed in each single step of the walking trial by SWEET Sock system
clarify that in the first and last part of walking a lower step cadence is adopted. Figure 11 shows,
for each step of the walking trial, the average of the differences between the punctual cadence assessed
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by SWEET and the mean step cadence suggested by BTS system. We can observe that in the first and
last part of walking the difference is higher in absolute value, while in the middle steps it is reduced.
Therefore, we can affirm that probably a better agreement would have been obtained if the same range
of steps were analyzed by the two systems. We have chosen not to do so for two reasons: the first is
that in SMART-DX 700 the steps to be considered in the analysis have to be chosen manually, while the
signal processing of SWEET Sock is entirely automatic, and second because we have chosen not to
modify the methods of analysis of SWEET system, which can provide more accurate results by taking
into account the entire walking trial.

Figure 11. Mean difference between the punctual cadence assessed by SWEET and the mean step
cadence suggested by BTS system for each step of the walking trial.

Stance and swing phase durations are complementary parameters, because they are the two
parts composing the gait cycle time. Gait cycle time is defined as the time between two successive
initial contacts of the same foot. Stance phase duration is the time between the initial contact and the
successive terminal contact of the same foot, while swing time goes from the terminal contact to the
subsequent initial contact. The complementarity of these parameters is perfectly reflected in the results
of the statistical analyses. The T-test identified a significative statistical difference between the systems
(p-values < 0.0001), even if a linear correlation exists in both stance and swing phase durationsas
shown by Pearson’s r values, respectively 0.994 and 0.969. The Bland–Altman plots clearly show that
SWEET system underestimates Stance time compared to BTS system (bias = −0.07), and therefore
overestimates of the same quantity the Swing time (bias = 0.07). Passing–Bablok results confirm the
presence of a systematic error in the measures: intercepts’ CIs are symmetric for the two variables
and do not contain zero value (stance Cis = −0.13 to −0.09, swing Cis = 0.10 to 0.13). It also points
out a proportional error proven by the fact that the slopes of the two regression lines are different
from 1 (the CIs are respectively from 1.03 to 1.08 and, symmetrically, from 0.87 to 0.94). Therefore,
the difference between the methods of measures is made of a constant part and a proportional part
which grows when the value of the parameter is increased. The error is to be probably addressed to
the wrong detection of the initial and terminal contact of the foot with the ground, made by SWEET
system through the analysis of the filtered gyroscope signal in accordance to the rules illustrated by
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Doheny et al. in [36]. Although the gait cycle time shows very good agreement, it does not mean
that the initial contacts are well identified in the signal, because they could be all translated in time of
the same quantity, still resulting in good output values. To understand the error a further analysis is
required on the mutual position of initial and terminal contacts identified on gyroscope signals.

The last parameter is the step length, which has been selected to investigate the performances
of SWEET system in the assessment of spatial measures. Results of the statistical analysis are not
very encouraging. T-test points out a significative statistical difference between the measures of the
systems (p < 0.0001), that is confirmed by Bland–Altman analysis. Actually, even if the CI of bias
includes the zero, it is quite wide (−0.13 to 0.25 m) for the precision required in this spatial metric.
Moreover, the reduced value of Pearson’s coefficient shows that no linear correlation exists between
the measures (r = 0.283), so it does not make sense to perform the Passing–Bablok regression analysis.
Actually Passing–Bablok regression line in Figure 10b does not fit accurately the points, which are
distributed with no detectable trend. These results allow to affirm that there is not agreement between
the systems in the assessment of the step length. Moreover, in this case the cause of the error could
be probably found in the processing of the gyroscope signal that lead to the assessment of the spatial
parameters. The algorithm proposed in [36] is based on modeling the movement of the shank as a
single pendulum, thus deriving the spatial parameters from the calculation of the angle covered by
the foot during the swing phase and using geometrical consideration. A further analysis is required
to understand if this model is too simplistic to represent leg swing during gait or if other aspects
(device positioning, signal filtering, etc.) cause errors in the measure of spatial parameters in SWEET
Sock system. Our first purpose is to try maintaining a gyroscope-based algorithm for gait assessment,
by considering other more specific models proposed in literature regarding the movement of the shank
during the swing phase. An example is the double segment gait model involving both shank and
thigh proposed by Aminian et al. in [24]. Doing so we can avoid the use of other sensors data, such as
linear accelerations, keeping the gyroscope advantages explored in the description of the electronic
unit, and avoiding the reconfiguration of the entire system.

We explored scientific literature to find out and analyze other results from gait analysis systems
based on similar measuring principles. Some works exist regarding validation analysis of wearable
systems for gait analysis based on processing of kinematic signals. These studies address comparative
analyses with clinical instruments, such as instrumented treadmill [49], force platform [50] or pressure
sensitive walkway (GAITRite R©) [35,51,52]. No works presenting a comparative analysis with the gold
standard (stereophotogrammetry system) has been found. Results from the analyzed works show a
common trend: temporal parameters present a better agreement than spatial metrics. Among temporal
parameters, step time and GCT show the best agreement, while stance and swing phases measurements
are moderately correlated with reference measures. Results presented in this article are in accordance
with this trend, confirming the poor performances of IMU-based systems in assessing gait spatial
metrics. Only in [35] spatial metrics show a good agreement level, that could be caused by the different
placement of IMUs, placed on both feet rather than on shanks. Results from the works in [35,49]
demonstrated that foot placement allow a better measurement of spatial gait parameters. However,
we did not choose this placement because it can worsen the comfort and wearability of the system for
users and preclude its in-shoes use.

Comfort Assessment

In addition to the validation of technical performance, the wearability and comfort assessment
was carried out in order to evaluate the acceptance of the system by final users and to identify possible
areas of improvement in terms of design. To carry out this conformity assessment, an already validated
methodology was used, specifically the Comfort Rating Scales (CRSs).

The wearability evaluation of a device is a multidimensional analysis: wearable devices affect the
wearer in different ways. Among the effects to be taken into consideration, there are those related to
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comfort. When wearing something, the level of comfort can be affected by several aspects, such as
device size and weight, how it affects movement, and pain.

The design of the sock has been implemented in order to achieve the greatest comfort for the user.
The integrated pressure sensors are made of textile material, therefore are flexible and imperceptible
on the skin. The electronic unit has also been designed to be as comfortable as possible for the user:
it is light and it can be connected to the textile sock without the need to use bands. In fact, the use of
the latter could cause discomfort to the user due to the presence of a narrow element tied to the limb.

In addition to physical factors, comfort may be affected by psychological responses such as
embarrassment or anxiety. Consequently, Knight and Baber proposed that comfort should be measured
across a number of dimensions and for such task they developed the Comfort Rating Scales (CRSs) [53].

The CRSs provide a quick and easy-to-use tool to assess the comfort of wearable devices, which
attempt to gain a comprehensive assessment of the comfort status of the wearer of any item of technology
by measuring comfort across the six dimensions described in Table 6. In rating perceptions of comfort,
the scorer simply marks on the scale his or her level of agreement, from low (0) to high (20), with the
statements made in the “description” column of Table 6. According to Knight and Baber, this range was
considered large enough to elicit a range of responses that could be used for detailed analysis [53].

The three participants involved in the study were invited to fill in the CRSs to provide a judgment
on their comfort. Table 6 shows the scores assigned, for each field, by the subjects involved in the study.

Although the evaluation was carried out on only three people, it provides a preliminary measure
of the comfort of the prototype device. Knight et al. [54] have proposed five Wearability Levels (WLs),
determined by proportioning the scales into equal parts (Table 7). The mean score of Emotion dimension
is in the WL2 suggesting that users show little embarrassment in wearing the system. All the other
dimensions were rated in the WL1 proving a high wearability and comfort of the device. However,
to better identify the wearability level of the device and how to improve it, future analysis will aim to
make a significant assessment of comfort, testing the device on a wider cohort of subjects.

Table 6. Comfort rating scales.

Title Description Subject 1 Subject 2 Subject 3 Mean

Emotion I am worried about how I look when I wear this device. I feel tense
or on edge because I am wearing the device.

7 4 7 6.0

Attachment I can feel the device on my body. I can feel the device moving. 3 3 5 3.7
Harm The device is causing me some harm. The device is painful to wear. 0 0 0 0.0
Perceived change Wearing the device makes me feel physically different. I feel strange

wearing the device.
5 0 0 1.7

Movement The device affects the way I move. The device inhibits or restricts
my movement.

5 2 1 2.7

Anxiety I do not feel secure wearing the device. 0 0 0 0.0

Table 7. Wearability Levels.

Wearability Level CRS Score Outcome

WL1 0–4 System is wearable
WL2 5–8 System is wearable, but changes may be necessary, further investigation

is needed
WL3 9–12 System is wearable, but changes are advised, uncomfortable
WL4 13–16 System is not wearable, fatiguing, very uncomfortable
WL5 17–20 System is not wearable, extremely stressful, and potentially harmful

5. Conclusions

SWEET Sock is a new wearable and portable device for the measurement and analysis of
biosignals, based on textile sensors, able to perform posturographic assessment and gait analysis.
In this manuscript, we presented the development of the system and we illustrated the validation
analysis of the performances of the novel system in gait assessment.



Sensors 2020, 20, 6691 17 of 20

The sensing unit is a textile sock in which textile sensors and bus structures are integrated,
making it possible to use the system during normal daily activities, without any discomfort. The system
includes a mobile app for real time visualization of the acquired signals and a software desktop for
off-line plotting and digital signal processing.

The analysis of the performances of the system in gait assessment was performed by comparing
the results given by the novel system with the corresponding values computed by an optoelectronic
stereophotogrammetric system (SMART-DX 700 by BTS Bioengineering) in the analysis of 108 walking
trials at different walking speeds. Study results show that the agreement is not confirmed for all
the spatio-temporal gait parameters analyzed. In particular, gait cycle time and cadence are the two
parameters presenting the best agreement, even if the latter presents a small systematic difference
between the values computed by the two systems. Stance and swing phase durations present both
systematic and proportional errors in the comparison between the methods. Although both errors
could be removed by taking into account this misalignment, a further analysis will be performed to
understand and correct the problems directly in the processing phase. Worse results are achieved
in the analysis of spatial parameters’ agreement. The measures of step length provided by the two
systems are not correlated. For this parameter, a further analysis is required to correct the issues
in the computational process. Based on these findings, we can affirm that the novel system can be
safely used in the evaluation of gait cycle time while some issues were found in the validation of
the other temporal and spatial parameters. Future developments will concern the resolution of the
problems encountered in this work and the execution of a similar validation analysis regarding the
posturographic assessment provided by the system.

The innovative features of the system rely in the multiparametric approach in health monitoring
and in its ease of use. The “wearability” of the system and its comfortable use make it very suitable
to be used in domestic environment for the continuous remote health monitoring of de-hospitalized
patients. The CRSs were used to assess the comfort of the wearable system. The scores provided by
the subjects involved in the study, allow to assume a good level of comfort when the socks are used.

Another valid field of interest regards occupational ergonomics, related to the prevention of
work-related musculoskeletal disorders (WRMSDs) in healthcare workers.

The use of SWEET Sock during working hours by nurses and therapists could help monitor
postural and dynamic variables in activities most associated with exposure to biomechanical overload
(i.e., frequent patient handling, pushing and pulling, awkward postures, prolonged standing, and
significant sideways twisting).

The biomechanical advantage of using patient handling devices and technological aids, including
exoskeletons, could be verified through the analysis of postural parameters. Gait analysis could help
rethink preventive strategies aimed at work organization (for example by providing for the alternation
of dynamic and static phases, and adequate recovery breaks). Last, but not least, balance analysis
and COP coordinates could provide insights into the prevention of slips, trips, and falls, which are
the second most common cause of injuries leading to lost working days in hospitals. The advantages
combined in a minimally invasive device, together with the accuracy and reliability of the measurement,
and the future opportunity of integration into IoT networks open new perspectives to increase the
effectiveness of prevention and safety strategies in healthcare workers.
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