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Cell-free DNA (cfDNA) fragmentation patterns contain important molecular informa-
tion linked to tissues of origin. We explored the possibility of using fragmentation pat-
terns to predict cytosine-phosphate-guanine (CpG) methylation of cfDNA, obviating
the use of bisulfite treatment and associated risks of DNA degradation. This study
investigated the cfDNA cleavage profile surrounding a CpG (i.e., within an
11-nucleotide [nt] window) to analyze cfDNA methylation. The cfDNA cleavage pro-
portion across positions within the window appeared nonrandom and exhibited correla-
tion with methylation status. The mean cleavage proportion was ∼twofold higher at
the cytosine of methylated CpGs than unmethylated ones in healthy controls. In con-
trast, the mean cleavage proportion rapidly decreased at the 1-nt position immediately
preceding methylated CpGs. Such differential cleavages resulted in a characteristic
change in relative presentations of CGN and NCG motifs at 50 ends, where N repre-
sented any nucleotide. CGN/NCG motif ratios were correlated with methylation levels
at tissue-specific methylated CpGs (e.g., placenta or liver) (Pearson’s absolute r >
0.86). cfDNA cleavage profiles were thus informative for cfDNA methylation and
tissue-of-origin analyses. Using CG-containing end motifs, we achieved an area under a
receiver operating characteristic curve (AUC) of 0.98 in differentiating patients with
and without hepatocellular carcinoma and enhanced the positive predictive value of
nasopharyngeal carcinoma screening (from 19.6 to 26.8%). Furthermore, we elucidated
the feasibility of using cfDNA cleavage patterns to deduce CpG methylation at single
CpG resolution using a deep learning algorithm and achieved an AUC of 0.93.
FRAGmentomics-based Methylation Analysis (FRAGMA) presents many possibilities
for noninvasive prenatal, cancer, and organ transplantation assessment.
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Fragmentation patterns of cell-free DNA (cfDNA) molecules contain a wealth of
molecular information related to their tissues of origin (1). For instance, compared
with the background DNA molecules that are mainly derived from the hematopoietic
system (2, 3), size shortening of fetal and tumoral DNA molecules occurs in the plasma
DNA of pregnant women and cancer patients, respectively (4–6). In addition, a series
of 10-bp periodicities were present in fetal and tumoral DNA molecules below 146 bp,
with a relative reduction in the major peak at 166 bp (1). Such characteristic size pro-
files suggest that the fragmentation of cfDNA may be associated with nucleosome
structures (5, 7). Many important characteristics pertaining to cfDNA fragmentation
have been unveiled recently, such as nucleosome footprints (8, 9), fragment end
motifs (10), preferred ends (7, 11), and jagged ends (12), which are examples of frag-
mentomic markers (1).
cfDNA fragmentomics is an emergent and actively pursued area, with wide-ranging

biological and clinical implications. It has been reported that the use of fragmentation
patterns of cfDNA could inform the expression status of genes (13, 14). Using mouse
models, DNA nucleases (e.g., DNASE1L3) were found to play important roles in the
generation of plasma DNA molecules (15, 16). Fragmentomic features, such as cfDNA
end motifs and jagged ends, were further demonstrated to be useful for monitoring DNA
nuclease activities, providing biomarkers for autoimmune diseases (e.g., systemic lupus ery-
thematosus) (17, 18). In addition, the deficiencies of nuclease activities in a mouse model
resulted in altered DNA methylation profiles of plasma DNA molecules (19). However,
how cfDNA fragmentation patterns interplay with DNA methylation in human individu-
als under different pathophysiological conditions, such as pregnancy and oncogenesis, and
in healthy patients without nuclease deficiency, is unknown. It is also not known whether
fragmentomic features can be used to deduce cfDNA methylation status.
A widely employed way to assess DNA methylation is through bisulfite sequencing

(20). A key limitation of this approach is the severe degradation of DNA molecules
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caused by the bisulfite treatment (21), which greatly increases
the sampling variation when analyzing rare target molecules
(e.g., tumoral cfDNA at early stages of cancer). Many efforts
have been made toward overcoming this issue. For example,
Vaisvila et al. developed enzymatic methyl sequencing for
which DNA molecules were treated using tet methylcytosine
dioxygenase 2 and T4 phage β-glucosyltransferase, followed by
the apolipoprotein B mRNA editing enzyme catalytic subunit
3A (APOBEC3A) treatment. Cytosine conversion based on
enzymatic processes was reported to be much less destructive
(22). Recently, researchers developed approaches making use of
third-generation sequencing technologies such as single-molecule
real-time sequencing (Pacific Biosciences) (23) and nanopore
sequencing (24) to analyze cytosine-phosphate-guanine (CpG)
methylation patterns in native DNA molecules, theoretically
overcoming the above-mentioned limitation. However, com-
pared with second-generation sequencing (also called next-
generation sequencing [NGS]) technologies, the throughput of
third-generation sequencing technologies is generally lower and
the sequencing cost per nucleotide (nt) is much higher, thus
restricting its immediate application in clinical settings. Here,
we explore the feasibility of enabling the assessment of DNA
methylation using fragmentomic characteristics of cfDNA

molecules deduced from NGS results without the use of bisul-
fite or enzymatic treatment. If successful, such an approach
could leverage the high throughput of NGS while obviating
the use of chemical/enzymatic conversion and could potentially
be readily integrated into currently used NGS-based platforms
for cfDNA analysis.

In this study, we utilize the fragmentation patterns proximal
to a CpG site for deducing its methylation status. The fragmen-
tation pattern is depicted by the frequency of cfDNA fragment
ends at each position within a certain nt range relative to a
CpG of interest, termed a cleavage profile (Fig. 1). Such a
cleavage profile varies according to the methylation status of
the CpG site of interest, providing the basis for methylation
analysis by using fragmentomic features. We further correlated
two types of end motifs (CGN and NCG; N represents any
nucleotide of A, C, G, or T) resulting from differential cutting
in the measurement window related to DNA methylation,
attempting to construct a simplified approach for methylation
analysis. Modeling CpG methylation using cfDNA fragmenta-
tion may facilitate noninvasive prenatal testing, cancer detec-
tion, and tissue-of-origin analysis (Fig. 1). Furthermore, we
explore the feasibility of using deep learning to deduce the
methylation status at single CpG resolution through the
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Fig. 1. Schematic for FRAGMA of cfDNA mole-
cules. cfDNA molecules were sequenced by mas-
sively parallel sequencing and aligned to the
human reference genome. The cleavage propor-
tion within an 11-nt window (the cleavage mea-
surement window) was used to measure the cut-
ting preference of cfDNA molecules. The patterns
of cleavage proportion within a window (the
cleavage profile) depended on the methylation
status of one or more CpG sites associated with
that window. For example, a methylated CpG site
might confer a higher probability of cfDNA cutting
at the cytosine in the CpG context, but an unme-
thylated site might not. Such methylation-
dependent differential fragmentation within a
cleavage measurement window resulted in the
change in CGN/NCG motif ratio. Thus, the CGN/
NCG motif ratio provided a simplified version
for reflecting CpG methylation, allowing cfDNA
tissue-of-origin analysis of cfDNA and cancer
detection. Furthermore, the great number of
cleavage profiles derived from cfDNA molecules
might provide an opportunity to train a deep
learning model for methylation prediction at the
single CpG resolution.
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cleavage profile (Fig. 1). We refer to this FRAGmentomics-
based Methylation Analysis as FRAGMA in this study.

Results

DNA Methylation Directly Affects the Cleavage Profile of
cfDNA. To investigate the relationship between DNA methyla-
tion and cfDNA fragmentation, we examined the cleavage pro-
file related to hypermethylated and hypomethylated CpG sites
based on bisulfite sequencing results of plasma DNA from eight
healthy controls in a previous study (10). The hypermethylated
and hypomethylated CpG sites were defined as CpG sites with
a methylation index (i.e., percentage of methylated cytosines) >
70% and < 30%, respectively. The cleavage profile was con-
structed according to the cleavage proportion (i.e., the percent-
age of fragment ends with respect to the sequencing depth [%])
across each nt within an 11-nt genomic window centered on a
CpG site. For simplicity, we termed such an 11-nt genomic
window as a cleavage measurement window. The mean cleavage
proportion in a plasma DNA sample was calculated for each nt
position relative to the CpG site of interest across 4,631,823
cleavage measurement windows associated with a hypermethy-
lated CpG site. The mean cleavage proportion across 307,831
cleavage measurement windows associated with a hypomethy-
lated CpG site was determined similarly. As shown in Fig. 2A,
an approximately twofold higher cleavage proportion was
observed at hypermethylated CpG sites (position 0) (median:
1.13; range: 0.99–1.23) than at hypomethylated CpG sites
(median: 0.53; range: 0.45–0.60) (P < 0.001, Wilcoxon rank-
sum test). In contrast, a lower cleavage proportion at position
�1 was observed in hypermethylated CpG sites compared with
hypomethylated CpG sites (median: 0.24 versus 0.41; range:
0.19–0.27 versus 0.35–0.61) (P < 0.001, Wilcoxon rank-sum
test). Notably, this relationship between cfDNA cleavage profile
and predefined methylation patterns could be reproduced in
paired nonbisulfite sequencing data (Fig. 2B).
We further studied how cleavage profiles were affected by

the methylation configuration of two tandem CpG dinucleoti-
des spanning positions of 0, 1, 2, and 3 in a window (i.e.,
CGCG subsequence). A significantly higher cleavage propor-
tion was observed at positions 0 and 2 when both CpG sites
were hypermethylated, compared with those where both CpG
sites were hypomethylated (P < 0.001, Wilcoxon rank-sum
test) (Fig. 2C and SI Appendix, Fig. S1A). When the methyla-
tion state of the tandem CpG sites was opposite, the increased
cleavage proportion occurred at the hypermethylated cytosine
(Fig. 2C and SI Appendix, Fig. S1B). These results suggested
that DNA methylation was associated with the cfDNA cleavage
pattern, wherein a higher cleavage proportion at a CpG site
was associated with higher methylation.

CGN/NCG Motif Ratio of cfDNA Reflects its Methylation Level.
The differential cleavage of cfDNA at positions 0 and �1 rela-
tive to a CpG site, depending on methylation status, would lead
to the differential presentation of end motifs. Methylated CpG
sites tended to have more endpoints at position 0, enriching
50 CGN motifs (N represents any nucleotide of A, C, G, or T),
but less at the position �1, depleting 50 NCG motifs (Fig. 3A).
In contrast, the unmethylated CpG site attenuated such a cut-
ting preference (Fig. 3A). Indeed, for plasma DNA samples of
healthy controls, the ratio of 50 CGN to NCG end motifs (i.e.,
CGN/NCG motif ratio) was found to be significantly higher at
hypermethylated CpG sites (median: 4.70; range: 4.35–5.16)
than at hypomethylated sites (median: 1.31; range: 0.80–1.55)

(P < 0.001, Wilcoxon rank-sum test) (Fig. 3B and SI Appendix,
Fig. S2A). We hypothesized that the CGN/NCG motif ratio of
cfDNA molecules originating from a genomic region could be
used to inform the methylation level of that region. As shown in
Fig. 3C, Alu regions showed higher methylation levels while CpG
islands showed lower methylation levels, compared to the overall
methylation level of the whole human genome. We observed that
the CGN/NCG motif ratios across Alu regions, CpG islands, and
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Fig. 2. Cleavage proportion depending on CpG methylation status. (A)
Cleavage profiles related to hypermethylated (red lines) and hypomethy-
lated (blue lines) CpGs in plasma DNA of eight healthy controls based on
whole-genome bisulfite sequencing data. Each line represents one sample.
(B) Cleavage profiles related to hypermethylated (red lines) and hypome-
thylated (blue lines) CpGs in plasma DNA of eight healthy controls based
on whole-genome nonbisulfite sequencing data. Each line represents one
sample. (C) Cleavage profiles in windows each containing two tandem CpG
dinucleotides spanning positions 0, 1, 2, and 3 (i.e., CGCG subsequence) in
plasma DNA of eight healthy controls. Red, dark blue, yellow, and light blue
lines correspond to the cleavage profiles with different methylation config-
urations of two immediately adjacent CpG sites: “MM,” “UU,” “MU,” and
“UM,” where M and U represent hypermethylated and hypomethylated
states, respectively.
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the whole genome were concordant with the methylation levels
determined by bisulfite sequencing (Fig. 3D), which were further
confirmed in the matched nonbisulfite sequencing data (SI
Appendix, Fig. S2 B and C).
To further investigate the resolution that CGN/NCG motif

ratio–based methylation analysis could achieve, we analyzed
plasma DNA molecules from a region involving genomic
imprinting that conferred differential DNA methylation
depending on parental origin (e.g., the GNAS gene, located at
chr20:57,415,043–57,415,176). Those sequenced reads were
obtained from a first-trimester pregnancy sample in a previous

study (25). As shown in Fig. 3E, DNA fragments carrying alleles
of A or G at an single-nucleotide polymorphism (SNP) site
(the single nucleotide polymorphism database [dbSNP] ID:
rs1800900) were inherited from different parents. Those DNA
fragments carrying G alleles were unmethylated, while those car-
rying A alleles were methylated. Intriguingly, cfDNA fragments
carrying A alleles (methylated) showed a higher frequency of 50-
CGN end motifs (13.89% versus 3.70%) but a lower frequency
of 50-NCG end motifs (2.78% versus 12.96%), compared with
those cfDNA fragments carrying G alleles (unmethylated) (Fig.
3F). A similar correlation between 50-CGN and NCG end motifs
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Fig. 3. CGN/NCG motif ratio analysis. (A)
Illustration of the biological principle for CGN/
NCG motif ratio. A methylated CpG confers a
higher cleavage probability at the cytosine of
the CpG context but a lower cleavage proba-
bility at one base before the CpG context,
compared with an unmethylated CpG. Such
differential cutting leads to an increase of
CGN motifs but a decrease of NCG motifs.
Therefore, we expected to observe higher
CGN/NCG motif ratios on hypermethylated
CpG sites compared to those on hypomethy-
lated CpGs. (B) Box plot of CGN/NCG motif
ratio between hypermethylated and hypome-
thylated CpGs from plasma DNA of eight
healthy control samples. (C) Methylation den-
sity of cfDNA molecules measured by bisulfite
sequencing across the whole genome, Alu
regions, and CpG islands from eight healthy
control samples, respectively. (D) CGN/NCG
motif ratios of whole genome, Alu regions,
and CpG islands, respectively. (E) Methylation
status of sequenced fragments mapped to an
imprinting region (GNAS gene, located at
chr20:57,415,043–57,415,176). Each row with
the back (methylated) and white (unmethy-
lated) dots represents one plasma DNA mole-
cule. Each dot represents one CpG site. Two
groups of sequenced fragments carried A
alleles and G alleles, respectively, at an SNP
(rs1800900). cfDNA molecules carrying
A-alleles are methylated while those with
G-alleles are unmethylated. (F) The frequen-
cies of CGN and NCG motifs related to the
imprinting region. (G) The CGN/NCG motif
ratios from fetal-specific cfDNA in maternal
plasma DNA (first trimester) correlated with
the methylation levels in the paired chorionic
villus sampling (CVS) biopsy. CpGs were
grouped into 10 groups according to the
methylation levels from the paired CVS
biopsy. The y axis represents the CGN/NCG
motif ratio of fetal-specific cfDNA, and the
graded colors in the bars represent the differ-
ent methylation densities of fetal-specific
cfDNA.
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and allele-specific methylation could be observed in another
region exhibiting genomic imprinting (the MEST gene, located at
chr7:130,132,754–130,132,884; SI Appendix, Fig. S2D). Taken
together, these results suggest that in addition to reflecting regional
methylation levels, the CGN/NCG motif ratio could inform
allele-specific methylation patterns.
We further explored the relationship between the cfDNA

cleavage patterns and the methylation states within stretches of
DNA with several adjacent CpGs by analyzing the CGN/NCG
motif ratios across different combinations of methylation states
for cfDNA fragments with two and three adjacent CpGs, respec-
tively. As shown in SI Appendix, Fig. S2 E and F, the CGN/
NCG motif ratio was significantly higher in those cfDNA mole-
cules starting with a methylated CpG at the 50 end, compared
with molecules starting with an unmethylated CpG at the
50 end. Interestingly, the cleavage of molecules starting with the
unmethylated CpG at the 50 end seemed to be relatively
enhanced by the presence of methylation of the adjacent CpGs
(SI Appendix, Fig. S2 E and F). These data suggested that the
methylation status of the CpG that was immediately adjacent to
the cleavage site of interest showed a more pronounced impact
on the cfDNA cleavages than those CpG sites farther away from
the cleavage site. In addition, the data also suggested that the
cleavage of the CpG at the 50 end might at least in part be
affected by the methylation status of adjacent CpGs.
Furthermore, in a first-trimester pregnant woman we

observed a correlation between CGN/NCG motif ratios and
methylation densities of fetal-specific DNA molecules from dif-
ferent genomic regions (Fig. 3G). A similar correlation between
the fetal CGN/NCG motif ratio and the methylation density
of the placenta tissues could be seen in a third-trimester sample
(SI Appendix, Fig. S2E). These results implied that using the
CGN/NCG motif ratio might help construct the fetal methyl-
ome in maternal plasma.

DNASE1L3 Plays a Role in Methylation-Aware Fragmentation.
DNASE1L3 carries nuclear localization signals, reported to be
present in the nucleus of cells and bound to chromatin (26).
Recently, Chen et al. reported that DNASE1L3 protein could
be detectable in human blood plasma based on Western blot
(27). DNASE1L3 can function extracellularly and intracellu-
larly. DNASE1L3 activities seem to influence cfDNA fragmen-
tation patterns according to mouse model data (19), thus
potentially confounding the apparent measurement of cfDNA
methylation using the CGN/NCG motif ratio. For instance,
the knockout of the Dnase1l3 gene has resulted in a lower over-
all methylation level compared with wild-type mice (19).
Hence, we studied how the DNASE1L3 activity would affect
the cfDNA fragmentomics-based methylation measurement in
the plasma of human patients.
We analyzed and compared the cleavage profile of plasma

DNA from four individuals with DNASE1L3 deficiency based
on bisulfite sequencing in a previous study (18). In contrast to
cleavage patterns in healthy individuals for which a higher
cleavage proportion at position 0 and a lower cleavage propor-
tion at position �1 was observed in hypermethylated CpG sites
compared with hypomethylated ones (Fig. 2A), such position-
specific cleavage patterns were drastically diminished in the
plasma DNA of patients with DNASE1L3 deficiency (Fig. 4A).
Due to the alteration in cleavages mediated by DNASE1L3
activities, the difference in the CGN/NCG motif ratio between
hypermethylated and hypomethylated CpG sites was substan-
tially reduced in DNASE1L3-deficient patients (i.e., approxi-
mately from a fourfold difference down to a 1.3-fold difference)

(Fig. 4B). These results suggested that in addition to methyla-
tion patterns, DNASE1L3 activity was another factor acting on
methylation-aware cleavages. The influence of DNASE1L3
activities on the CGN/NCG motif ratio appeared in a genome-
wide manner, as the deficiency of DNASE1L3 could obscure
the correlation between the CGN/NCG motif ratio and DNA
methylation across the whole genome, Alu regions, and CpG
islands (Fig. 4 C and D).

Methylation-Aware Cleavage Patterns Inform Tissues of Origin
of cfDNA Molecules. We demonstrated that DNA methylation
was correlated with cfDNA cleavage profiles and that the
CGN/NCG motif ratio of cfDNA could be used to inform
cfDNA methylation levels of genomic regions of interest.
Plasma DNA is a mixture comprising cfDNA molecules orig-
inating from different tissues (28, 29). The tissues of origin of
cfDNA molecules can be determined using tissue-specific meth-
ylation patterns (3, 28–31). Thus, we tested whether the cfDNA
cleavage profile might be reflective of tissue-specific hypermethy-
lated and hypomethylated CpG sites and whether its associated
CGN/NCG motif ratio could be used as a surrogate for tissue
contribution to the plasma DNA pool.

To this end, we first used liver transplantation as a model to
explore the feasibility of tracing the tissue-specific cleavage pro-
file surrounding a CpG. We analyzed plasma DNA samples
from 14 liver transplant recipients previously reported (32). We
identified liver-specific hypermethylated (n = 258,630) and
hypomethylated (n = 226,417) CpG sites by comparing bisul-
fite sequencing results between the liver tissues and buffy coat
samples (see details in SI Appendix, Methods and Materials).
Fig. 5A shows that the donor-derived DNA molecules gave rise
to a 51.0% increase in cleavage proportion at position 0 of
liver-specific hypermethylated CpG sites, compared with shared
DNA molecules mainly of hematopoietic origin. In contrast,
the corresponding cleavage proportion decreased at position �1
by 31.3%. Thus, the presentation of CGN and NCG motifs
would be expected to proportionally change depending on
the specific cutting preference linked to differentially meth-
ylated CpG sites. Indeed, the CGN/NCG motif ratio from
the liver-specific hypermethylated CpGs showed a strong posi-
tive correlation with the donor-derived DNA fraction (i.e., liver
DNA fraction) deduced by the SNP-based approach (Pearson’s
r = 0.92; P < 0.001; Fig. 5B). On the other hand, the cleavage
profile at liver-specific hypomethylated CpG sites tended to
show patterns opposite of those at hypermethylated CpG sites
(Fig. 5C). For the hypomethylated CpG sites, the CGN/NCG
motif ratio strongly correlated with the donor-derived DNA
fraction in an inverse manner (Pearson’s r = �0.87; P < 0.001;
Fig. 5D).

In addition, we validated the hypothesis that cfDNA cleavage
patterns on CpG sites with tissue-specific methylation were
informative for tissue-of-origin analysis using a pregnancy model.
We obtained bisulfite sequencing results of maternal plasma
DNA from 30 pregnant women in a previous study (10). Com-
pared with buffy coat DNA samples, we identified 184,430 and
1,922,990 placenta-specific hypermethylated and hypomethy-
lated CpG sites, respectively (see details in SI Appendix, Methods
and Materials). The cleavage pattern depending on methylation
states observed in liver-specific methylation was well generalized to
plasma DNA molecules associated with placenta-specific methyla-
tion in pregnant women (Fig. 6 A and B). A high positive correla-
tion was observed between the CGN/NCG motif ratio of
placenta-specific hypermethylated CpGs and the fetal DNA frac-
tion deduced by the SNP-based approach (Pearson’s r = 0.90;

PNAS 2022 Vol. 119 No. 44 e2209852119 https://doi.org/10.1073/pnas.2209852119 5 of 12

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2209852119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2209852119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2209852119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2209852119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2209852119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2209852119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2209852119/-/DCSupplemental


P < 0.001; Fig. 6C), whereas a high negative correlation was
observed in placenta-specific hypomethylated CpG sites (Pearson’s
r = �0.86; P < 0.001; Fig. 6D). These data provided further evi-
dence that the cfDNA cleavage profile was useful for deducing
contributions of plasma DNA molecules from different tissues.

To explore the feasibility of using shallow sequencing depth
for FRAGMA, we performed a down-sampling analysis on the
correlation between the targeted tissue-specific DNA fraction
and the CGN/NCG motif ratio derived from a set of tissue-
specific differentially methylated CpGs. The Pearson’s correla-
tion coefficient (r) reached > 0.8 at sequencing depths of
0.05× and 0.5× for liver-specific hypermethylated and hypo-
methylated CpGs, respectively (Fig. 6E). For pregnant women,
sequencing depths of 0.1× and 0.05× allowed a Pearson’s r >
0.80 for placenta-specific hypermethylated and hypomethylated
CpGs, respectively (Fig. 6F). These data suggested that it was
feasible to use the CGN/NCG motif ratio to reflect the tissue-
specific methylation levels based on a shallow sequencing
depth. In addition, we compared the placental contributions in
the plasma samples from 30 pregnant women, which were
respectively deduced using FRAGMA and bisulfite-based meth-
ylation analysis (31) through varying sequencing depths. The
overall performance between these two approaches seemed to
be comparable (SI Appendix, Fig. S3A).

Moreover, we performed computer simulation analysis
(details in SI Appendix, Methods and Materials) to study how
the sequencing depth and the fractional DNA concentration of
the target tissue would affect the detection of target molecules.
As a result, a higher sequencing depth would be required to
achieve the same level of area under the receiver operating char-
acteristic curve (AUC) as the fractional concentration of the tar-
get tissue DNA decreased in the plasma DNA pool. To obtain
an AUC of 0.95, the desired sequence depths were deduced to be
100×, 200×, 700×, and 1400× for a plasma DNA sample with
the fractional concentration of the target tissue DNA of 100%,
50%, 20%, and 10%, respectively (SI Appendix, Fig. S3B). Of
note, this simulation was based on the analysis of single CpG
sites. The sequencing depth per locus could be greatly reduced
when focusing on a set of informative CpG sites. For example, if
one analyzes 1,000 tissue-specific CpG sites in a plasma DNA
sample with 10% target tissue DNA, then the desired sequence
depths would theoretically be 1.4× (i.e., 1,400/1,000).

Clinical Implications of Aberrations in CGN/NCG Motif Ratios.
Genome-wide hypomethylation, typically in repetitive elements
(e.g., Alu), frequently occurs in various cancers (33) and can be
detected in the plasma DNA of cancer patients (34). Hence, we
attempted to employ the CGN/NCG motif ratio as an indicator
of plasma DNA methylation changes caused by cfDNA mole-
cules released from tumor cells. We indeed observed a negative
correlation between the CGN/NCG motif ratio from Alu
regions with the tumor DNA fraction estimated by copy num-
ber aberrations (ichorCNA) (35) in hepatocellular carcinoma
(HCC) patients (Pearson’s r = �0.88, P < 0.001; Fig. 7A), sug-
gesting that more hypomethylated fragments shed from the
tumor cells were cut to the 50 NCG position, resulting in a
lower CGN/NCG motif ratio. Interestingly, such a correlation
was higher than a previously reported metric, the motif diversity
score (MDS) (Pearson’s r = 0.59; P = 0.026), which reflected
the evenness of 256 50 4-mer end motifs (SI Appendix, Fig. S4A)
(10). These results indicated that the CGN/NCG motif ratio
from the Alu region might be useful for estimating the tumor
DNA contribution.

Compared with non-HCC individuals including healthy
controls and individuals with chronic hepatitis B virus (HBV)
infection but without HCC (i.e., HBV carriers), the CGN/
NCG motif ratio derived from HCC-specific hypomethylated
CpG sites seemed to be significantly lower in the HCC group,
with a gradual decline over tumor stages (Fig. 7B). Such a
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Fig. 4. DNASE1L3 activity affecting cfDNA cleavage profile. (A) Cleavage
profiles associated with hypermethylated (red lines) and hypomethylated
(blue lines) CpGs for four patients with DNASE1L3 deficiency. (B) CGN/NCG
motif ratios between hypermethylated and hypomethylated CpGs in
plasma DNA of healthy controls (Left) and patients with DNASE1L3 defi-
ciency (Right). (C) Methylation density of the whole genome, Alu regions,
and CpG islands for plasma DNA samples from healthy controls (Left) and
patients with DNASE1L3 deficiency (Right). (D) CGN/NCG motif ratios across
the whole genome, Alu regions, and CpG islands in healthy controls (Left)
and patients with DNASE1L3 deficiency (Right).
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decrease in CGN/NCG motif ratios coincided with an increase
in tumor DNA fractions across tumor stages (mean tumor
DNA fractions: 2.4%, 9.2%, and 29.8% in patients with early-
stage HCC (eHCC; [range: 0.00–13.9%]), intermediate-stage
HCC (iHCC; [range: 0.00–20.9%]), and advanced-stage HCC
(aHCC; [range: 20.4–43.4%]), respectively (SI Appendix, Table
S1). To take full advantage of CGN and NCG motifs, we
adopted a support vector machine (SVM) model using all
CG-containing end motifs (i.e., ACG, CCG, GCG, TCG,
CGA, CGC, CGG, and CGT) from HCC-specific hypomethy-
lated CpG sites based on a leave-one-out analysis. SVM model
based on CG-containing motifs achieved an AUC of 0.98 (Fig.
7 C and D), leading to a significantly better performance than
the MDS (AUC: 0.86; Fig. 7D) (P = 0.007, DeLong test).
With a specificity of 96%, the sensitivities were 80%, 100%,
and 100% for the eHCC, iHCC, and aHCC detection, respec-
tively. Of note, CGN/NCG motif ratios related to CpG sites
with HCC-specific hypermethylation seemed to lose power in
distinguishing HCC patients from non-HCC individuals (SI
Appendix, Fig. S4B), possibly because of the effect of the reduced
DNASE1L3 activity (10).
In addition to the methylation of the nuclear genome, differ-

ential methylation signals were reported to be present in viral
cfDNA molecules such as Epstein-Barr virus (EBV) DNA
between individuals with and without nasopharyngeal carci-
noma (NPC); these were useful for NPC screening (36).
Hence, we reasoned that the CGN/NCG motif ratio of plasma
EBV DNA could be another dimension to detect NPC. We
reanalyzed the previous nonbisulfite sequencing dataset com-
prising 272 individuals positive for EBV but without NPC and
65 EBV-positive individuals with NPC (37). We identified
1,425 informative CpG sites in the EBV genome showing an
up-regulation of the adjusted CGN/NCG motif ratio (ratio of
CGN motif with respect to the total of CGN and NCG
motifs) in patients with NPC (n = 31) compared with non-
NPC individuals (n = 230) (SI Appendix, Fig. S5C). Those
sites were further confirmed with a higher methylation index
in patients with NPC than in non-NPC individuals in a

previous bisulfite sequencing dataset (SI Appendix, Fig. S5D)
(36). In the remaining samples comprising 42 non-NPC indi-
viduals and 34 patients with NPC, the adjusted CGN/NCG
motif ratio from plasma EBV DNA molecules related to infor-
mative CpG sites showed a significant difference between the
NPC and non-NPC groups (P = 0.041, Wilcoxon rank-sum
test; Fig. 7E). If we adopted an adjusted CGN/NCG motif
ratio cutoff of 0.532, combined with previously published met-
rics (EBV DNA proportion and EBV DNA fragment size
ratio), then the positive predictive value (PPV) reached 26.8%,
which was higher than the qPCR assay (PPV: 11.0%) (38) and
the approach based on EBV DNA proportion and EBV DNA
fragment size ratio (PPV: 19.6%) (Fig. 7F) (37). Thus, the
data implied that the cleavage profile related to viral cfDNA
might be another important molecular feature for developing
novel diagnostic tools for virus-driven cancers.

Methylation Status Prediction at Single CpG Resolution Using
a Deep Learning Model Trained from Cleavage Profile. We
had determined that the use cfDNA cleavage patterns and the
resultant CGN/NCG motif enabled the deduction of cfDNA
methylation states across regions. One important further goal
would be to accurately discern the methylation status of indi-
vidual CpG sites by taking advantage of the cfDNA cleavage
profile surrounding a CpG site. To test the feasibility of this
aim, we explored one of the deep learning algorithms, the con-
volutional neural network (CNN), to predict a CpG methyla-
tion index above 70% or below 30% by analyzing the cfDNA
cleavage patterns around a CpG site. Fig. 8 shows the workflow
for constructing a CNN model using cleavage patterns. The
5-nt upstream (e.g., ATCTG) and 5-nt downstream (e.g.,
GAGTA) of the cytosine at a CpG site being analyzed were
presented as 50-[ATCTG]C[GAGTA]-30 for the Watson
strand—the cleavage measurement window of the Watson
strand. The relative positions of this sequence corresponded to
�5, �4, �3, �2, �1, 0, +1, +2, +3, +4, and +5, respec-
tively. The center position (i.e., position 0) corresponded to the
cytosine at the CpG site subjected to the methylation analysis.
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Fig. 5. Liver-specific cleavage profile readily used
for deducing liver DNA contribution in plasma
DNA of liver transplant patients. (A) Cleavage pro-
files associated with liver-specific hypermethy-
lated CpGs deduced from donor-derived DNA
(red line) and shared DNA (blue line). Donor-
derived DNA was defined as cfDNA carrying
donor-specific alleles that were absent in recipi-
ent genomes, while the shared DNA was defined
as cfDNA molecules carrying the alleles existing in
both the donor and recipient genomes. For the
cleavage profile analysis, donor-derived and
shared DNA were pooled together from 14 liver
transplant samples. (B) The CGN/NCG motif
ratio associated with liver-specific hypermethy-
lated CpGs was positively correlated with the
donor-derived DNA fraction. (C) Cleavage profiles
associated with liver-specific hypomethylated
CpGs were analyzed in a similar way as liver-
specific hypermethylated CpGs. (D) The CGN/
NCG motif ratio associated with liver-specific
hypomethylated CpGs was negatively correlated
with the donor-derived DNA fraction.
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The cfDNA cleavage proportion for each position was con-
structed into a 2-dimensional (2-D) matrix according to the
sequence context (Fig. 8). For example, for position �1, corre-
sponding to guanine (G), the cleavage proportion (1.40) was filled
in the corresponding cell between a column of �1 and a row of G.
The remaining rows corresponding to A, C, and T in the Watson
strand were filled by 0. The cleavage profile and sequence context
originating from the Crick strand (05-[TTACT]C[GCAGA]-30)
were processed similarly (Fig. 8). The data matrices from the Wat-
son and Crick strands were combined to make a combined cleavage
measurement window for downstream analysis.
To obtain sufficient sequencing depth for profiling the cleav-

age proportion, we pooled bisulfite sequencing data from eight
healthy controls and 13 HBV carriers. A set of hypermethylated
and hypomethylated CpG sites with a sequence depth of
>50× and at least 10 3-mer end motifs containing a CG dinu-
cleotide within the cleavage measurement window were used to
train and test the above-mentioned CNN model. To train a
CNN, we utilized a number of combined cleavage measure-
ment windows originating from hypermethylated and hypome-
thylated cytosines. The model parameters learned from the
training datasets were used to analyze the testing dataset to out-
put a probabilistic score (referred to as the methylation score in
this study), indicating the likelihood of a CpG site being hyper-
methylated (see details in SI Appendix, Methods and Materials).
We achieved an AUC of 0.93 to classify whether one CpG

site was hypermethylated or hypomethylated (Fig. 9A). More-
over, CpG sites with a methylation score of < 0.5 showed sig-
nificantly lower methylation indices, compared with CpG
sites with a methylation score of ≥ 0.5 (Fig. 9B) (P < 0.001,
Wilcoxon rank-sum test). Of note, if we trained the CNN

model only using sequence context surrounding CpG sites
without cfDNA cleavage patterns, then the performance sig-
nificantly declined to an AUC of 0.72 (P < 0.001, DeLong
test), highlighting that the cleavage patterns contributed sig-
nificantly to the accuracy of methylation analysis. These
results demonstrated the feasibility of exploiting the cfDNA
fragmentomic patterns to deduce methylation status at a sin-
gle CpG level.

Discussion

In this study, we demonstrated a link between the cleavage pro-
file of a CpG site and its methylation status. The use of the
cleavage profile enabled the deduction of the methylation status
in a genomic region and even at a single CpG resolution. The
resultant CGN/NGC motif ratio derived from cleavage pat-
terns could serve as a potential biomarker for noninvasive pre-
natal, organ transplantation, and cancer assessment. These data
form the basis of the FRAGMA technology. One advantage of
this approach for methylation analysis could be directly applied
to widely practiced, massively parallel sequencing of plasma
DNA, obviating special methylation-aware treatments, such as
bisulfite-based or enzymatic cytosine conversion–based treat-
ments. Such cfDNA cleavage-based methylation deduction
enabled an extra dimension to the data mining of general mas-
sively parallel sequencing of cfDNA molecules, bringing
together genetic and epigenetic analyses in one simplified assay.

cfDNA cleavage patterns appeared to highly correlate with
methylation configurations. The methylated CpG sites con-
ferred a higher chance of cutting to the cytosine (i.e., generated
ends at position 0) but a lower chance of cutting to the position
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Fig. 6. Tissue-specific cleavage profiled used for tissue-of-origin analysis. Cleavage profiles of placenta-specific hypermethylated (A) and hypomethylated (B)
CpGs in fetal-specific DNA (red line) and shared DNA (blue line) were determined, respectively. Fetal-specific and shared DNA molecules in maternal plasma
were pooled together from 30 pregnant women. The CGN/NCG motif ratios associated with placenta-specific hypermethylated (C) and hypomethylated
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hypomethylated (blue) CpGs and fetal DNA fraction. X-axis represents different sequencing depths (F).
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1-nt immediately upstream of that CpG dinucleotide (i.e., gen-
erated ends at position �1). The unmethylated CpG sites
switched to produce the opposite cleavage patterns at these two
positions. Such methylation-aware cutting preferences gener-
ated characteristic 50 3-mer end motifs, i.e., CGN and NCG
motifs. The CGN/NCG motif ratio metric was positively cor-
related with methylation levels of plasma DNA, reflective of
methylation patterns of cellular genomes that contributed
DNA to plasma. Of note, the use of such cleavage patterns
across a set of CpG sites with tissue-specific methylation (hypo-
methylation or hypermethylation) could inform the contribu-
tions from various tissues (e.g., the placenta, liver, and blood
cells) to plasma DNA. These data could also provide insight
into the future development of PCR-based cfDNA assays. For
example, the preferential cfDNA cleavages, depending on
methylation status, could result in a biased measurement in

PCR-based assays such as droplet digital PCR (ddPCR) and
amplicon-based target sequencing. For instance, one could
develop a ddPCR assay to quantify the liver DNA contribution
to the plasma DNA pool, utilizing a genomic region that was
specifically methylated in the liver tissue but unmethylated in
other cell types such as blood cells. Because the methylated
molecules would be preferentially cleaved compared to unme-
thylated molecules, a certain amount of liver-derived cfDNA
molecules from such a region would not be able to form ampli-
fiable signals, resulting in an underestimation of liver DNA
contribution. If these kinds of methodologies could take into
account the presence of differential cleavages of cfDNA, then
the assay performance and the accuracy of the data interpreta-
tion could be further enhanced.

The impact of nuclease activity on fragmentation should
be considered when interpreting cleavage profiles for cfDNA
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Fig. 7. The use of end motifs resulting from the
differential cutting within the cleavage measure-
ment window for cancer detection. (A) The corre-
lation between CGN/NCG motif ratio originating
from Alu regions and tumor DNA fraction deter-
mined by copy number aberrations in patients
with HCC. (B) The CGN/NCG motif ratio concern-
ing HCC-specific hypomethylated CpGs in plasma
DNA among non-HCC patients (healthy controls
and HBV carriers) and HCC patients with early
(eHCC), intermediate (iHCC), and advanced (aHCC)
stages. (C) HCC probability determined by SVM
models using CG-containing motifs (i.e., CGA,
CGT, CGC, CGG, ACG, TCG, CCG, and GCG). (D)
ROC (receiver operating characteristic curve) anal-
ysis between CG-containing motifs and motif
diversity scores. (E) The adjusted CGN/NCG motif
ratios of informative CpGs between non-NPC and
NPC patients. (F) PPVs archived by PCR-based
assay, the approach based on EBV DNA propor-
tion and size ratio, and the approach based on
the combined EBV DNA proportion, size ratio, and
cleavage motifs.
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methylation analysis in a clinical scenario, such as cancer
detection. Our data showed that the DNASE1L3 deficiency
largely diminished the difference in cleavage profiles between
methylated and unmethylated CpG sites (Fig. 4B), perhaps
influencing the cfDNA cleavage–based methylation analysis.
For example, for patients with HCC, CGN/NCG motif
ratios related to CpG sites with HCC-specific hypomethy-
lated sites showed good differentiating power of HCC
patients from non-HCC individuals, whereas the motif ratio
related to the CpG sites with HCC-specific hypermethyla-
tion exhibited much poorer differentiating power. One likely
reason is that the decrease of DNASE1L3 activity in HCC
may partially cancel out the expected increase of the CGN/
NCG motif ratio conferred by the hypermethylation. On the
other hand, if we focused on the CGN/NCG motif ratio on
HCC-specific hypomethylation CpGs, then the decreased

signal of the CGN/NCG motif ratio conferred by reduced
methylation could be enhanced by the down-regulated
DNASE1L3 activity (i.e., caused more cuts at position �1).
Therefore, a detailed understanding of the interplay between
methylation and nuclease activity would facilitate a synergis-
tic combination of these two types of signals for cancer
detection. Moreover, using CG-containing 3-mer motifs based
on SVM, we achieved an AUC of 0.98 for differentiating
between patients with and without HCC, suggesting that the
appropriate analysis of end motifs as a result of DNA nucleases
would improve the diagnostic performance. Interestingly, by
combining EBV quantity and size properties (37) with cleav-
age patterns (i.e., the adjusted CGN/NCG ratio) related to
EBV DNA in plasma, the performance of NPC screening
could be further improved with a PPV of 26.8%, up from
19.6% based on EBV DNA proportion and size parameters.
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Fig. 8. Schematic for methylation status predic-
tion at single CpG resolution using a CNN model
based on cleavage profiles. For illustration pur-
poses, the 5 nt upstream (e.g., ATCTG) and 5 nt
downstream (e.g., GAGTA) of the cytosine at a
CpG site (i.e., the cleavage measurement window)
being analyzed were presented as 50-[ATCTG]C
[GAGTA]-30 for the Watson strand. The relative
positions of this sequence corresponded to �5,
�4, �3, �2, �1, 0, +1, +2, +3, +4, and +5, respec-
tively. The central position 0 corresponded to the
cytosine at the CpG site that was subjected to the
methylation analysis. The cleavage proportion for
each position was constructed into a 2-D matrix
according to the sequence context. For instance,
for a position of �1 corresponding to the base of
guanine (G), the cleavage proportion associated
with G (1.40) was filled in the corresponding cell
between a column of �1 and a row of G. The
remaining rows corresponding to A, C, and T in
the Watson strand were filled by 0. The cleavage
profiles and sequence context originating from
the Crick strand (‘5-[TTACT]C[GCAGA]-30) were
processed similarly. The data matrices from the
Watson and Crick strand were put together into a
combined matrix to train and test a CNN model.
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Furthermore, this study has demonstrated that we could
exploit the spectrum of cleavage patterns across an 11-nt
window centered on a CpG to predict its methylation state
using a deep learning algorithm. Deep learning is widely
used in image pattern recognition (39). Cleavage signals
were organized into a matrix depending on sequencing con-
text and positions relative to the CpG site in a way that the
patterns could be used to train a CNN model. The trained
CNN was able to differentiate between hypomethylated and
hypermethylated CpG sites, with an AUC of 0.93. The
results suggested that deep learning is a feasible method to
recognize CpG methylation based on cleavage patterns. The
analytical workflow provided an exemplar of translating frag-
mentomic signals into signals that can be harnessed by artifi-
cial intelligence.
The mechanistic basis whereby DNASE1L3 prefers to cut

methylated CpG sites remains to be explored. Nevertheless,
one might gain mechanistic insights from the DNASE1
enzyme, which exhibits homology to DNASE1L3 (40). DNA
cleavage by DNase I was reported to be enhanced at least eight-
fold at methylated CpGs compared with unmethylated CpGs,
based on bisulfite sequencing of naked DNA digested by
DNase I (41). Methylation-induced narrowing of the minor
groove might be one of the factors that enhances the contact
between DNase I and the DNA substrate (41). Moreover, one
report demonstrated that DNA methylation might induce the
conformation change of DNA wrapping around its accompany-
ing histones; CpG methylation might cause the internal regions
of DNA to be “overwrapped” around a histone octamer (42).
Hence, we speculated that the underlying mechanism govern-
ing the methylation-aware cleavage profile might in part be
related to the accessibility of nuclease to the DNA substrate,
perhaps depending on chromatin structures and DNA confor-
mation. Future studies could provide further biophysical and
biochemical insights into the methylation-aware cleavages of
plasma DNA by examining the conformational changes and
structural properties in relation to the interactions of DNA
molecules, histones, and various nucleases.
In summary, we developed the FRAGMA methodology, uti-

lizing the cleavage profile to reflect the CpG methylation. Pre-
diction of the methylation status of individual CpG sites can be
achieved by exploiting a deep learning algorithm to process the
cleavage patterns. FRAGMA provides relatively easy access to
the signals hidden in cleavage patterns, providing a potential
biomarker for noninvasive prenatal testing, organ transplanta-
tion, and cancer assessment. More cost-effective versions of

FRAGMA may be developed by targeting CGN and NCG
motifs. The unraveling of linkages between cfDNA cleavage
patterns and methylation opens many possibilities for maximiz-
ing the value of plasma DNA sequencing, through integrating
genetic and epigenetic analyses in a single assay.

Materials and Methods

Sample Collection and Processing. All patients involved in this study gave
written informed consent, and the study was approved by The Joint Chinese Uni-
versity of Hong Kong—Hospital Authority New Territories East Cluster Clinical
Research Ethics Committee under the Declaration of Helsinki.

The datasets used in this study are summarized in detail in SI Appendix,
Table S2.

Sequencing Alignment. After base calling, the sequencing reads were prepro-
cessed by removing the adaptor sequences and low-quality bases (i.e., a quality
score of < 20). The trimmed reads in a FASTQ format were analyzed for the non-
bisulfite and bisulfite sequencing data, respectively, as described previously
(10). The paired-end reads, each with a proper alignment and a spanning insert
size of < 600 bp, were used for downstream analysis.

Cleavage Proportion. To analyze the preference of cfDNA cutting at nucleoti-
des surrounding a CpG, we used the cleavage proportion to measure the relative
cutting frequency as in the formula below:

Clevage proportion at a site i =
No: of fragment ends at a site i

Sequencing depth at site i
× 100,

where sequencing depth was defined as the number of sequence fragments cov-
ering at a site i, and fragment ends refer to 50 ends in this study. As an example,
if one genomic site was covered by 100 sequenced fragments and five ends ter-
minated at that site, then the cleavage proportion was 5%. A higher cleavage
proportion indicated a higher cutting preference.

Cleavage profile was defined as the cleavage proportions across positions
within a cleavage measurement window centered on a CpG. The window was
defined as 5-nt upstream and downstream of a CpG. When we analyzed the
cleavage profile of a number of cleavage measurement windows, the mean
cleavage proportion of each relative position was used. As the CpG methylation
at the Watson and Crick strands was often symmetrical, cleavage profiles of the
Watson and Crick strands were merged in the 50 to 30 direction for downstream
analysis.

CGN/NCG Motif Ratio. The CGN/NCG motif ratio was defined as follows:

CGN=NCG motif ratio =
No: of 5’ CGN end motifs
No: of 5’ NCG end motifs

:

The CGN/NCG motif ratio referred to the number of cfDNA fragments carrying
50 CGN end motifs (i.e., 50- CGA, CGT, CGG, and CGC motifs) divided by the

Wilcoxon, p<2.2e-16 A B

0.001

P < 0.001

Cleavage proportion 

Sequence context

Fig. 9. Evaluation for CNN model for methyla-
tion analysis using cleavage measurement win-
dows. (A) ROC analysis for the performance of the
CNN model by using cleavage measurement win-
dows (red line) and sequence context (blue line)
in a testing dataset. (B) The box plot illustrated
the CpG methylation density detected by bisulfite
sequencing between two CpG groups with a
methylation score < 0.5 or ≥ 0.5 in a testing
dataset.
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number of 50 NCG end motifs (i.e., 50- ACG, TCG, GCG, and CCG motifs). The 50

end motif was determined as previously described (10).

Data, Materials, and Software Availability. Sequencing raw data examined
were obtained from previous studies (10, 18, 23, 25, 31, 32, 34, 36, 37) and are
summarized in SI Appendix, Table S2. The corresponding data accession numbers in
the European Genome-Phenome Archive (EGA) (https://www.ebi.ac.uk/ega/) include
EGAS00001000566 (43), EGAS00001002707 (44), EGAS00001003408 (45),
EGAS00001003409 (46), EGAS00001004642 (47), and EGAS00001005562 (48).
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