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Background. Bladder cancer is one of the most common malignancies of the urinary system with an unfavorable prognosis. More
and more studies have suggested that lipid metabolism could influence the progression and treatment of tumors. However, there
are few studies exploring the relationship between lipid metabolism and bladder cancer. -is study aimed to explore the roles that
lipid metabolism-related genes play in patients with bladder cancer. Methods. TCGA_BLCA cohort and GSE13507 cohort were
included in this study, and transcriptional and somatic mutation profiles of 309 lipid metabolism-related genes were analyzed to
discover the critical lipid metabolism-related genes in the incurrence and progression of bladder cancer. Furthermore, the
TCGA_BLCA cohort was randomly divided into training set and validation set, and the GSE13507 cohort was served as an
external independent validation set. We performed the LASSO regression and multivariate Cox regression in training set to
develop a prognostic signature and further verified this signature in TCGA_BLCA validation set and GSE13507 external val-
idation set. Finally, we systematically investigated the association between this signature and tumor microenvironment, drug
response, and potential functions and then verified the differential expression status of signature genes in the protein level by
immunohistochemistry. Results. A novel 6-lipidmetabolism-related gene signature was identified and validated, and this risk score
model could predict the prognosis of patients with bladder cancer. In addition, the prognostic model was tightly related to
immune cell infiltration and tumor mutation burden. Gene set variation analysis (GSVA) and gene set enrichment analysis
(GSEA) showed that mTOR signaling pathway, G2M checkpoint, fatty acid metabolism, and hypoxia were enriched in patients in
the high-risk score groups. Furthermore, 3 therapies specific for bladder cancer patients in different risk scores were identified.
Conclusions. In conclusion, we investigated the lipid metabolism-related genes in bladder cancer through comprehensive
bioinformatic analysis. A novel 6-gene signature associated with lipid metabolism for predicting the outcomes of patients with
bladder cancer was conducted and validated. Furthermore, the risk score model could be utilized to indicate the choice of therapy
in bladder cancer.

1. Introduction

Bladder cancer is one of the most common malignancies of
the urinary system; it has the 13th highest mortality among
all cancers, and the mortality is still rising despite tre-
mendous efforts that have been made for the treatment [1].

-e progression of bladder cancer is a multistage process
including environmental and genetic factors [2]. Previous
studies indicate that tobacco smoking and occupational
exposure to carcinogens are major factors [3]. -e primary
treatment for bladder cancer is transurethral resection of the
bladder (TURB) accompanied by intravesical chemotherapy
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or immunotherapy [3]. However, the prognosis of patients
still remains unfavorable. -erefore, it is essential to identify
prognostic biomarkers to guide the selection of treatment for
improving the curative effects.

Accumulating evidence demonstrates that clinical out-
come, epigenetic status, and treatment resistance are associated
with tumor metabolism [4, 5]. Metabolic reprogramming has
been considered to be a new hallmark of malignant tumors [6].
Cancer cells usually require more energy to meet their bi-
ological needs than normal cells [7], while fatty acid oxidation
is an important energy source for cancer cells, so lipid
metabolism in cancer cells has been recognized as playing an
important role in cancer progression [8].

Recent studies have shown that fatty acid metabolism
has a close connection with bladder cancer [9]. Epidemio-
logic studies have shown that free fatty acid (FFA) level was
increased in bladder cancer compared with paracancerous
tissues. Cheng et al. demonstrated that inhibition of fatty
metabolism is important in sustaining tumor growth
through PPAR-c-mediated pathway [10]. Besides, the mo-
lecular mechanism of drug resistance of cancer therapy
might include lipid metabolism reprogramming [11]. Rys-
man E et al. indicated that altered lipid composition of
cellular membranes could disrupt the uptake of chemo-
therapeutic agents and lead to chemotherapeutic resistance
[12]. What is more, the tumor microenvironment (TME)
plays an important role in the progression of bladder cancer,
while metabolic disorders including FA metabolism changes
have a crucial impact on cancer [13]. Fatty acid secreted in
the microenvironment could affect the function and phe-
notype of infiltrating immune cells [14].

In this study, we explored the lipid metabolism-related
genes in bladder cancer to conduct a model to predict pa-
tient prognosis. -e prognostic risk score model independently
predicted the survival outcome of bladder cancer patients.What
is more, the relationship between risk score model and TME
cell-infiltrating characteristics was investigated and suitable
therapy treatment could be selected through the risk score
model. -ese findings can provide a new sight into exploring
the metabolic mechanism and treatment for bladder cancer.

2. Methods

2.1.DataAcquisition. We included two datasets in this study,
and they are TCGA_BLCA cohort and GSE13507 cohort.-e
transcriptome profiles, somatic mutation profiles, and clinical
information about TCGA_BLCA were downloaded from the
GDC_Portal (https://portal.gdc.cancer.gov/), and the tran-
scriptome profiles and corresponding clinical information of
GSE13507 cohort were downloaded from the GEO database
(https://www.ncbi.nlm.nih.gov/gds/?term�GSE13507) and
served as independent external validation sets. Notably, the
batch effects between TCGA_BLCA and GSE13507 cohorts
were normalized by the R package “sva.”

2.2. Landscape of Lipid Metabolism-Related Genes in Bladder
Cancer. We firstly investigated the role of lipid metabolism-
related genes in TCGA_BLCA cohort, performed

differential expression analysis between tumor and normal
samples, and screened differentially expressed lipid
metabolism-related genes with a threshold of FC (fold
change, FC)> 1.5 and adjusted p value< 0.05. Following
this, we performed univariate cox regression of these dif-
ferentially expressed lipid metabolism-related genes in
TCGA_BLCA cohort to further identify the critical differ-
entially expressed lipid metabolism-related genes with sig-
nificant prognostic value. Subsequently, we explored the
somatic mutation of these critical genes and draw the
mutation atlas.

2.3. Identification of the Prognostic Signature. Having sys-
tematically summarized the role of lipid metabolism-related
genes in TCGA_BLCA cohort, we would like to establish
a prognostic signature by these critical genes. -us, we first
randomly split all the patients in TCGA_BLCA cohort with
a ratio of 1 :1 that one for the construction and the other for
the verification. Moreover, the GSE13507 cohort was served
as an external independent validation cohort. -en, we
separately conducted LASSO regression to screen appro-
priate variables and multivariate cox regression to establish
the prognostic signature in the training set, and a formula of
risk score based on these lipid metabolism-related genes was
established:

risk score � 􏽘 coef(i). exp(i). (1)

i represents each gene in the prognostic signature, coef (i)
represents the coefficient of this gene, and exp (i) is the ex-
pression value of it.-us, each sample in training set, validation
set, and GSE13507 acquired a risk score according to this
formula.Moreover, we set themediumvalue of the risk score in
training set as the threshold, and each patient received a risk
level that the higher is high risk and the lower is low risk.

2.4. Further Verification of the Prognostic Signature. We first
conducted survival analysis in all three sets to confirm the
prognostic value of this signature, then performed univariate
Cox regression to calculate the hazard ratio of the risk score,
and carried out a meta-analysis to summarize the HR of risk
score in three different sets. Besides, the differences in
clinical information between high-risk patients and low-risk
patients were explored by the chi-square test. Also, the ROC
curves of the risk score in three sets were plotted and the area
under the curves was calculated. Furthermore, we combined
the indicator of tumormutation burden and our risk score to
predict the survival of patients together and explored the
difference in TMB between high-/low-risk patients and the
correlation between TMB and risk score. Finally, we further
investigated the mutation differences between high-risk
patients and low-risk patients in all TCGA_BLCA patients.

2.5. Gene Set Enrichment Analysis (GSEA) and Gene Set
Variation Analysis (GSVA). Having constructed and veri-
fied the prognostic signature, we wonder about the further
potential mechanisms behind the risk score. -us, we
separately conducted the GSEA and GSVA in all

2 Journal of Oncology

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/gds/?term=GSE13507


TCGA_BLCA patients by the R package “clusterProfiler”
and “GSVA.”-e gene ontology (GO) gene sets, KEGG gene
sets, Hallmarks gene sets, metabolism-related gene sets, and
cell death-related gene sets were used to do the corre-
sponding analysis.

2.6. Tumor Microenvironment, Drug Response, and
Immunohistochemistry. Notably, we carried out eight dif-
ferent algorithms to quantify the immune cells or immune-
related function of each patient according to its transcriptome
profile, and they were XCELL, TIMER, QUANTISEQ,
MCPCOUNTER, EPIC, CIBERSORT-ABS, CIBERSORT,
and ssGSEA. -en, both differential infiltration analysis and
correlation tests were conducted. Following this, we sepa-
rately estimate the drug response of each patient to the
commonly used drugs including cisplatin, gemcitabine, and
others small molecule drugs by R package “proPhetics.” Also,
the TIDE score was compared between high-risk patients and
low-risk patients to predict the drug response to immuno-
therapy. Finally, we searched the immunohistochemistry
profiles of these signature genes in the Human Protein Atlas
database (HPA, https://www.proteinatlas.org/) and compared
and verified the differential expression status in the protein
expressed level.

2.7. Statistical Analysis. All the data were processed or an-
alyzed by the R program version 4.1.1 and Microsoft Office
Excel. P< 0.05 was regarded with significant statistical
differences.

3. Results

3.1. Identification of 18 Vital Differentially Expressed Lipid
Metabolism-Related Genes in Bladder Cancer. Expression
data of 309 lipid metabolism-related genes (LMRGs) were
collected from the GEO and TCGA cohorts. -e flow chart
of this research is presented in Figure 1. 89 differently
expressed LMRGs were found between normal and bladder
cancer tissues, with 57 genes upregulated and 32 genes
downregulated in cancer samples when the cutoff was set to
FC (fold change, FC)> 1.5 and FDR<0.05 (Figures 2(a) and
2(b)). Univariate Cox regression analysis was conducted on
89 differently expressed LMRGs in TCGA_BLCA cohort. A
total of 18 genes with prognostic value were identified with
a p value< 0.05 (Figure 2(c)). -e somatic mutation profile
of 18 LMRGs associated with prognosis was first summa-
rized. A total of 54 of 412 bladder cancer samples experi-
enced mutations of LMRGs, with a frequency of 13.11%.
ACOX2, SLC27A2, and ACLY had the highest mutation
frequency (Figure 2(d)). Further analyses demonstrated
a mutation co-occurrence relationship between ACSF2 and
PTGIS, ACOX2 and GPX1, SLC27A2 and CYP1B1, and
ACLY and DHCR24 (Figure 2(e)).

3.2. Construction and Verification of the Prognostic Index.
To construct a prognostic index of lipid metabolism-related
genes, we obtained 404 samples of bladder cancer from

TCGA database and divided them into two groups as
training cohort (N� 204) and testing cohort (N� 200). -e
basic characteristics of the patients included are shown in
Table 1. -en, the least absolute shrinkage and selection
operator (LASSO) Cox regression analysis was conducted to
narrow the number of genes. Finally, six genes (CYP1B1,
ACOT13, NUDT19, SCD, IL4I1, and DECR1) were used for
the construction of prognostic risk score model (Figures 3(a)
and 3(b)). -en, six genes were shifted from them through
multivariate Cox regression (Figure 3(d)). -e coefficient of
these genes is displayed in Table 2. -e chord diagram
showed the correlation between the six genes filtered by
LASSOCox regression analysis (Figure 3(c)). To estimate the
effectiveness of this model, we also collected 165 samples
from GEO database (GSE13507) as validation. We then
calculated the risk score of samples and divided the patients
into high- and low-risk score groups according to median
risk score acquired from training cohort. We also found that
patients in the high-risk score group had the worse survival
status than those in the low-risk group (Figures 3(f)–3(k)).
We found that clinical characteristics such as stage and
status were positively related to high-risk group
(Figure 3(e)). -e Kaplan–Meier survival analyses indicated
that patients in the high-risk score group had worse survival
outcome (Figures 3(l)–3(n)). -e area under curve (AUC)
showed the effectiveness of the prognostic index
(Figures 3(o)–3(q)). Furthermore, we conducted meta-
analysis based on the three cohorts to demonstrate that
the risk score was in good validity (HR� 1.49, 95%
CI� 1.15–1.94, p� 0.01) (Figure 3(r)).

3.3.@eRelationship betweenTumorMutationBurden (TMB)
and Risk Score. We compared the tumor mutation burden
(TMB) in high- and low-risk score patients and found the
TMB of patients in the low-risk score group was higher
(Figures 4(a) and 4(b)). -e mutation spectrum of patients
with high-risk score (Figure 4(c)) and low-risk score
(Figure 4(d)) was mapped, and 14 significantly mutant genes
including (ATAD5, PIK3CA, FGFR3, HUWE1, SPTAN1,
GON4L, ALMS1, RELN, STAG2, AHNAK, MED13, UTRN,
C2orf16, and ATR) were obtained (Table 3). Survival curves
demonstrated that the prognosis of patients with high TMB
was better (Figure 4(e)); furthermore, patients with high
TMB and low-risk score had the best prognosis (Figure 4(f )).

3.4. @e Relationship between Risk Score and Tumor Micro-
environment (TME) in Bladder Cancer. We estimated the
relationship between risk score and the immune checkpoints
(ICBs), and the results indicated that NRP1, CD44, CD276,
and TNFSF9 were significantly higher expressed in high-risk
score patients (Figure 5(a)). Most ICBs were highly
expressed in low-risk score groups (Figure 5(b)). Immune-
related function analysis demonstrated that the expression of
HLA, inflammation-promoting factors, and cytolytic activity
was lower in high-risk score patients compared with low-risk
score patients (Figure 5(c)). -en, we explored the com-
position of immune infiltration cells through sevenmethods.
We found that CD8+T, Treg, and NK-activated cells were
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Figure 2: Identification of 18 vital differentially expressed lipid metabolism-related genes (LMRGs) in bladder cancer. (a) Volcano map of
the expression patterns of 89 LMRGs in bladder cancer, with 57 genes upregulated and 32 genes downregulated. (b) Heat map showing the
differently expressed LMRGs between normal and tumor tissues. False discovery rate (FDR)< 0.05. (c) Forrest plot of 18 LMRGs related to
prognosis based on univariate analysis. (d)-emutation frequency of 18 LMRGs in 412 patients with bladder cancer from the TCGA cohort.
(e) -e mutation co-occurrence and exclusion analyses for 18 LMRGs.
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Table 1: Basic characteristics of included BLCA patients.

Overall GSE13507 TCGA_Test TCGA_Train p

n 569 165 200 204
Age (mean (SD)) 67.25 (11.10) 65.18 (11.97) 67.77 (11.11) 68.42 (10.12) 0.014
Gender� female/male (%) 135/434 (23.7/76.3) 30/135 (18.2/81.8) 47/153 (23.5/76.5) 58/146 (28.4/71.6) 0.071
Grade (%) <0.001
High grade 440 (77.3) 60 (36.4) 186 (93.0) 194 (95.1)
Low grade 126 (22.1) 105 (63.6) 12 (6.0) 9 (4.4)
Unknown 3 (0.5) 0 (0.0) 2 (1.0) 1 (0.5)
T (%) <0.001
T1 83 (14.6) 80 (48.5) 3 (1.5) 0 (0.0)
T2 150 (26.4) 31 (18.8) 56 (28.0) 63 (30.9)
T3 210 (36.9) 19 (11.5) 100 (50.0) 91 (44.6)
T4 69 (12.1) 11 (6.7) 23 (11.5) 35 (17.2)
Ta 24 (4.2) 24 (14.5) 0 (0.0) 0 (0.0)
Unknown 33 (5.8) 0 (0.0) 18 (9.0) 15 (7.4)
M (%) <0.001
M0 352 (61.9) 158 (95.8) 102 (51.0) 92 (45.1)
M1 18 (3.2) 7 (4.2) 6 (3.0) 5 (2.5)
MX 197 (34.6) 0 (0.0) 91 (45.5) 106 (52.0)
Unknown 2 (0.4) 0 (0.0) 1 (0.5) 1 (0.5)
N (%) <0.001
N0 386 (67.8) 151 (91.5) 116 (58.0) 119 (58.3)
N1 54 (9.5) 8 (4.8) 21 (10.5) 25 (12.3)
N2 79 (13.9) 4 (2.4) 37 (18.5) 38 (18.6)
N3 8 (1.4) 1 (0.6) 3 (1.5) 4 (2.0)
NX 37 (6.5) 1 (0.6) 21 (10.5) 15 (7.4)
Unknown 5 (0.9) 0 (0.0) 2 (1.0) 3 (1.5)
Status� alive/dead (%) 324/245 (56.9/43.1) 96/69 (58.2/41.8) 112/88 (56.0/44.0) 116/88 (56.9/43.1) 0.916
Risk score (median (IQR)) 0.96 [0.66, 1.46] 0.97 [0.65, 1.47] 0.95 [0.66, 1.45] 0.96 [0.66, 1.45] 0.85
Risk� high/low (%) 286/283 (50.3/49.7) 85/80 (51.5/48.5) 99/101 (49.5/50.5) 102/102 (50.0/50.0) 0.925

−6 −5 −4 −3 −2

Log Lambda

Co
effi

ci
en

ts

17
0.4

0.2

0.0

–0.2

–0.4

14 11 8 1

12

34
5

6

7

8

9

10

11

12

13

14

15
16

17

18

(a)

Pa
rt

ia
l L

ik
el

ih
oo

d 
D

ev
ia

nc
e

11.4

11.2

11.0

10.8

10.6

−6 −5 −4 −3 −2

Log (λ)

18 17 17 15 15 14 13 11 9 8 8 8 6 3 1

(b) (c)

DECR1

IL4I1

SCD

NUDT19

ACOT13

CYP1B1

(N=204)

(N=204)

(N=204)

(N=204)

(N=204)

(N=204)

0.62
(0.45 − 0.85)

0.74
(0.59 − 0.93)

1.22
(1.06 − 1.41)

0.63
(0.43 − 0.93)

0.69
(0.46 − 1.04)

1.12
(0.97 − 1.29)

0.003 **

0.01 **

0.007 **

0.021 *

0.076 

0.119 

# Events: 88; Global p−value (Log−Rank): 1.3914e−05 
AIC: 798.67; Concordance Index: 0.68 0.4 0.6 0.8 1 1.2 1.4

Hazard ratio

(d)

CYP1B1

ACOT13

NUDT19

SCD

IL4I1

DECR1

risk
Status***
Age
Gender
Grade
Stage* Stage*

Stage I
Stage II
Stage III
Stage IV

Grade
High Gr ade
Low Gr ade

Gender
FEMALE
MALE

Age
<=65
>65

Status***
Alive
Dead

risk
low
high

−6

−4

−2

0

2

4

6

(e)

Figure 3: Continued.
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Figure 3: Construction and verification of the prognostic index. (a) LASSO coefficients of the 18 lipid metabolism-related genes
(LMRGs). (b) Identification of genes for development of prognostic risk score model. (c) Chord diagram showed the correlation
between the 6 LMRGs selected through LASSO Cox regression analysis. (d) Hazard ratio of each gene after multivariate Cox
regression analysis. (e) -e distribution of clinical characteristics of patients in high- and low-risk score groups. (f–k) Risk scores of
patients in the training cohort (TCGA), testing cohort (TCGA), and verification cohort (GEO). (l-n) Survival status of each patient
in the training cohort, testing cohort, and verification cohort. (k-m) Kaplan–Meier survival analyses of patients in the training
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p � 0.01).
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higher in the low-risk score group compared with the high-
risk group (Figures 5(d) and 5(e)). In addition, CD8+T cell
was negatively associated with the risk score (Figure 5(f)).

3.5. Gene Set Variation Analysis (GSVA) and Gene Set En-
richment Analysis (GSEA). We performed GSEA and GSVA
to verify the correlation between risk score and pathways
involved in the formation of bladder cancer. We conducted
GSVA using Hallmark gene sets, and the results showed that
risk score was positively associated with 31 hallmark
pathways including mTOR signaling pathway, G2M
checkpoint, fatty acid metabolism, and hypoxia
(Figure 6(a)). We performed GSEA in different risk score
groups using the Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) signaling pathways (Figures 6(b) and 6(c)).
Besides, we confirmed that risk score was associated with
pathways in cell death including autophagy and ferroptosis
(Figure 6(d)). Also, we performed metabolism analysis and
discovered risk score was positively related to fat-soluble
vitamins (Figure 6(e)).

3.6. Response to Chemotherapy and Immunotherapy for
Bladder Cancer of High- and Low-Risk Score Patients. We
estimated the response to chemotherapy drugs in different
risk score groups and found that patients in the low-risk
score were more sensitive to methotrexate sensitivity; fur-
thermore, metformin could be used in bladder cancer pa-
tients of low-risk score (Figure 7(a) and 7(b)). We also
conducted immunotherapy analysis between the high- and
low-risk score groups and found that anti-CTLA4 and anti-
PD-1 therapy could make a difference in therapeutic effect
between two groups no matter whether used alone or in
combination, and patients in the high-risk score groups
showed better sensitivity compared with those in the low-
risk score groups (Figure 7(c)).

3.7. Immunohistochemistry (IHC) Verification of ACOT13,
CYP1, DECR1, IL4I1, and SCD. We obtained the results of
immunohistochemical staining of ACOT13, CYP1, DECR1,
IL4I1, and SCD in both normal tissues and bladder cancer
tissues and found that the expression of CYP1 was higher in
normal tissues, while other genes were higher in tumor
tissues than in normal tissues (Figure 8).

4. Discussion

Bladder cancer is a common malignant tumor with high
rates of recurrence [15]. -e treatments of bladder cancer

have advanced a lot during the past decade; however, the
high morbidity and mortality remain unchanged [16]. Ef-
fective therapies and prognostic markers still need to be
identified.

Accumulating studies have indicated that lipid meta-
bolism is a crucial step in metabolic reprogramming, while
metabolic reprogramming is a new hallmark of malignant
tumors [17]. Despite the importance of lipid metabolism in
bladder cancer, few studies were conducted to explore the
association between lipid metabolism and bladder cancer.

In this study, we identified the potential mechanism and
prognostic value of lipid metabolism-related genes in
bladder cancer via bioinformatic analysis. A 6-gene prog-
nostic risk model was constructed by LASSO Cox analysis.
In addition, these lipid metabolism-relatedgene-based sig-
natures were tightly associated with TNM stage, T stage, N
stage, and status. -e patients with low-risk scores were
found better outcomes than those with high-risk scores. Our
findings showed that this risk model was an independent
prognostic prediction for survival and was tightly associated
with tumor mutation burden (TMB) and tumor microen-
vironment (TME).

Recently, more and more studies have suggested that the
progression and prognosis of bladder cancer were tightly
related to immune cell infiltration [18]. Furthermore, the
functions of immune cell could be influenced by metabolic
reprogramming [19]. -erefore, there must exist a re-
lationship between risk scores and immune cell infiltration.
Our results showed that patients in the high-risk score group
had higher expression of M0 macrophages, while Tregs and
CD8+T cells were upregulated in the low-risk group,
demonstrating a differential infiltration pattern between the
subgroups. In addition, patients in high-risk groups had
higher expression of NRP1, CD44, CD276, and TNFSF9
than those in low-risk groups. -ese results indicated that
the unfavorable prognosis of patients in the high-risk score
groups might be due to the immunosuppressive environ-
ment and elevated expression of immune checkpoint genes
[20]. We also found that tumor mutation burden was
negatively associated with the risk score, and the prognosis
of patient with high tumor mutation burden and low score
was the best. It might be due to that tumor mutations could
generate immunogenic neoantigens, thus leading to immune
checkpoint blockade [21].

GSEA and GSVA of hallmarks suggested that G2M
checkpoint, EMT pathway, and hypoxia were highly
expressed in the high-risk score groups. MT Dillon et al.
suggested that inhibition of G2M checkpoint could slow
down the progression of tumors [22]. Epithelial-
mesenchymal transition (EMT) is a process of epithelial
cells acquiring mesenchymal features. It is associated with
tumor initiation, invasion, metastasis, and resistance to
therapy [23]. Hypoxia has emerged as a crucial factor in
tumor pathophysiology, and microenvironment promotes
altered cellular metabolism including lipid metabolism.
Furthermore, reports suggested that hypoxia could trigger
EMT in bladder cancer [24]. -e pathways of autophagy and
ferroptosis were also involved in patients of high-risk score
groups, and Enyong Dai et al. suggested that autophagy-

Table 2: Signature genes and their coefficient.

Symbol Coef
CYP1B1 0.11119677191537
ACOT13 −0.371344139411004
NUDT19 −0.461089925531869
SCD 0.199677207803535
IL4I1 −0.302776856487651
DECR1 −0.475644491902455
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dependent ferroptosis could drive tumor-associated mac-
rophage polarization [25]. -e poorer prognosis of patients
in the high-risk score groupsmight be tightly associated with
mechanisms above.

-e risk signature was constructed with ACOT13, CYP1,
DECR1, IL4I1, NUDT19, and SCD ACOT13, and a member
of acy1-CoA thioesterase (ACOT) enzymes can catalyze

hydrolysis of fatty acyl-CoA into free fatty acids. It is usually
enriched in oxidative tissues and tightly related to mito-
chondria [26]. Previous studies found that it was associated
with many diseases, including lung cancer, pheochromo-
cytomas, and paragangliomas [27]. CYP1 enzymes could
catalyze the metabolic activation of procarcinogens and
deactivation of certain anticancer drugs. Inhibition of CYP1
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Figure 4: Relationship between tumor mutation burden (TMB) and risk score. (a, b) Comparison of TMB between patients in the high- and
low-risk score groups, and high tumor mutation burden was associated with low-risk score. (c, d) Mutation spectrum of high-risk and low-
risk patients. (e) Survival analyses for low- and high-TMB patient groups using the Kaplan–Meier curves (P< 0.001, log-rank test). (f )
Survival analyses for four groups of TMB and risk score using the Kaplan–Meier curves. -e high-TMB and low-risk score groups indicated
better overall survival than the other three groups (P< 0.001, log-rank test).

Table 3: Mutation atlas differences between high-risk and low-risk patients.

Gene H-wild H-mutation L-wild L-mutation p value
ATAD5 195 (97.5%) 5 (2.5%) 183 (90.15%) 20 (9.85%) 0.004334171
PIK3CA 170 (85%) 30 (15%) 151 (74.38%) 52 (25.62%) 0.011636589
FGFR3 181 (90.5%) 19 (9.5%) 165 (81.28%) 38 (18.72%) 0.011988853
HUWE1 19 6 (98%) 4 (2%) 187 (92.12%) 16 (7.88%) 0.012810357
SPTAN1 188 (94%) 12 (6%) 175 (86.21%) 28 (13.79%) 0.014308358
GON4L 195 (97.5%) 5 (2.5%) 187 (92.12%) 16 (7.88%) 0.027357379
ALMS1 192 (96%) 8 (4%) 183 (90.15%) 20 (9.85%) 0.034494781
RELN 192 (96%) 8 (4%) 183 (90.15%) 20 (9.85%) 0.034494781
STAG2 183 (91.5%) 17 (8.5%) 171 (84.24%) 32 (15.76%) 0.037673236
AHNAK 189 (94.5%) 11 (5.5%) 179 (88.18%) 24 (11.82%) 0.037837752
MED13 191 (95.5%) 9 (4.5%) 182 (89.66%) 21 (10.34%) 0.040835835
UTRN 191 (95.5%) 9 (4.5%) 182 (89.66%) 21 (10.34%) 0.040835835
C2orf16 195 (97.5%) 5 (2.5%) 188 (92.61%) 15 (7.39%) 0.042331744
ATR 193 (96.5%) 7 (3.5%) 185 (91.13%) 18 (8.87%) 0.042692803
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Figure 5: Relationship between risk score and tumor microenvironment (TME) in bladder cancer. (a) Immune checkpoint expression in high-
and low-risk score patients (∗p< 0.05; ∗∗p< 0.01; ∗∗∗p< 0.001). (b) Correlation between immune checkpoint and six genes (∗p< 0.05;
∗∗p< 0.01; ∗∗∗p< 0.001). (c) Immune-related function of high- and low-risk score patients. (d) Correlation of risk score and immune cell
infiltration detected by seven different methods. (e) Immune cell infiltration of patients in high- and low-risk score groups; CD8+T, Treg, and NK-
activated cells were higher in low-risk score group compared with high-risk group. (f) Correlation between CD8+T-cell infiltration and risk scores.
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Figure 6: Gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA). (a) GSVA in hallmark gene sets. (b, c) GSEA of
patients in high- and low-risk score groups. (d) Correlation between risk score and cell death. (e) Correlation between risk score and
metabolism pathways (∗p< 0.05; ∗∗p< 0.01; ∗∗∗p< 0.001).
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is an effective approach for chemoprevention, and many
studies have suggested that inhibitors and prodrug target
CYP1 are promising anticancer strategies [28]. DECR1 is an
auxiliary enzyme of beta-oxidation, and it participates in
redox homeostasis by controlling the balance between sat-
urated and unsaturated phospholipids. Deletion of DECR1
can impair lipid metabolism and reduce tumor growth;
therefore, DECR1 is important in the progression of tumor
growth and treatment resistance [29]. NUDT19 has been

identified to promote the proliferation, migration, and EMT
process of tumor via mTORC1/P70S6K signaling pathway
[30]. IL4I1 frequently associates with AHR (aryl hydro-
carbon receptor) activity and activates the AHR through the
generation of indole metabolites and kynurenic acid. In
summary, it associates with reduced survival in patients with
tumor and enhances the progression of tumor [31]. -e
previous study indicated that upregulation of SCD could
proliferate cancer cells in a lipid-depleted environment for it
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Figure 7: Drug response to chemotherapy or immunotherapy for bladder cancer of high- and low-risk score patients. (a) Chemotherapy
drug sensitivity in high- and low-risk score patients. (b) Metformin sensitivity in high- and low-risk score patients. (c) Potential response to
immunotherapy in high- and low-risk score groups. -e y-axis means the sensitivity of these drugs, and the unit is IC50 (50% inhibiting
concentration).
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Figure 8: IHC staining of genes selected via LASSO Cox regression in normal tissues (left) and bladder cancer tissues (right). (a) ACOT13.
(b) CYP1. (c) DECR1. (d) IL4I1. (e) SCD. -e expression of CYP1 was higher in normal tissues, while other genes were higher in tumor
tissues than in normal tissues.
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could synthesize monounsaturated fatty acids. Decreased
tumor SCD activity could slow tumor growth [32].

Furthermore, we identified the molecule drugs highly
related to lipid metabolism genes for the treatment of
bladder cancer. Methotrexate, a well-established antime-
tabolite, has been used separately or in combination for
antitumoral activity for a while [33], and we found it suitable
to treat patients with low-risk score. Excepting chemo-
therapy, immunotherapy is another important treatment for
bladder cancer; in our study, we found that anti-CTLA4 and
anti-PD1 were sensitive to patients with high-risk score of
bladder cancer no matter whether used separately or in
combination. -ese two drugs are immune checkpoint in-
hibition and have been licensed for the treatment of bladder
cancer [34]. Metformin, often used for diabetes, is known to
induce apoptosis in many types of cancers and has the
feasibility as a drug repositioning used for the treatment of
bladder cancer [35]. Our study indicated that patients in the
low-risk score groups were suitable for the treatment of
metformin compared with patients in the high-risk score
groups.

Our study constructed and validated a prognostic signature
model based on lipid metabolism genes, which could predict
the prognosis of patients with bladder cancer well and guide the
treatment for patients with bladder cancer. Our study also has
limitations, and the main limitation of the study is that we do
not have experimental studies in vivo and in vitro. Further
studies would be conducted to validate what roles the lipid
metabolism-related genes play in bladder cancer.

5. Conclusions

In conclusion, we investigated the lipid metabolism-related
genes in bladder cancer through comprehensive bio-
informatic analysis. A novel 6-gene signature associated with
lipid metabolism for predicting the outcomes of patients
with bladder cancer was conducted and validated. Fur-
thermore, the risk score model could be utilized to indicate
the choice of therapy in bladder cancer.
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