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Drug repurposing has become an effective approach to drug discovery, as it

offers a new way to explore drugs. Based on the Science Citation Index

Expanded (SCI-E) and Social Sciences Citation Index (SSCI) databases of the

Web of Science core collection, this study presents a bibliometric analysis of

drug repurposing publications from 2010 to 2020. Data were cleaned, mined,

and visualized using Derwent Data Analyzer (DDA) software. An overview of the

history and development trend of the number of publications, major journals,

major countries, major institutions, author keywords, major contributors, and

major research fields is provided. There were 2,978 publications included in the

study. The findings show that the United States leads in this area of research,

followed by China, the United Kingdom, and India. The Chinese Academy of

Science published the most research studies, and NIH ranked first on the

h-index. The Icahn School of Medicine at Mt Sinai leads in the average

number of citations per study. Sci Rep, Drug Discov. Today, and Brief.

Bioinform. are the three most productive journals evaluated from three

separate perspectives, and pharmacology and pharmacy are unquestionably

the most commonly used subject categories. Cheng, FX; Mucke, HAM; and

Butte, AJ are the top 20 most prolific and influential authors. Keyword analysis

shows that in recent years, most research has focused on drug discovery/drug

development, COVID-19/SARS-CoV-2/coronavirus, molecular docking, virtual

screening, cancer, and other research areas. The hotspots have changed in

recent years, with COVID-19/SARS-CoV-2/coronavirus being themost popular

topic for current drug repurposing research.
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1 Introduction

Sir James Black, a winner of the 1988 Nobel Prize, clearly recognized well before the 21st

century that drug repurposing strategies would occupy an important place in the future of new

drug discovery (Raju, 2000). In 2004, Ted T. Ashburn et al. (Ashburn and Thor, 2004)

summarized previous research and developed a general approach to drug development using
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drug repurposing, retrospectively looking for new indications for

approved drugs and molecules that are waiting for approval for new

pathways of action and targets. These molecules are usually safe in

clinical trials but do not show sufficient efficacy for the treatment of

the disease originally targeted (Southan et al., 2013). The definition

of the term “drug repurposing” has been endorsed by scholars

(Dudley et al., 2011) and used by them (Li et al., 2011; Cheng et al.,

2012). It should be pointed out that the synonyms of “drug

repurposing” often used by academics also include drug

repositioning (Rosa and Santos, 2020), drug rediscovery (Simsek

et al., 2018), drug redirecting (Jang et al., 2019), drug retasking

(Scherman and Fetro, 2020), and therapeutic switching (Kim et al.,

2019; Kurdi et al., 2019). After the research study by Ashburn et al.,

Allarakhia et al. expanded the starting materials for drug

repositioning to include products that were discontinued for

commercial reasons, expired patents, and candidates for

laboratory testing (Allarakhia, 2013). In the discovery process of

a completely new drug, the difficulty usually lies in its safety and

efficacy, which are the main potential causes of failure of most drugs

in the approval (Schuster et al., 2005) or clinical development stage

(Milne, 2017). Using existing knowledge about a drug or known

target (Mercorelli et al., 2018), the time, risk, and cost of developing a

drug using drug repositioning are reduced (Joshua, 2011), thereby

greatly increasing the efficiency and economics of drug

development, providing a better risk–reward trade-off, and

making it easier to win the favor of venture capital firms

(Ashburn and Thor, 2004).

Since the 1990s, the repositioning of sildenafil for male erectile

dysfunction (Goldstein et al., 1998) and pulmonary hypertension

(Badesch et al., 2007), the development of a new efficacy of

bupropion for smoking cessation (Hurt et al., 1997), new

applications of thalidomide for multiple myeloma (Singhal et al.,

1999; Barlogie, 2001), and chronic graft-versus-host disease

(Vogelsang et al., 1992) have generated intense interest from

pharmaceutical companies and academics (Kumar et al., 2019).

These classic success stories rely on three traditional approaches: 1)

molecular biology approaches (Pujol et al., 2010), 2) in vivo and ex

vivo experimental approaches (Kuter, 2007; Swinney and Anthony,

2011), and 3) expert knowledge-based approaches (Kumar et al.,

2019). Due to the unknown, complex, and information-fragmented

nature of drug candidates and potential new mechanisms of action

(Yella et al., 2018), this activity is dependent onmultiple factors, and

success is often fortuitous (Kumar et al., 2019). At the beginning of

the 21st century, cheminformatics (Feng et al., 2007; Joshua, 2011),

bioinformatics (Salazar et al., 2006; Feng et al., 2021), systems

biology (Lv et al., 2018; Turanli et al., 2021), genomics (Zhao

et al., 2016; Mirza et al., 2017), polypharmacology (Reddy and

Zhang, 2013; Anighohro et al., 2014), precision medicine (Delavan

et al., 2018; Tanoli et al., 2020), and other disciplines, combined with

artificial intelligence (Yang et al., 2019), have developed rapidly.

These rapidly growing disciplines have promoted the generation of

systematic (Talevi and Bellera, 2020) computermethods tomake the

drug repositioning process cheaper and shorter (Vanhaelen et al.,

2017; Luo et al., 2021). Computational drug repositioning is

classified as “disease-centric” or “target/gene-centric” or “drug-

centric” depending on the source of discovery (Li et al., 2016).

This process relies on public biochemical databases such as

DrugBank (Mihai et al., 2019; Mazzolari et al., 2020), ChEMBL

(Mendez et al., 2019), Cmap (Lin et al., 2020), PDB (Berman et al.,

2000), OMIM (Amberger et al., 2014), etc., to provide the

appropriate information. In fact, to make the computational drug

repurposing process, including the molecular docking and virtual

screening steps, more convenient, database tools specifically

developed for drug repurposing, such as EK-DRD (Zhao et al.,

2019), DREIMT (Troulé et al., 2021), DrugSig (Wu H. et al., 2017),

RepoDB (Malas et al., 2019), Promiscuous 2.0 (Gallo et al., 2021),

etc., have been reported in the last few years. In addition, it has been

found in the literature that only 10% of the research results have

been carried out in the “drug-centric” pathway, which holds great

prospects for future development (Parisi et al., 2020). With the help

of database tools, it is now possible to perform computational

screening of even a staggering number of hundreds of millions

of compounds (Fischer et al., 2020). Computer methods to carry out

this screening include machine learning (Napolitano et al., 2013),

network modeling (Francisco, 2013; Lotfi Shahreza et al., 2018), text

mining, and semantic reasoning (Christos et al., 2011; Yuan et al.,

2017; Ji et al., 2020), among others. The ultimate objective of

repositioning is to transfer one or two of the most relevant

results to clinical applications. Therefore, validation is quite

important (Li et al., 2016) and requires consideration of multiple

factors, such as price, toxicity levels, bioavailability, and differences

between validated and computational models (Li et al., 2016; Jarada

et al., 2020). Current validation methods include experimental

validation (Kang et al., 2014), electronic health records to aid

validation (Xu et al., 2015), cross-validation (Wu Z. et al., 2017;

Ozsoy et al., 2018), gold standard dataset evaluation (Luo et al.,

2021), literature citation validation (Chopra et al., 2016), and expert

consultation (Jarada et al., 2020).

Today, drug repositioning is increasingly prominent in the

development of drugs for a variety of neurological diseases

(Athauda and Foltynie, 2018; Kessing et al., 2019), cancer

(Gupta et al., 2013; Efferth, 2017), rare diseases (Sardana

et al., 2011; Southall et al., 2019), and infectious diseases

(Pietschmann, 2017; Muratov et al., 2021). An increasing

number of pharmaceutical companies are also establishing

relevant R&D programs (Kettle and Wilson, 2016) or funding

support (Tummino et al., 2021). To translate relevant research

results efficiently and smoothly, national departments within the

United Kingdom, the United States, and the Netherlands have

(Paul and Lewis-Hall, 2013; Vanhaelen et al., 2017) launched

initiatives or programs to build partnerships between

pharmaceutical companies and academia and to further

explore scientific and commercial opportunities (Yella et al.,

2018). It is certain that drug repositioning currently presents

several dilemmas, such as intellectual property challenges

(Breckenridge and Jacob, 2019), data platforms, and analytical
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techniques that need to be improved (Kumar et al., 2019), that

financial support remains important for technology development

and clinical trials (Verbaanderd et al., 2021), and that some

scientists deny the practical utility of the approach (Edwards,

2020).

There have been systematic analyses of terminology in the

drug repurposing literature (Langedijk et al., 2015), text mining

of drug–disease combinations (Baker et al., 2018), and the

progression of a particular drug (Li X. et al., 2020), but no

studies have yet provided a broad overview of publications on the

topic of drug repurposing research. When independent

researchers or collectives (including pharmaceutical

companies, academia, and government departments) seek

drug repurposing partnership partners and seek to obtain a

concise overview of comprehensive current research hotspots,

the lack of relevant intelligence analysis to aid decision-making

often makes the process convoluted and time-consuming (Frail

et al., 2015). The bibliometric approach can solve the

aforementioned problems relatively fairly, but at present,

scholars have only studied the bibliometrics of aspirin, a drug

repurposing (Li X. et al., 2020); there has not been a panoramic

study of drug repurposing, and therefore, this study is necessary.

Bibliometrics is a useful tool combining multiple parameters for

the quantitative analysis of scholarly publications and is currently

used to assess research hotspots and trends in a wide range of

disciplines and industries, such as management (Vogel and

Güttel, 2013; Feng et al., 2017), sociology (Rey-Martí et al.,

2016; Sharifi, 2021), economics (Zhang et al., 2019), medicine

(Tao et al., 2012; Powell et al., 2016), environmental engineering

(Colares et al., 2020; Mao et al., 2021), and agronomy (Canas-

Guerrero et al., 2013; Giraldo et al., 2019). Therefore, this study

uses bibliometric methods (Leung et al., 2017) to quantitatively

assess the following elements of drug repositioning publications:

1) major contributors: countries, research institutions, and

authors; 2) modes of collaboration: intercountry

collaborations; 3) the most productive journals; 4) the most

frequently used disciplinary knowledge; and 5) research

trends, judged by analyzing author keywords, Essential Science

Indicators (ESI) high citations, and hot research studies.

2 Methodology and data processing

2.1 Data collection

We use the Web of Science™ core database, an authoritative

academic information data service platform produced by

Clarivate (version © 2021 Clarivate.). Due to its rigorous

selection of journals, the Web of Science (WOS) Core

Collection Database is now internationally recognized as a

database for evaluating the scientific output or disciplinary

development of scholars and institutions. Among the

subdatabases, SCI-E mainly includes global journals in basic

science research, covering basic pharmacological and medical

research related to the theme of this study, “drug repositioning,”

while SSCI includes social science, covering ethical, nursing,

psychological, and other social science research related to this

study.

The data were obtained on 25 October 2021 through the

WOS Core Collection Database Citation Indexes SCI-E and

SSCI, using the formula “drug repurposing” OR “drug

repositioning” OR “drug rediscovery” OR “therapeutic

switching” OR “drug redirecting” OR “drug rediscovery” OR

“drug retasking” search query, searching in the “subject” field and

defining the document type as “Article” and “Review”. The

publication time parameters were initially limited to

publications related to “drug repositioning” published between

1990 and 2020. A total of 3,009 documents were obtained, of

which only 31 were published in two decades from 1990 to 2009.

Of these 31 documents, except for one document that is still

frequently used by scholars as a retrospective source for drug

repurposing definitions in these years (Ashburn and Thor, 2004),

the remaining 30 were cited by other authors during the period of

2010–2020 as shown in Figure 1. The overall level of interest in

these studies shows a fluctuating downward trend as opposed to

the rising citation fervor for drug repurposing, entering a stage of

decline even under the less-demanding evaluation criterion of a

5-year maturation window (Jacsó, 2009). As the literature ages,

its content becomes stale and obsolete in the perspective of

intelligence sources, and the value of the metrics for judging

current research trends is low. Therefore, we further narrowed

the study to 2,978 publications published from 2010 to 2020.

2.2 Data import and deduplication

The complete records of all retrieved documents are

downloaded and imported for processing into Derwent Data

Analyzer (DDA) version V10, a data cleaning, multiperspective

data mining, and visualization software from Clarivate that

improves data analysis efficiency and reduces labor costs.

After importing all records of WOS documents into DDA,

they are classified and measured according to a list of fields

such as keyword, country/region, institution, author, research

field, journal, etc. For each item in the list fieldset, DDA has a

built-in data cleaning tool for automatic data deduplication.

2.3 Data splitting or merging

After the machine has removed duplicates, the items in the

set of fields still need to be manually verified for splitting or

merging. It is to be noted that the regions of certain countries are

presented separately, while they are usually considered as a single

country internationally. Therefore, we need to perform merging,

such as combining Wales, Scotland, England, and Northern
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Ireland into the United Kingdom column and combining Hong

Kong and Macau regions into the China column.

To address the possible problem of different authors with the

same name, the following two main verification steps were

performed: 1) returning to the WOS database to search for

publications under that author’s name under the original

search formula conditions and 2) for authors whose

publications provide disputed information (this also includes

three cases: first, two or more authors with the same name but

not the same person; second, two or more authors with the same

abbreviated name, but the full names were found to be different

after a search; and third, similar signatures being different

variants of the same author’s name), in addition to searching

the ORCID-related information of the authors concerned for

judgment, we checked different institutional websites as well as

encyclopedias to look for changes in the study and work history

of authors with the same or similar names from 2010 to 2020 to

determine whether they were the same person. Based on the

verification, we then split or merged the results.

2.4 Data analysis and visualization

After data cleaning and matrix analysis by DDA, various

types of cluster plots and bubble plots can be obtained to

reveal the useful information behind the data. The

bibliometric fields of publication volumes, countries,

international collaborations, institutions, research areas,

journals, authors, highly cited research studies, and author

keywords were analyzed in this study. It should be noted that

because some studies were published online ahead of time and

the study publication date was a year or two behind, for

statistical purposes, the year of publication of such research

studies was included as the year of online publication. (e.g., a

study shown in the reference as published in 2022 may have

been published online in 2020).

3 Results

3.1 Number and type of publications

Of the 2,978 papers obtained using the search criteria

mentioned previously, the main ones were research studies

(2248; 75.49%) and reviews (730; 24.51%). Furthermore,

individual publications are not only classified by journals in

the single category of research studies or reviews but also belong

to other categories. These publications were also related to

proceeding studies (68; 2.28%), early access (24; 0.81%), book

chapters (7; 0.24%), data studies (2; 0.07%), and retracted

publications (2; 0.07%). The vast majority of research studies

and reviews were published in English (2967; 99.631%), with

the remainder in Japanese (3; 0.101%), Chinese (2; 0.067%),

Czech (1; 0.034%), French (1; 0.034%), German (1; 0.034%),

Hungarian (1; 0.034%), Korean (1; 0.034%), and Portuguese (1;

0.034%). Ninety were from SSCI, and the remaining 2888 were

from SCI-E. Further, 1,996 were from Open Access. An annual

analysis of published research studies is shown in Figure 2. The

number of publications for every year expanded from 17 in

2010 to 970 in 2020. Annual publications on the subject have

increased by more than 64 times. The number of annual

publications has been increasing at a relatively high rate

since 2015, while in 2020, there was a spike in the number

of publications and annual citations, probably due to the

FIGURE 1
Total number of citations per year from 2010 to 2020 for 30 publications published from 1990 to 2009.
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COVID-19 pandemic, a global public health emergency that

prompted special attention from scientists. Among the four

countries with the highest number of publications (the

United States, China, the United Kingdom, and India), the

United States has maintained a high growth volume since 2010,

while China was the fastest in terms of average annual growth

FIGURE 2
Annual trends in the number of articles published and citations related to drug repositioning.

TABLE 1 Top 20 most productive countries/regions in the field of drug repositioning.

Rank Country TP TC h-index ACPP nCC SMCP (%) Region

1 The United States 918 27,355 74 29.8 59 48.15 Anglo-America

2 P.R. China 485 11,147 49 22.98 39 36.70 Asia

3 The United Kingdom 284 8,762 43 30.85 57 69.01 Europe

4 India 247 3,203 27 12.97 37 30.77 Asia

5 Italy 232 6,024 39 25.97 40 47.41 Europe

6 Germany 171 5,213 36 30.49 50 67.25 Europe

7 South Korea 161 2221 21 13.8 24 29.20 Asia

8 Japan 146 3,037 26 20.8 22 25.34 Asia

9 Brazil 125 1911 24 15.29 29 42.20 Latin America

10 France 116 3,627 26 31.27 35 56.03 Europe

11 Canada 111 4,641 28 41.81 46 62.16 Anglo-America

12 Spain 109 2305 27 21.15 38 58.72 Europe

13 Australia 73 1816 23 24.88 36 79.45 Oceania

14 The Netherlands 73 1,559 22 21.36 37 75.34 Europe

15 Switzerland 59 2126 23 36.03 32 67.80 Europe

16 Sweden 58 1,434 19 24.72 37 86.21 Europe

17 Taiwan Region 58 1,110 17 19.14 8 36.21 Asia

18 Argentina 51 749 17 14.69 16 43.14 Latin America

19 Belgium 48 1,062 18 22.13 26 81.25 Europe

20 Mexico 47 1,162 19 24.85 15 42.55 Latin America

Notes: TP, total papers; TC, total citations; ACPP, average citations per publication; nCC, number of cooperative countries; and SMCP, share of multinational cooperation publications.
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rate in the last three years. In 2020, the number of publications

in India surged and surpassed the production of the

United Kingdom.

3.2 Countries and number of publications

With respect to the 2978 publications related to drug

repositioning research, 89 countries contributed to the field of

drug repositioning research. The number of publications and

citations from the 20 most productive countries/regions is shown

in Table 1. There are nine countries/regions in Europe, five in the

Americas, five in Asia, and one in Oceania.

The four most productive countries/regions are, in order, the

United States, China, the United Kingdom, and India. The

United States is the absolute leader in this field, with

918 research studies on drug repositioning published since 2010,

which is already more than the next highest number of publications

in China and the United Kingdom combined. This is followed by

India (247), Italy (232), Germany (171), South Korea (161), and

Japan (146). Other productive countries include Brazil (125), France

(116), Canada (111), Spain (109), Australia (73), the Netherlands

(73), and Switzerland (59). In terms of publication impact, the

United States led the Total citations (TC) rankings with 27,355, twice

as many as that of China (11,147), which ranked second. We also

included the average citations per publication (ACPP) in the

comparison, which is calculated by dividing the TC by the TP

(total papers) value and is a relative number that may better reflect

the individual or collective level of attention than the individual TC

and TP values. Canada ranked first in ACPP at 41.81, closely

followed by the United Kingdom (30.85) and Germany (30.49).

In addition, the h-index was originally proposed as a simple

quantification that a researcher had at least h publications cited h

times, reflecting to a certain extent the research results of the

researcher as an individual (Hirsch, 2005). Later, the word

“researcher” in the definition began to be replaced by collective

words such as “academic group or institution (Van Raan, 2006),"

“journal (Braun et al., 2006)," and “country (Csajbók et al., 2007),"

becoming an indicator of the level of collective research to some

extent. Undoubtedly, the h-index of the United States ranks first in

this field with 74 times. Taking all parameters into account, we find

that publications in the United Kingdom, the United States, and

Canada perform better on average. While the number of

publications in China and India is significant, they have received

low levels of attention.

3.3 National/regional cooperation

It should be noted that DDA analysis software is nationally

identified based on the location of each researcher’s institution

address provided in the publication. If a publication is

coauthored by institutions from more than two countries, the

publication is defined as the result of an international

collaboration. Whether there is some affiliation between the

various institutions of the research group that produces the

multicountry collaboration is not taken into account. As shown

in Table 1, among the publications of the top 20 countries and

regions, the proportion of international collaborations is quite high

in European countries, especially in Sweden (86.21%) and Belgium

(81.25%). Asian and Latin American countries are generally

underrepresented. In addition, the United States, the most active

country in publishing and the country with the most

collaborations—with 59 countries or regions—still has over 50%

of the studies published overall.

Figure 3 depicts the academic collaboration network for the

top 20 countries and regions in terms of productivity. Using

DDA software, the network was mapped using a co-occurrence

matrix. The size of the circles is proportional to the extent of each

country’s contribution, the lines between the circles represent the

collaboration between countries/regions, and the thickness of the

connecting lines indicates the frequency of collaboration (Bao

et al., 2018). The results show that the United States cooperates

most frequently with China and the United Kingdom and has the

closest cooperation with them. In addition, Mexico, Belgium,

Argentina, Taiwan, Japan, and Korea have slightly sparser

cooperation networks among the 20 most productive

countries/regions, while the remaining countries have more

extensive cooperation networks among themselves.

3.4 Contributions of leading bodies

A total of 3,530 institutes were involved in drug repositioning

research. The top 20 productive institutes are shown in Table 2.

Eight of the top 20 institutions are from the United States, again

indicating the dominance of the United States in drug

repositioning research; three are from the United Kingdom;

two are from China; and Brazil, France, Mexico, Canada, the

Netherlands, Austria, and Sweden each have one. The Chinese

Academy of Science ranked first in terms of the number of

research studies, followed by Case Western Reserve University

and the NIH. The Icahn School of Medicine at Mt Sinai ranked

first in ACPP at 77.32. The NIH had the highest h-index value of

22. The Icahn School of Medicine at Mt Sinai was the best

performer in ACPP at 77.32, followed by the University of

California, San Francisco (67.82) and Johns Hopkins

University (65.68), both of which are US-based research

institutions. Compared with US research institutions, Chinese

research institutions are at the back of the pack in terms of ACPP,

and their impact needs to be improved.

The collaboration network between the 15 largest institutions

in 2010–2020 is shown in Figure 4. The collaboration network

provides a more visual view of the collaboration with different

institutions and thus helps in the search for more beneficial

collaborations. Next to the name of each institution is its total
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number of publications. At the intersections of these institutions,

yellow dots indicate collaborations with the other top 10 research

institutions. It should be noted that the number of yellow dots

can indicate the output of cooperation and the strength of

interagency cooperation. The nodal data with no crossover

points represent the number of publications produced by the

institute, either by its independent work or in collaboration with

research institutions outside the top 15 (Bao et al., 2019). From

Figure 4, we see that the University of Cambridge established the

largest collaborative network, followed by the large network

established by four institutions, the NIH, the Icahn School of

Medicine at Mt Sinai, Karolinska Institute, and King’s College

London. In terms of the number of copublications with

established institutions, the Chinese Academy of Science and

Shanghai Jiao Tong University copublished as many as six,

followed by the University of Cambridge and King’s College

London and the NIH and the Icahn School of Medicine at Mt

Sinai. Analyzing the aforementioned three pairs of institutional

combinations, King’s College London has two publications that

are the product of collaboration between the three research

institutions. The University of Sao Paulo and Aix-Marseille

University are relatively independent in this research area.

Combining the ranking of multiple parameters, we found that

the NIH and Icahn Sch Med Mt Sinai in the United States are the

most vocal institutions in terms of academic research result

perspective on the topic.

3.5 Contribution of leading research areas

An analysis of research areas gives a good indication of the scope

of application of the research topic, with an unrestrained number of

74 areas covered, with the top 20 areas of research in terms of

publication volume shown in Table 3. Briefly, “pharmacology and

pharmacy” took first place with 962 articles, followed by

“biochemistry and molecular biology”, and for ACPP, the top

three were science and technology-other topics (36.1)",

“mathematics (32.79)", and “cell biology (29.65)".

FIGURE 3
Cooperation between the top 20 most efficient countries/regions.
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TABLE 2 Top 20 most productive institutions in the field of drug repositioning for the period of 2010–2020.

Rank Institution TP TC ACPP h-Index PMCP (%) Country/region

1 Chinese Acad Sci 54 1,286 23.81 19 98.15 China/Asia

2 Case Western Reserve Univ 38 1799 47.34 20 86.84 The United States/Anglo-America

3 NIH 37 1777 48.03 22 72.97 The United States/Anglo-America

4 Stanford Univ 35 1,401 40.03 16 80.00 The United States/Anglo-America

5 Univ Sao Paulo 34 452 13.29 13 76.47 Brazil/Latin America

6 Harvard Med Sch 33 1,078 32.67 18 84.85 The United States/Anglo-America

7 Univ Cambridge 32 788 24.63 14 90.63 The United Kingdom/Europe

8 Icahn Sch Med Mt Sinai 28 2165 77.32 15 75.00 The United States/Anglo-America

9 Kings Coll London 28 605 21.61 13 96.43 The United Kingdom/Europe

10 Aix Marseille Univ 27 1,183 43.81 15 92.59 France/Europe

11 Univ Nacl Autonoma Mexico 27 943 34.93 17 88.89 Mexico/Latin America

12 Shanghai Jiao Tong Univ 25 524 20.96 13 76.00 China/Asia

13 Univ Toronto 24 457 19.04 11 95.83 Canada/Anglo-America

14 Karolinska Inst 23 708 30.78 10 100.00 Sweden/Europe

15 Leiden Univ 23 327 14.22 11 78.26 The Netherlands/Europe

16 UCL 23 584 25.39 14 95.65 The United Kingdom/Europe

17 HM Pharma Consultancy 22 23 1.05 2 4.55 Austria/Europe

18 Johns Hopkins Univ 22 1,445 65.68 16 95.45 The United States/Anglo-America

19 NCI 22 602 27.36 14 100.00 The United States/Anglo-America

20 Univ Calif San Francisco 22 1,492 67.82 13 86.36 The United States/Anglo-America

Notes: TP, total papers; TC, total citations; ACPP, average citations per publication; and PMCP, Proportion of multi-institutional collaborative publications.

FIGURE 4
Collaboration matrix mapped between the first 15 productive bodies.
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Figure 5 shows a bubble graph of the top 20 drug

repositioning research areas. The bubble plot shows three

dimensions of the data, namely, research area, year of

publication, and the number of publications. The horizontal

change in bubble size illustrates the growing trend of research

areas over time, the vertical size of the bubble shows the most

popular research areas in that year, and the number in the bubble

indicates the frequency of the topic in the research area and the

number of publications in that year (Chen et al., 2016). The

number of research results in each relevant field is increasing year

by year. Biophysics increased from five in 2019 to 77 in 2020, a

more than 15-fold increase, suggesting that drug repositioning

may have made a breakthrough or become widely used in this

field. The field of virology was in a downturn from 2010 to 2014,

with only one publication, with a gradual increase in relevant

studies after 2015.

3.6 Contribution of major journals

For scholars studying drug repositioning-related topics,

knowing which journals publish relevant research is important

in deciding which journals to read or submit their research studies

to. A total of 2,988 publications related to drug repositioning

research were published in 845 journals during the period of

2010–2020. The top 25 journals in terms of a total number of

studies published are shown in Table 4 Sci Rep topped the list with

75 studies published, followed by PLoS One (73; 2.52%), J. Biomol.

Struct. Dyn (67; 2.45%), Bioinformatics (53; 2.25%), and BMC

bioinformatics (50 articles; 1.78%). The rest of the journals had a

share of less than 1.5%. In terms of total citations (TC), at present,

studies in Drug Discov. have been cited a total of 2,119 times over

the past 10 years, followed in rank by PLoS One (1800) and

Bioinformatics (1,677). For ACPP, Drug Discov. Today still

holds first place with a high frequency of 50.45 times, followed

by PLoS Comput (33.14 times). The impact factor (IF) of a journal

is calculated by dividing the total number of citations of all

publications in the journal in the previous two years by the

number of publications (Garfield, 2006). Thus, Table 4 shows

that the ACPP of drug repurposing publications included in most

journals is much higher than that of IF, which roughly verifies that

the number of scholars interested in drug repurposing is relatively

high. In terms of the impact factor (IF) of specific journals, except

for Oncotarget and BMC Syst. Biol., which have not been included

in SCI since 2018 and 2020, Brief. Bioinform. has the highest value

of 11.622, followed by Drug Discov. Today (7.851), Bioinformatics

(6.937), Cancers (6.639), Eur. J. Med. Chem (6.514), and Expert.

Opin. Drug Discov. (6.098). The bubble chart shows that J. Biomol.

Struct. Dyn. featured 64 publications in 2020, compared to a

combined total of only four publications in the previous ten

years; the Oncotarget journal inclusion in this category peaked

in 2016–2017 (Figure 6).

TABLE 3 Contribution of the top 20 research areas in the field of drug repositioning.

Rank Research Area TP TC ACPP h-Index SP%

1 Pharmacology & Pharmacy 962 25,243 26.24 67 32.3

2 Biochemistry & Molecular Biology 721 18,768 26.03 59 24.21

3 Oncology 302 7,104 23.52 40 10.14

4 Chemistry 274 5,539 20.22 33 9.2

5 Mathematical & Computational Biology 242 6,671 27.57 40 8.13

6 Science & Technology-Other Topics 234 8,448 36.1 42 7.86

7 Computer science 215 5,392 25.08 38 7.22

8 Biotechnology & Applied Microbiology 189 5,384 28.49 36 6.35

9 Cell biology 185 5,486 29.65 34 6.21

10 Research & Experimental Medicine 157 4,322 27.53 31 5.27

11 Microbiology 151 3,714 24.6 32 5.07

12 Neurosciences & Neurology 136 2513 18.48 26 4.57

13 Biophysics 114 2071 18.17 25 3.83

14 Genetics & Heredity 94 1878 19.98 23 3.16

15 Infectious diseases 93 2603 27.99 28 3.12

16 Immunology 68 1744 25.65 22 2.28

17 Mathematics 66 2164 32.79 27 2.22

18 General & Internal Medicine 64 1,299 20.3 21 2.15

19 Parasitology 56 1,079 19.27 18 1.88

20 Virology 56 1,079 19.27 18 1.88

Notes: TP, total papers; TC, total citations; ACPP, average citations per publication; and SP%, share of publications.
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3.7 Contribution of the lead author

For scholars interested in the topic of drug repositioning, it is

useful to know how other researchers are working on the issue to

facilitate communication and collaboration between scholars. A

total of 15,620 authors contributed to studies within our

measurement consideration, and Table 5 shows the top

20 prolific authors by a number of publications. Of these

20 highly productive authors, seven were from the

United States, three were from Argentina, and two were from

Germany, indicating a relatively high concentration of drug

repositioning research in certain countries. In addition, the

NIH (United States), Case Western Reserve University

(United States), Tech University Dresden (Germany), and the

National University of La Plata (Argentina) each have two of

these academics.

Cheng, FX leads the list with 25 research studies, followed by

Talevi, A (23) and Mucke, HAM (22). For the list of

corresponding authors, the top three remain, in order, Mucke,

HAM (22), Cheng, FX (17), and Talevi, A (17). In terms of ACPP

ranking, Butte, AJ was ranked first with 154.33 points, followed

by Cheng, FX (100.56), Tang, Y (95), and Dudley, JT (82). Cheng,

FIGURE 5
Bubble chart of the top 20 drug repositioning research areas by year.
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FX still has the highest h-index at 21, followed by Zheng, W

(17), Talevi, A (12), Xu, R (11), and Schroeder, M (11). The

h-index has two drawbacks when researchers of the same topic

are compared with each other (Bornmann and Daniel, 2007).

One is that the scholar’s h-index does not decrease over time

but only grows or stays the same, and it is not possible to

obtain information on whether the scholar is still in an

academic career. In this study, we narrow the study to the

most recent publications from 2010 to 2020, taking into

account the timeliness of the h-index response information.

Second, older scholars usually enter academia earlier and have

an advantage in their h-indexes in comparison with those of

younger scholars. Therefore, this phenomenon must be

targeted for analysis or illustration. Thus, by combining the

authors’ educational experiences and employment

relationship changes that were recorded in the WOS

database and ORCID business cards, we inferred that more

than half of the scholars in the top 20 in terms of the number

of publications received their Ph.D. before 2008, and two

scholars, Mucke, HAM and Zheng, Wei, are older. In

contrast, Cheng, FX, a scholar from Case Western Reserve

Univ, completed his Ph.D. without a gap in 2013 and may have

a longer academic career in the future; therefore, Cheng, FX’s

h-index in the field of drug repositioning is likely to grow

more in the future and Cheng, FX is likely to have more

academic influence.

3.8 Research hotspots and trends

To reveal the focus of drug repositioning research and

research trends, the author keywords and the highly cited and

hot research topics of the ESI for each of the 2978 publications

were analyzed, which were also derived from the core database

of the WOS database (SCI-E/SSCI) (Liao et al., 2019). Highly

cited studies were defined as studies in the top 1% of the

citations for all studies in the same ESI discipline within the

10-year range of inclusion of ESI inclusion (Chang et al.,

2020). A hot research topic of the ESI refers to a study

published in two years with a citation frequency within one

of the corresponding disciplines in the world in the last

two months (Li L. et al., 2020).

TABLE 4 Top 25 journals publishing studies in drug repositioning studies.

Rank Journal Title TP TC ACPP IF (2020)

1 Sci Rep 75 1,081 14.41 4.38

2 PLoS One 73 1800 24.66 3.24

3 J. Biomol. Struct. Dyn 67 1,000 14.93 3.110

4 Bioinformatics 53 1,677 31.64 6.937

5 BMC Bioinformatics 50 658 13.16 3.169

6 Front. Pharmacol 43 1,073 24.95 5.811

7 Drug Discov. Today 42 2119 50.45 7.851

8 Molecules 40 329 8.23 4.412

9 ASSAY DRUG DEV. TECHNOL. 39 224 5.74 1.738

10 Int. J. Mol. Sci. 39 785 20.13 5.924

11 Oncotarget 38 861 22.66 —

12 Antimicrob. Agents Chemother 36 770 21.39 5.191

13 Brief. Bioinform 36 1,585 44.03 11.622

14 J. Chem Inf. Model. 35 1,134 32.4 4.956

15 Curr. Top. Med. Chem. 34 447 13.15 3.295

16 Curr. Med. Chem. 30 343 11.43 4.53

17 Cancers 27 185 6.85 6.639

18 Eur. J. Med. Chem. 26 418 16.08 6.514

19 Int. J. Antimicrob. Agents 22 729 33.14 5.283

20 Expert. Opin. Drug Discov. 21 366 17 6.098

21 Antiviral Res. 19 312 16.42 5.927

22 PLoS Comput. Biol. 19 889 46.79 4.475

23 Biochem. Biophys. Res. Commun. 17 218 12.82 3.575

24 BMC Syst. Biol. 17 407 23.94 —

25 Curr. Pharm. Design 17 312 18.35 3.116

Notes: TP, total papers; TC, total citations; ACPP, average citations per publication; and IF: impact factor.
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3.8.1 Author keyword analysis
Author keywords tend to provide more information and have

thus become a widespread focus (Chen et al., 2021; Zhen et al.,

2022). The data of 6,083 author keywords in the search results

were merged to make keywords with the same meaning

represented by a single unified word. In the end, 5,616 author

FIGURE 6
Bubble chart of the top 25 drugs repositioned by year in terms of journal production.
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keywords were obtained. It should be specified that some

publications without author keywords were excluded from the

statistical analysis. Of these author keywords, 4,296 were used

only once, representing 76.50% of the total. A total of 1,216

(21.65%) appeared 2–10 times, 79 (1.41%) appeared 10–20 times,

37 (0.66%) appeared 21–50 times, and the remaining eight

FIGURE 7
Bubble chart of the top 30 author keywords by year.
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(0.14%) were used between 51 and 1,500 times. All keywords

cumulatively appear a total of 12,400 times, while the top 30most

used author keywords appear 2,967 times alone, or

approximately 23.93%, as shown in Figure 7. The comparison

of keywords in recent years allows for tracking the frontiers of

research and predicting hotspots and trends in drug

repositioning research. The bubble plots show the three

dimensions of the data, namely, the year of publication, the

author’s keywords, and the number of corresponding

publications. The horizontal change in the size of the bubble

illustrates the increasing trend of author keywords over time, the

vertical size of the bubble shows the most popular keywords in

that year, and the numbers in the bubble indicate the frequency

of author keywords and the number of publications.

The top 30 keywords include five diseases: “COVID-19/

SARS-CoV-2/Coronavirus” (239), “Cancer” (75), “Alzheimer’s

disease” (48), “Breast cancer (36)", and “Chagas disease” (27).

Drug names appear four times, “Antiviral drugs” (56),

“Metformin” (35), “Statins” (28), and “Antibiotics” (25),

which reveal the diseases and applications to which drugs

were often repositioned during these 11 years. There were

four subject categories, “Bioinformatics” (43),

“Polypharmacology” (42), “Systems biology” (42), and

“Precision medicine” (28) and eight occurrences of research

methods, namely, “Virtual screening” (81), “Molecular

docking” (64), “Machine learning” (54, eighth), “Clinical

trials” (36), “High-throughput screening” (35), “Connectivity

map” (28), and “Molecular dynamics simulation” (26).

In the context of the pandemic in 2020, there was a surge in

research on the subject, with “COVID-19/SARS-CoV-2/

Coronavirus” topping the list of keywords as soon as they

appeared that year. “Virtual screening” is a research method

that appeared seven times more frequently in 2020 than in the

previous year. Since “Drug repurposing/repositioning” is a

subject matter and a strategy for drug discovery/drug

development, it would not make much sense to analyze these

two keywords. Molecular docking is one of the core steps of

virtual screening, and the COVID-19 pandemic generated many

opportunities for the practice of drug repositioning. Therefore,

high-quality studies of the keywords “COVID-19/SARS-CoV-2/

Coronavirus”, “Virtual screening”, and “Molecular docking”

were surveyed, as shown in the bubble chart, in the past

two years, reflecting the relevant research trend in recent

years. Wang, F et al. developed a new free reverse docking

server based on a consensus algorithm (combining several

docking algorithm strategies) to address the original

shortcomings of computational molecular docking in drug

repositioning, such as a low success rate, cumbersome

operational steps, and reliance on code writing (Wang et al.,

2019). M Lapillo et al. extensively evaluated the performance

assessment of docking-based target fishing methods and

developed a consensus docking-based target fishing tactic

TABLE 5 Contribution of the top 20 authors to drug repurposing studies.

Rank Author TP TC ACPP H-Index TPR Institution (Current),
Country/Region

1 Cheng, FX 25 2514 100.56 21 17 Case Western Reserve Univ, USA/Anglo-America

2 Talevi, A 23 446 19.39 12 17 Natl Univ La Plata UNLP, Argentina/Latin America

3 Mucke, HAM 22 23 1.05 2 22 HM Pharma Consultancy, Austria/Oceania

4 Zheng, W 19 1,189 62.58 17 12 NIH,USA/Anglo-America

5 Xu, R 16 330 20.63 11 15 Case Western Reserve Univ, USA/Anglo-America

6 Dudley, JT 15 1,218 81.2 10 7 Icahn Sch Med Mt Sinai, USA/Anglo-America

7 Schroeder, M 15 454 30.27 11 12 Tech Univ Dresden, Germany/Europe

8 Andre, N 12 471 39.25 9 5 Aix Marseille Univ, France/Europe

9 Wang, QuanQiu 12 237 19.75 9 0 ThinTek LLC,USA/Anglo-America

10 Arga, KY 11 175 15.91 8 6 Marmara Univ, Turkey/Asia

11 Haupt, V. Joachim 11 399 36.27 8 0 Tech Univ Dresden, Germany/Europe

12 Carrillo, C 10 192 19.2 8 1 Inst Ciencias and Tecnol Cesar Milstein, Argentina/Latin America

13 Duenas-Gonzalez, A 10 326 32.6 8 9 Univ Nacl Autonoma Mexico, Mexico/Latin America

14 Bellera, Carolina L 10 192 19.2 7 0 Natl Univ La Plata, Argentina/Latin America

15 Sun, Wei 10 508 50.8 8 0 NIH,USA/Anglo-America

16 Tang, Y 10 950 95 9 6 East China Univ Sci and Technol, Peoples R China/Asia

17 Tempone, AG 10 113 11.3 7 7 Adolfo Lutz Inst, Ctr Parasitol and Mycol, Brazil/Latin America

18 Aittokallio, T 9 431 47.89 8 6 Aalto Univ, Finland/Europe

19 Bae, JS 9 39 4.33 4 9 Kyungpook Natl Univ, South Korea/Asia

20 Butte, AJ 9 1,389 154.33 9 5 Univ Calif San Francisco, USA/Anglo-America

Notes: TP, total papers; TC, total citations; ACPP, average citations per publication; and TPR, total number of publications for which they are responsible.
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(Lapillo et al., 2019). In a virtual screening process, Gervasoni, S.

conducted a literature search for molecular binding sites for

SARS-CoV-2-associated protein targets while combining pocket

and docking searches to propose a new pocket mapping strategy

that identifies binding cavities with significantly better

performance than pocket detection alone (Gervasoni et al.,

2020). Xie, L et al. screened antitoxic drugs based on the

multitarget structure of the pathway center and stated that

this inhibition of multiple targets in one pathway would be

more effective than targeting a single protein, and the chance

of drug resistance was smaller, which could be applied to other

pathways (Xie and Xie, 2019). Li, Z et al. reported a virtual

screening method based on accelerated free energy perturbation

absolute binding free energy (FEP-ABFE) prediction and stated

that the virtual screening method based on the prediction of FEP-

ABFE will play a role in many other drug repositioning studies

(Li Z. et al., 2020). After a series of drug repurposing

computational screens and various validation activities by

several scientists, it was agreed that raltegravir (Beck et al.,

2020; Elfiky, 2020), clonidine (Jeon et al., 2020; Xu et al.,

2020), chloroquine and hydroxychloroquine (Fantini et al.,

2020) have therapeutic effects in the treatment of novel

coronavirus.

In addition, from the studies on the keyword “Machine

learning” over the 10-year period shown in the bubble chart,

it was found that the classical machine learning algorithms of

support vector machines (Kinnings et al., 2011; Pérez-Sánchez

et al., 2014; Zhao and So, 2018), regularized least squares (Hao

et al., 2016; Zhou et al., 2019), logistic regression (Qabaja et al.,

2014; Liu et al., 2015; Xu et al., 2017), and random forests (Cao

et al., 2014; Coelho et al., 2016) have been widely used in inferring

drug–target and drug–disease interactions.

3.8.2 Analysis of hot research topics
While the level of influence of a study is reflected by a

combination of many aspects, the number of citations remains

an important indicator (Wu Y. et al., 2020). Based on the

definition of highly cited and hot ESI papers in Section 3.8 of

this study, a total of 108 highly cited studies were obtained, of

which 11 were hot research topics. Hot research topics are shown

in Table 6. It should be noted that the first-ranked author is used

here as a representative, and the corresponding institution is

shown. This rule is followed in Section 3.8.3 of this study. All hot

research topics were published in 2020, and with the exception of

an article describing the damage caused by nonsteroidal anti-

inflammatory drugs (NSAIDs) to multiple organs and new

information on drug repurposing (Bindu et al., 2020), the

remaining studies focused on drug repositioning therapeutic

target studies in novel coronavirus pneumonia (Wu C. et al.,

2020; Gordon et al., 2020), screening drug studies (Elfiky, 2020;

Jeon et al., 2020; Rut et al., 2020; Singh et al., 2020; Wang, 2020),

reviews of clinical trials (Rosa and Santos, 2020; Tu et al., 2020),

TABLE 6 All ESI hot citation studies from 2011 to 2020.

No Author Title TC Journal Institution,Country/Region OPC

1 Gordon, DE
et al.

A SARS-CoV-2 protein interaction map reveals targets for
drug repurposing

952 Nature Univ Calif San Francisco, United States
et al.

France;
England

2 Wu, CR et al. Analysis of therapeutic targets for SARS-CoV-2 and
discovery of potential drugs by computational methods

817 Acta Pharm. Sin. B Huazhong Univ Sci and Technol,
Peoples R China et al.

None

3 Liu, C et al. Research and Development on Therapeutic Agents and
Vaccines for COVID-19 and Related Human Coronavirus
Diseases

543 ACS Central Sci CAS, United States None

4 Elfiky, AA Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and
Tenofovir against SARS-CoV-2 RNA dependent RNA
polymerase (RdRp): A molecular docking study

363 Life Sci Cairo Univ, Egypt None

5 Tu, YF et al. A Review of SARS-CoV-2 and the Ongoing Clinical Trials 324 Int. J. Mol. Sci Natl Yang Ming Univ, Taiwan None

6 Jeon, S et al. Identification of Antiviral Drug Candidates against SARS-
CoV-2 from FDA-Approved Drugs

211 Antimicrob. Agents
Chemother

Inst Pasteur Korea, South Korea None

7 Wang, JM Fast Identification of Possible Drug Treatment of
Coronavirus Disease-19 (COVID-19) Through
Computational Drug Repurposing Study

199 J. Chem. Inf. Model Univ Pittsburgh, United States None

8 Rosa, SGV
et al.

Clinical trials on drug repositioning for COVID-19
treatment

131 Rev. Panam. Salud
Publica

Univ Fed Fluminense, Brazil None

9 Singh, TU
et al.

Drug repurposing approach to fight COVID-19 86 Pharmacol. Rep ICAR Indian Vet Res Inst, India None

10 Rut, W et al. Activity profiling and crystal structures of inhibitor-bound
SARS-CoV-2 papain-like protease: A framework for anti-
COVID-19 drug design

69 Sci. Adv Wroclaw Univ Sci and Technol, Poland
et al.

The
United States

11 Bindu, S
et al.

Non-steroidal anti-inflammatory drugs (NSAIDs) and
organ damage: A current perspective

63 Biochem.
Pharmacol

Bose Inst, India et al. None

Notes: TC, total citations; and OPC, other partner countries.
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TABLE 7 Top 20 highly cited ESI publications from 2011 to 2020.

No Author (PY) Title TC TCPY Journal Institution,Country/
Region

OPC

1 Wishart, DS et al.
(2018)

DrugBank 5.0: a major update to the
DrugBank database for 2018

1820 606.7 Nucleic Acids Res Univ Alberta, Canada et al. None

2 Pushpakom, S et al.
(2019)

Drug repurposing: progress,
challenges and recommendations

885 442.5 Nat. Rev. Drug
Discov

Univ Liverpool, England et al. None

3 Maier, L et al. (2018) Extensive impact of non-antibiotic
drugs on human gut bacteria

639 213.0 Nature European Mol Biol Lab, Germany
et al.

Japan

4 Zhou, YD et al.
(2020); Cheng, FX
et al. (2020)

Network-based drug repurposing for
novel coronavirus 2019-nCoV/SARS-
CoV-2

609 609.0 Cell Discov Cleveland Clin, United States
et al.

None

5 Anighohro, A et al.
(2014)

Polypharmacology: Challenges and
Opportunities in Drug Discovery

492 70.3 J. Med. Chem Univ Modena and Reggio Emilia,
Italy et al.

Germany

6 Cheng, FX et al.
(2012)

Prediction of Drug-Target Interactions
and Drug Repositioning via Network-
Based Inference

491 54.6 PLoS Comput.
Biol

E China Univ Sci and Technol,
Peoples R China

None

7 Langhans, SA (2018) Three-Dimensional in Vitro Cell
Culture Models in Drug Discovery and
Drug Repositioning

395 131.7 Front.
Pharmacol

Alfred I DuPont Hosp Children,
United States

None

8 Xu, M et al. (2016) Identification of small-molecule
inhibitors of Zika virus infection and
induced neural cell death via a drug
repurposing screen

389 77.8 Nat. Med NIH, United States et al. China

9 Sirota, M et al. (2011);
Dudley, JT et al.
(2011)

Discovery and Preclinical Validation
of Drug Indications Using Compendia
of Public Gene Expression Data

327 32.7 Sci. Transl. Med Stanford Univ, United States None

10 Sriram, K et al. (2018) G Protein-Coupled Receptors as
Targets for Approved Drugs: How
Many Targets and How Many Drugs?

311 103.7 Mol. Pharmacol Univ Calif San Diego,
United States

None

11 Dudley, JT et al.
(2011)

Exploiting drug-disease relationships
for computational drug repositioning

282 28.2 Brief. Bioinform Arizona State Univ, United States
et al.

None

12 Medina-Franco, JL
et al. (2013)

Shifting from the single to the
multitarget paradigm in drug
discovery

285 35.6 Drug Discov.
Today

Univ Nacl Autonoma Mexico,
Mexico et al.

The United States

13 Peters, JU (2013) Polypharmacology - Foe or Friend? 275 34.4 J. Med. Chem F Hoffmann La Roche Ltd.,
Switzerland

None

14 Yoshida, GJ et al.
(2015)

Metabolic reprogramming: the
emerging concept and associated
therapeutic strategies

255 42.5 J. Exp. Clin.
Cancer Res

Japan Soc Promot Sci, Japan None

15 Skrott, Z et al. (2017) Alcohol-abuse drug disulfiram targets
cancer via p97 segregase adaptor NPL4

249 62.3 Nature Palacky Univ/Czech Republic
et al.

Denmark; Sweden;
Switzerland; The
United States; China

16 Li, J et al. (2016) A survey of current trends in
computational drug repositioning

242 48.4 Brief. Bioinform Chinese Acad Med Sci, Peoples R
China et al.

The United States

17 Stokes, JM et al.
(2020)

A Deep Learning Approach to
Antibiotic Discovery

235 235 Cell MIT, United States et al. Canada

18 Reddy, AS et al. (2013) Polypharmacology: drug discovery for
the future

228 28.5 Expert Rev. Clin.
Pharmacol

Univ Texas Houston,
United States

None

19 Menden, MP et al.
(2013)

Machine Learning Prediction of
Cancer Cell Sensitivity to Drugs Based
on Genomic and Chemical Properties

229 28.6 PLoS One Wellcome Trust Genome
Campus Cambridge, England
et al.

The United States

20 Beck, BR et al. (2020) Predicting commercially available
antiviral drugs that may act on the
novel coronavirus (SARS-CoV-2)
through a drug-target interaction deep
learning model

225 225 Comp. Struct.
Biotechnol. J

Deargen Inc., South Korea et al. The United States

Notes: PY, publication year; TC, total citations; TCPY, total citations per year; and OPC, other partner countries.
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and reports of other coronavirus therapeutic agents and vaccine

studies (Liu et al., 2020). From the perspective of cooperation,

most of themwere completed by a country’s independent agency.

In terms of the countries and regions studied, four studies

involved US scholars, five studies involved Asian scholars, and

one contribution was from an African scholar. In addition, “A

SARS-CoV-2 protein interaction map reveals targets for drug

repurposing (Gordon et al., 2020)”, published in Nature by

Gordon, DE with a total of 125 scholars from the

United States, the United Kingdom, and France was the most

cited publication with 952 citations.

3.8.3 Analysis of the most cited studies
Eleven hot research topics were removed from the

108 highly cited ESI studies, and the top 20 most cited

studies were selected from the remaining highly cited

studies for analysis. In terms of year of publication, the

study by Dudley, JT et al. published in NUCLEIC ACIDS

RESEARCH in February 2011 was the earliest of these studies

(Dudley et al., 2011). Five highly cited studies were published

in 2013, and three studies were published as recently as 2020.

Two studies were published in Nature, and one each was

published in Nat. Rev. Drug Discov. and Nat. Med. subj. of

Nature E; J. Med. Chem. L was next with two studies. There

were 12 studies with the first author or coauthor from the

United States, representing more than half of those in Table 7,

followed by China (4), Canada (2), England (2), Germany (2),

Japan (2), and Switzerland (2) in order of contribution of two

or more studies. Nine studies were based on collaborations

between different institutions in multiple countries. One of

them, entitled “Alcohol-abuse drug disulfiram targets cancer

via p97 segregase adapter NPL4”, published in Nature in

2017 by Skrott, Z et al. is a collaboration between scholars

from six countries: Czech Republic, the United States,

Denmark, Sweden, Switzerland, and China (Skrott et al.,

2017). In TC, “DrugBank 5.0: a major update to the

DrugBank database for 2018” (Wishart et al., 2018) by

Canadian University of Alberta scientists Wishart, DS et al.

ranked first (1820 total citations). The most cited publication

on an annual basis was “Network-based drug repurposing for

novel coronavirus 2019-nCoV/SARS-CoV-2”, published in

2020, which was authored by Zhou, YD et al. and was the

highest annual average cited publication with 609 citations

(Gordon et al., 2020). The scientists Cheng, FX and Dudley,

JT, contributed to two of these 20 publications and are

important influencers in the field.

The three studies published in 2020 focus on novel

coronavirus-related drug rediscovery activities (Zhou et al.,

2020) and the use of deep learning techniques (Beck et al.,

2020; Stokes et al., 2020). Dudley, JT et al. (2011) and

Pushpakom, S et al. (2019) provided systematic reviews of

the methods and challenges of drug repositioning at that time

(Dudley et al., 2011; Pushpakom et al., 2019). Initially, Sirota,

M et al. (2011) explored the role of integrating genome-wide

computational approaches for predicting reusable drugs

(Sirota et al., 2011), while from 2013 onward, Peters, JU

et al., Medina-Franco et al., JL et al., Reddy, AS et al., and

Anighoro, A et al. generally recognized the importance of

combining multiple points of pharmacological knowledge for

drug repositioning studies (Medina-Franco et al., 2013; Peters,

2013; Reddy and Zhang, 2013; Anighohro et al., 2014). In the

face of a worldwide health emergency caused by the Zika virus

epidemic, Xu et al. (2016) used drug repositioning to identify

lead compounds for drug development (Xu et al., 2016). Of

course, techniques related to the mining of repositionable

drugs through experimental high-throughput screening, a

traditional experimental approach, are not without

progress; for example, Langhans (2018) explored the

challenges of transferring 3D cell culture technology to the

use of high-throughput screening (HTS) (Langhans, 2018).

4 Discussion

In 1995, Mchugh et al. investigated the immunomodulatory

action mechanism of thalidomide in humans, which was the first

relevant publication on drug repositioning (Mchugh et al., 1995).

The publication time can be divided into three phases: the growth

period of 1995–2009, the steady growth period of 2010–2018, and

the rapid rise from 2019 and beyond. The 2978 publications

studied between 2010 and 2020 were completed by

15,338 authors from 3,530 research institutions in

89 countries, and at the time of this study’s completion, the

WOS database had surpassed more than 1,400 publications in

2021 under the same search restrictions for the topic, with more

than 31,000 citations for the year, supporting further evidence

that the topic is still gaining momentum worldwide.

The publication countries/regions are divided into three

types: first, countries with a traditionally developed medical

level, mainly developed countries in Western Europe, North

America, and Oceania; second, countries with a developed

pharmaceutical manufacturing industry, such as India and

Japan in Asia; and third, developing countries with some

research potential, such as China, Brazil, Argentina, and

Mexico. In terms of national cooperation, Western European

countries have shown a high degree of cooperation, with the

United States, China, and the United Kingdom cooperating more

frequently. This may be because Western European countries

have a tradition of cooperation in the field of research, and the

United States, China, and the United Kingdom are the most

powerful countries in terms of drug repositioning publications

and therefore cooperate more with each other. The United States

accounts for half of the 20 most productive institutions, which

may explain why the United States still publishes more than 50%

of its studies independently, despite having the largest

international collaborative network base, because it already
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has the most active and high-quality producing institutions

within the country for research institutions seeking

collaboration. Furthermore, 19 of these 20 institutions are

universities and research institutes, and one is a company,

HM Pharma Consultancy, which was established in 2000 to

focus on drug repositioning for the development of new drugs

(Nosengo, 2016). This evidence suggests that the topic of drug

repositioning is not only widely studied in academia but also has

a place in the industry.

The 2978 studies are spread across 74 research areas, but

pharmacology and pharmacy and biochemistry and molecular

biology account for a larger proportion of the total number of

studies. It is quite notable that the majority of studies reported in

biophysics did not rise significantly until 2020. The reasons for

this may be the following: first, there was a breakthrough in basic

research in this field in 2020 and second, due to the novel

coronavirus, research in this direction has increased its

application for the prevention and control of the pandemic.

In terms of journals, Sci Rep ranked first, followed by PLoS

One and J. Biomol. Struct. Dyn. In terms of lead authors, three

have the most productive and influential positions: Cheng, FX is

the most prolific author, based on the number of papers and

h-index; Mucke, HAM is the most frequent corresponding

author; and Butte, AJ is the top author in terms of ACPP

ranking. Even though Latin American countries do not have

an advantage in terms of national cooperation or the total

number of institutional funding units, Latin American

scholars have overcome many obstacles and are actively at the

forefront of scholarship, contributing significantly to the field.

Through the analysis of the authors’ keywords, cancer has

been the main disease addressed by this method. Metformin has

been found by many scientists to have a good inhibitory effect on

various tumors, mainly in gynecology (Kumar et al., 2013; Xu

et al., 2015; Gadducci et al., 2016; Seliger et al., 2019), and it has

become a specific drug that has been most frequently mentioned

in drug reuse in recent years. In terms of “antiviral drugs”,

scholars not only use drug repositioning to find antiviral

drugs to treat diseases, such as Ebola (Kouznetsova et al.,

2014; Dyall et al., 2018) and HIV (Trivedi et al., 2020), that

have plagued humans for a long time but also use this method to

seek treatments for infectious diseases, such as Zika virus (Xu

et al., 2016; Chan et al., 2017) and novel coronaviruses that have

threatened several countries and even the world. For these

diseases, emergency research on drug repositioning has played

an important role in reducing mortality, calming patient fears,

and restoring economic production when no specific drugs or

vaccines were initially available during the pandemic. The

combination of precision medicine and drug repositioning

studies, often used to seek treatments for rare diseases

(Álvarez-Machancoses et al., 2020) and, in particular,

genetically related diseases (Reay et al., 2020), is expected to

be fully developed in the future. In the past 2 years, “Virtual

screening”, together with “Molecular docking” and “Machine

learning”, has become the most cutting-edge and important

research methods in related technology fields, constantly

improving the accuracy of drug reuse and screening.

Currently, to develop more efficient and accurate research,

there are two trends in the use of drug repositioning. One is

the combination of various methods, such as the use of text

mining and network analysis, and the creation of statistical

models for predicting semantic link association to assess the

relationship between pharmacological target pairings (Chen

et al., 2012); text analysis combined with machine learning

(Zhu et al., 2020) to develop drugs for Parkinson’s disease;

prediction of new DTIs using data from multiple databases

(Olayan et al., 2018); and the obtained relocated anticancer

drugs were verified by cross-validation, literature, and

experimental verification (Cheng et al., 2021). Second, the

most advanced algorithms are applied and improved, such as

matrix decomposition (Xuan et al., 2019; Huang et al., 2020;

Meng et al., 2021; Tang et al., 2021; Sadeghi et al., 2022) and

matrix completion (Luo et al., 2018; Yan et al., 2022) and deep

learning (Aliper et al., 2016; Zeng et al., 2019; Chiu et al., 2020;

Stokes et al., 2020; Lee and Chen, 2021; Liu et al., 2021).

In fact, some of the studies in the list of highly cited research

topics on novel coronaviruses drug repurposing studies are

currently approaching 3,000 citations on Google Scholar

(Gordon et al., 2020). The percentage of highly cited studies

and hot research topics related to novel coronaviruses is also a

good indication that the method has made an indelible

contribution to the study of novel coronaviruses and similar

infectious diseases. Auxiliary technology for the experimental

screening of traditional drugs is also developing (Langhans,

2018), which also promotes drug repositioning or other drug

development processes. Furthermore, the high-quality results of

Elfiky, AA, a scientist from Cairo University, Egypt (Elfiky,

2020), suggest that relevant research in some economically

underdeveloped countries may reach top levels worldwide due

to the return or affiliation of some prominent scientists.

5 Conclusion

For this research, the literature on drug repositioning research

published in the SCI-E and SSCI sections ofWOS core journals from

2010 to 2020 was analyzed based on bibliometrics and DDA

software. This area has been of interest to scientists since the end

of the 20th century and entered a period of rapid growth in 2019,

with the peak far from being reached. Using bibliometrics as a tool,

the United States has become a world leader in terms of the number

of submissions, number of high-quality studies, funding support,

strength of research institutions, and number of top scholars,

followed by China and the United Kingdom, where more

research is being performed in this area. As a method of drug

discovery, drug repurposing is closely related to the development of

various biomedical disciplines, and computer-related disciplinary
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methods, such as mathematical computational biology and

computer science, have taken an important place in the research

of this field in the last decade. The authors’ keyword analysis

suggests that research in the field of the novel coronavirus will

remain valuable until the associated pandemic is completely

contained. Virtual screening, molecular docking, machine

learning, and other related technical fields still need long-term

development to achieve efficient and accurate repositioning of

drugs (Kumar et al., 2019). Precision medicine, combined with

drug repositioning, is the most promising direction for the future. In

conclusion, drug repositioning can help to treat more diseases, such

as drug resistance, poor drug selectivity, and limited therapeutic

options.

This study may help some scholars with an initial interest in

drug repositioning-related research to gain a concise and rapid

understanding of the current state of global research, as well as

offer some relevant information to institutions or groups seeking

collaboration.

6 Limitations

It is worth noting that this study has some biases and

limitations. First, there are still some issues with the

publications included in the study based on subject terms: 1)

some relevant publications that do not use the search formula in

this study may have been excluded from this study and 2) there

may also be a small number of articles whose use of some of the

aforementioned search terms deviates significantly from the

general understanding; yet, such publications are included in

this study. Second, some extraneous factors distort the credibility

of the bibliometric statistics. 1) When analyzing the keywords of

publications, some publications are excluded from the statistical

analysis because they do not list author keywords (e.g., (Gordon

et al., 2020)). 2) Excessive self-citation by some authors

(Haghighat and Hayatdavoudi, 2021) inflates the actual level

of interest in the publication. 3) for a publication, when an author

submits more than one institution’s address information,

this publication is counted as research results by each

institution. Finally, in future work, patents from the WOS

database associated with the topic of drug repositioning

will be analyzed to provide another perspective on the

situation of the topic in terms of applications and

technological innovations.
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