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Introduction: The number of glomeruli and glomerulosclerosis evaluated on kidney biopsy slides

constitute standard components of a renal pathology report. Prevailing methods for glomerular assess-

ment remain manual, labor intensive, and nonstandardized. We developed a deep learning framework to

accurately identify and segment glomeruli from digitized images of human kidney biopsies.

Methods: Trichrome-stained images (n¼ 275) from renal biopsies of 171 patients with chronic kidney disease

treated at the Boston Medical Center from 2009 to 2012 were analyzed. A sliding window operation was

defined to crop each original image to smaller images. Each cropped image was then evaluated by at least 3

experts into 3 categories: (i) no glomerulus, (ii) normal or partially sclerosed (NPS) glomerulus, and (iii)

globally sclerosed (GS) glomerulus. This led to identification of 751 unique images representing non-

glomerular regions, 611 images with NPS glomeruli, and 134 images with GS glomeruli. A convolutional

neural network (CNN) was trained with cropped images as inputs and corresponding labels as output. Using

this model, an image processing routine was developed to scan the test images to segment the GS glomeruli.

Results: The CNN model was able to accurately discriminate nonglomerular images from NPS and GS

images (performance on test data: Accuracy: 92.67% � 2.02% and Kappa: 0.8681 � 0.0392). The seg-

mentation model that was based on the CNN multilabel classifier accurately marked the GS glomeruli on

the test data (Matthews correlation coefficient ¼ 0.628).

Conclusion: This work demonstrates the power of deep learning for assessing complex histologic struc-

tures from digitized human kidney biopsies.
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lomerular damage is a common manifestation in a
spectrum of renal diseases that lead to chronic

kidney disease and end-stage renal disease.1 Morpholog-
ical and ultrastructural alterations within the glomeruli
provide invaluable information on the mechanisms of
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renal impairment and facilitate accurate clinical diag-
nosis.1–3 Assessment of this highly relevant structure is
therefore integral to histopathological analysis of kidney
biopsies. A fundamental morphologic parameter in neph-
ropathology is the quantification of normal and abnormal
glomeruli in the light microscopic material. For example,
the number of glomeruli is required for the assessment of
tissue sufficiency in kidney transplant pathology. Also,
histological analysis of glomerular diseases involves care-
ful examination of the entire kidney biopsy slide, and
this includes, in part, identification of all the glomeruli,
assessment of the state of each glomerulus, and integra-
tion of these data with other parameters to pinpoint the
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diagnosis of the glomerular disease.4–7 Although this
multistep process of counting and assessing all the
glomeruli can be handled efficiently at large medical cen-
ters under the supervision of an in-house nephropatholo-
gist, this expertise is not available at all locations across
the globe. In addition, even for the institutions that
have the expert nephropathologist, we need approaches
that can automatically perform some of these tasks in or-
der to assist clinical practice to maximize their efficiency.

Machine learning (ML), a powerful technique that is
increasingly being used in medicine, has the ability to
perform these tasks in an efficient fashion. ML ap-
proaches give computers the ability to integrate
discrete datasets in an agnostic manner to detect pre-
viously indecipherable patterns and generate a disease-
specific fingerprint. ML can leverage many images as
inputs and correlate patterns and features with clinical
outcomes. Building on the advances of ML, scientists
recently have developed so-called “deep learning”
frameworks, such as CNN for object recognition and
classification.8 We have previously leveraged these
self-learning approaches to quantify key renal patho-
logical features, such as fibrosis and associated with
various outcomes of interest.9 We now demonstrate a
framework to automatically identify and segment NPS
glomeruli as well as the glomeruli with GS present
within digitized images of human kidney biopsies.

MATERIALS AND METHODS

Data Collection

Anonymized kidney biopsies were obtained and digi-
tized after approval by the Boston University Medical
Campus’ institutional review board under waiver of
consent (H-26367). Kidney biopsy procedures were
performed on selected patients treated at Boston Med-
ical Center between January 2009 and December 2012
(Table 1). In total, 171 kidney biopsy slides were
available for subsequent imaging. These biopsy
Table 1. Patient and digitized kidney biopsy characteristics used for
this study
Characteristic Value

Number of patients 171

Age, yr, median (range) 52 (19–86)

Male, % 59.6

Patients per race/ethnicity (white, black, Hispanic, other) 46, 79, 24, 22

Body mass index, kg/m2, median (range) 28.94 (15–56.2)

Creatinine, mg/dl, median (range) 2.31 (0.54–13.29)

Estimated glomerular filtration rate, ml/min
per 1.73 m2, median (range)

30 (5–163)

Proteinuria, g/g, median (range) 1.79 (0.03–20.5)

Number of unique images 275

Total number of glomeruli 745

Number of normal or partially sclerosed glomeruli 611

Number of globally sclerosed glomeruli 134
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samples were obtained from adult patients who had a
native or an allograft biopsy, independent of the
indication for the biopsy procedure.9 The criterion for
inclusion was the availability of pathology slides.

Imaging

Biopsy samples were obtained in the form of individual
trichrome-stained slides prepared from formalin-fixed,
paraffin-embedded core-needle biopsy tissue. A selected
core visible on each slide was imaged at �40 magnifica-
tion (indicating a �4 objective and a �10 eyepiece) using
a Nikon Eclipse TE-2000 microscope (Melville, NY;
http://www.bumc.bu.edu/busm/research/cores/). Images
were generated with a special consideration to cover the
entirety of the biopsy sample which resulted in
multiple �40 images per patient. All the images were
manually focused using the NIS-Elements AR software
(Nikon, Tokyo, Japan) that was installed on the computer
connected to the microscope. A total of 275 unique im-
ages (w2 �40 images per patient) were used and the
average size of each image was approximately 2560 �
1920� 3 pixels, corresponding to a field of 2.176� 1.632
mm2, which resulted in a length scale of 0.85 mm/pixel.
These images were then converted to 8-bit
red�green�blue color images in TIFF format.

Glomerular Dataset Generation

Each of the digitized images represent a large portion of
the digitized biopsy (Supplementary Figure S1), and
the information contained within them had to be
filtered to train a glomerular image classifier. Therefore,
we created a dataset that was more amenable for CNN
model training using the sliding window operator. This
operation allowed us to systematically crop the original
images (n ¼ 275) into smaller images of size 300 �
300 � 3 pixels (Figure 1). As a result, we obtained 745
images with glomeruli and 751 images with non-
glomerular regions, each of size 300 � 300 � 3 pixels.
A team of clinical experts comprising 3 nephrologists
and 1 nephropathologist participated in the reviewof the
cropped images. Each image was first independently
reviewed by 2 experts. If there was agreement between
them, then this image was selected for further model
training. If there was disagreement, then a third review
was solicited, and the majority opinion among the 3
experts was considered as final. The experts were in full
agreement with all the 751 nonglomerular images. We
used the definition of NPS and GS glomeruli based on the
guidelines published in D’Agati et al.10 Briefly, the
glomeruli with completely open capillary tufts were
considered normal. The glomeruli with incomplete
obliteration of their tufts were grouped as those with
partial glomerulosclerosis. The glomeruli with complete
obliteration of their entire glomerular tuft and loss of
Kidney International Reports (2019) 4, 955–962
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their architecture and normal shape were considered as
GS. Both normal and NPS glomeruli were grouped
together in one class, and GS glomeruli in another class.
All these images were used for model training. See the
Supplementary Appendix S1 for more details.

Model Training for Glomerular Classification

We used Google’s Inception v3 CNN architecture,
which was pretrained on millions of images with 1000
object classes,11 incorporated minor changes to fine-
Figure 1. Cropped images. The sliding window operator was used to gener
model. The first column (a) contains images with nonglomerular tissue, th
partially sclerosed glomerulus, and the third column (c) contains images w
size 300 � 300 � 3 pixels. Trichrome stain. A single core on the biopsy s

Kidney International Reports (2019) 4, 955–962
tune the framework, and trained it to predict the
presence or absence of a glomerulus within the cropped
trichrome images (Figure 2). Specifically, we removed
the final classification layer from the network and
retrained it with our dataset using the 3 output labels
(no glomerulus, NPS glomerulus, and GS glomerulus).
We then performed fine-tuning of the parameters at all
layers. This procedure, known as transfer learning, is
optimal, given the amount of data available. See the
Supplementary Appendix S1 for more details.
ate different sets of images to train the convolutional neural network
e second column (b) contains images with either a single normal or
ith a single globally sclerosed glomerulus. Each cropped image is of
lide was imaged at original magnification �40.
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Figure 2. Schematic of the deep neural network. Our classification technique is based on leveraging a pretrained convolutional neural network,
which was fine-tuned on our dataset (see Methods). The architecture is reprinted with permission (https://research.googleblog.com/2016/03/
train-your-own-image-classifier-with.html).
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The cropped image dataset was randomly split at the
patient level. Specifically, to capture intra- and inter-
patient variabilities, and to verify whether the CNN
model works well on images and image characteristics
that it has not been trained on, the patient list was
randomly split into 2 parts in a 7:3 ratio (70% training,
30% testing). This resulted in 120 patients in the
training set, and 51 patients in the test set. Cropped
images belonging to each patient on the list were
included in the corresponding dataset (training vs.
testing). Also, for consistency, we repeated the process
of random splitting 4 times. CNN model training and
testing were performed on each split, and average
performance values were recorded.

Data Augmentation

Some of the glomeruli on the biopsy images were
observed on the edges of the tissue sample. When
cropping was performed to capture these cases, a portion
of the cropped region had only the background pixels.
All these images were used as part of the training data,
but they were not in sufficient number to be able to
generate a model that could accurately identify the
glomeruli present on the edges of the biopsy. We
therefore augmented the training data by creating copies
(n ¼ 5) of each image by randomly whitening a small
fraction (¼ 0.2) of the total pixels in the images, resulting
in 6 total images per original cropped image (Figure 3).
See the Supplementary Appendix S1 for more details.

Image Segmentation

Using the CNN model with the best test performance,
we tested an image processing routine to scan the test
images to identify and segment the GS glomeruli
(Figure 4). The sliding window operation was used
again to scan the entire test image of size approximately
2560 � 1920 � 3 pixels in increments of 300 � 300 � 3
pixels. Each cropped image was then processed
through the trained CNN model that predicted if there
was a GS glomerulus. An output of “0” indicated that
the CNN model determined that no glomerulus was
958
present, whereas an output of “2” indicated a GS
glomerulus was detected within that cropped image.
Note that an output of “1” was reserved for identifying
an NPS glomerulus, but this result was not used for
glomerular segmentation. When a GS glomerulus was
detected, the pixel coordinates of the 4 corners of that
image were stored in an array. This process was
repeated as the sliding window operation swept from
one end of the corner to the other, which resulted in
bright patches that corresponded to the areas that were
predicted to contain a GS glomerulus. A heatmap was
generated using these corners. The brightness of the
patch in the heatmap was found to be directly pro-
portional to how confident the model was in terms of
detecting the presence of a GS glomerulus in that area.
Every nonbright region (i.e., area with pixel intensity
close to 0) on the heatmap then represents all the
nonglomerular regions.

Generated heatmaps were processed further to
segment the identified GS glomeruli using a simple
annotation defined as a “green box” surrounding the GS
glomerular region. We performed this task by first
binarizing the image using Otsu’s method.12 Note that the
threshold value for binarization was empirically deter-
mined (¼ 20), after examining several images. Subse-
quently, a distance transform was applied on the
heatmaps, which simply calculated the distance of each
foreground pixel from the nearest background pixel. We
then performed watershed segmentation to separate the
identified “blobs” in the image. The watershed trans-
formation treats the image it operates on like a topo-
graphic map, with the brightness of each pixel
representing its height, and finds the lines that run along
the tops of ridges.13 Finally, a box was automatically
placed by the segmentation algorithm to highlight the
identified GS glomerulus.
Performance Metrics

Datasets for training and testing were divided such that
none of the images belonging to patients in the testing
Kidney International Reports (2019) 4, 955–962
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Figure 3. Whitening transformation used for data augmentation. On
each cropped image with a single glomerulus (a,b) or a non-
glomerular aspect (c,d) of the kidney biopsy, approximately 20% of
the pixels were randomly selected, and a whitening transform was
applied. This process generated images that still contained a major
portion of the original content that represented either the glomerular
or nonglomerular aspects of the kidney biopsy (e–h).

Figure 4. Glomerular segmentation pipeline. The trained convolu-
tional neural network (CNN) model was used in conjunction with the
sliding window operator to scan a test image (a) that was not used
in model training. (b) A heatmap was generated based on how the
CNN model detected the presence of globally sclerosed (GS)
glomeruli. (c) An Otsu binarization operation was attempted on the
heatmap, followed by a distance transform (d) and then watershed
segmentation (e), which resulted in segmentation of 2 distinct GS
glomeruli (f).
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set were available to the model while training. This
implies that the training-testing split was done at the
patient level as opposed to the image level, and the
variability in the test images was not part of the images
that the model was trained on. This strategy allowed us
to systematically evaluate the model performance on
completely new patient data. The random splitting of
the train and test data was performed 4 different times
and model performances on the test data were averaged
across all the runs. The CNN model developed to
perform multilabel classification was evaluated by
computing overall mean accuracy and mean Cohen’s
kappa (k). The segmentation model performance was
Kidney International Reports (2019) 4, 955–962
evaluated by computing overall accuracy, sensitivity,
and specificity on the test data. We also computed F1-
score as a measure of model accuracy that considers
both the precision and recall of a test. We also
959
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computed Matthews correlation coefficient, which is a
balanced measure of quality for dataset classes of
different sizes of a binary classifier.
RESULTS

Patient Population

We examined a patient cohort representative of Bos-
ton’s inner-city population comprising 46% African
American population. Approximately 60% of the pa-
tients were male, approximately 84% had hyperten-
sion, approximately 75% cardiovascular disease, and
approximately 43% had diabetes. Approximately 82%
of patients had chronic kidney disease stage 3 to 5; 6%
had stage 2 chronic kidney disease, and the rest had
stage 1 chronic kidney disease. Approximately 35% of
patients had nephrotic-range proteinuria (>3.5 g/d).
On the basis of varied genetic background and several
comorbidities (described previously), it is worth noting
that the dataset that we generated provides a wide
range of glomerular morphologies, including cases
containing normal glomeruli as well as those that
manifest partial or GS.
Glomerular Classification Model

The sliding window operator with a small stride (20
pixels) generated a large number of cropped images,
and histogram-based thresholding selected many of the
images containing the kidney tissue from the images
that contained only the background (Supplementary
Figure S1). This thresholding method was time-
efficient and it was able to filter more than half of the
cropped images. Using the selected data, binary clas-
sification models, constructed by fine-tuning a well-
known pretrained CNN architecture (Inception V3),11

identified images with a NPS or GS glomerulus with
high accuracy across 4 different train-test splits
(Table 2). Combining random whitening and data
augmentation strategies resulted in better CNN model
performance on the testing data as exemplified by
model accuracy and kappa (Table 2). The CNN model
accuracy on the test data across the 4 training-test
splits ranged from 89.66% to 95.06%. Also, kappa
for these cases ranged from 0.8079 to 0.9111.
Table 2. Convolutional neural network model performance
Whitening factor Augmentation factor Accuracy (%) Cohen’s Kappa (k)

0 0 80.51 � 3.01 0.6569 � 0.0454

5 0 90.27 � 1.62 0.8238 � 0.0293

5 10 92.67 � 2.02 0.8681 � 0.0392

Three different models were developed to understand the effect of random whitening as
well as other data augmentation strategies on the convolutional neural network model
performance. Model performance is shown on test data that was not used for model
training.
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Glomerular Segmentation Model

The glomerular classification model that generated the
best classification performance (Accuracy ¼ 95.06%),
was used for segmenting the glomeruli on the test
images. The image processing routine involving image
binarization, distance transform, and the watershed
method to segment the GS glomeruli performed well on
the test data. Specifically, when the trained CNN model
was processed in the form of a sliding window opera-
tion on the original images, the model scanned through
each region of the image and detected several 300 �
300 � 3 pixel windows as nonglomerular regions
(model specificity ¼ 0.999). The image processing
routine also was able to identify and mark the GS
glomeruli on different test images (model sensitivity ¼
0.558, F1-score ¼ 0.623, Matthew correlation
coefficient ¼ 0.628).
DISCUSSION

Deep learning algorithms are transforming medicine
especially the way by which images and other forms of
data are analyzed to uncover interesting patterns and
facilitate clinical diagnosis and management of patients.14

This is especially the case in the field of digital pathology
whereby we and others are using these powerful tech-
niques to address specific questions in a spectrum of
disease scenarios.9,15–19 For many of these cases, the
clinical workflow is quite similar, that is, a biopsy pro-
cedure is performed to extract a tiny portion of the organ,
which is then subjected to a series of histological staining
processes before the evaluation by a pathologist. In fa-
cilities that are equipped with biopsy slide scanners, the
tissue slides are digitized to generate images, which then
serve as the input data of interest. The deep learning
algorithms can read and process these digital signatures
to extract relevant quantitative information or associate
them with corresponding outputs of interest. Once
trained on a sufficient number of cases, these models can
have the ability to predict on new test cases that the
models have never seen before with remarkable accuracy.
Currently, the process of biopsy digitization is not per-
formed at all the centers and thus is not integrated within
all clinical practices. However, there is a growing interest
in this direction, as the medical community at large is
realizing the enormous potential of such a resource. In
parallel, efforts should be used on analyzing these images
with cutting-edge techniques to extract maximum benefit
for the management of patients. Eventually, this
approach is anticipated to complement the pathologists to
improve their accuracy and workflow.

Assessment of renal pathology slides has several
features worthy of consideration. The biopsy report
methodically deals with all the components of the slide
Kidney International Reports (2019) 4, 955–962
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with different staining, and clinical correlation is
pursued to eventually arrive at a diagnosis. Some of the
features (or descriptors) are objective (number of
glomeruli), whereas others are descriptive (type of
sclerosis). Although the latter item calls on the exper-
tise of a pathologist, the former can be easily auto-
mated. Also, features, such as the location (cellular or
compartmental) and distribution (focal or diffuse or
segmental or global) of the intraglomerular damage,
determine the type of glomerular disease (glomerulo-
nephritis vs. glomerulosclerosis) can be auto-
mated.10,20–29 Availability of digitized images provides
an immense resource that has opened up opportunities
to leverage different tools to improve the analysis of
such descriptors that characterize the disease.

Our CNN model identified the presence of an NPS or
a GS glomerulus with high accuracy even when a small
number of cropped images were used for training (n ¼
1496) (Table 2). It was possible to overcome this limi-
tation with the transfer learning approach. Also, the
process of introducing additional noise/variability us-
ing random whitening and other data augmentation
strategies has shown to limit model overfitting and
increase model generalizability (Table 2). Our image
analysis pipeline processed the heatmaps to complete
the segmentation process that resulted in output images
with highlighted areas of the selected GS glomeruli.
Note that although simple binarization involves
thresholding an image based on a preselected value,
Otsu’s binarization assumes that an image contains 2
classes of pixels, and then searches for a threshold that
minimizes intraclass variance between the classes.12

The watershed transformation treats the image it
operates on like a topographic map, with the brightness
of each point representing its height, and finds the
lines that run along the tops of ridges.13 Ultimately, the
nature and locations of the glomeruli dictated
the performance of the image processing pipeline.

Although the current body of work differentiates
itself from previous studies,30–33 it is also complemen-
tary to them. Integration of these types of studies is
needed to generate a comprehensive platform of
analyzing digitized renal biopsies using ML tech-
niques. For example, Bukowy et al.30 used an ML
technique on approximately 28,000 mouse glomeruli
using the periodic acid-Schiff stain. Although the pe-
riodic acid-Schiff stain is used for the assessment of
basement membrane, the trichrome stain is suited to
evaluate fibrosis and sclerosis. Although the use of
mouse kidney biopsies facilitates analysis on a large
number of glomeruli, it is imperative to examine and
validate ML-based findings on human glomeruli for
meaningful translation. Although the latter is ideal,
there may be limitation on the number of samples.
Kidney International Reports (2019) 4, 955–962
Methods such as transfer learning could be used to
analyze such small datasets without compromising
significantly on the performance of the model. Last, the
cohort used for the current work is ethnically and
racially diverse, which adds to the significance of these
findings.

Our study has the following limitation. Our model was
able to discriminate GS glomeruli from NPS glomeruli.
Although discriminating normal from partially sclerosed
glomeruli also can be helpful, a routinely assessed path-
ologic finding is the percentage of global glomerulo-
sclerosis,32 and we believe our current model can estimate
this value with reasonable accuracy on a digitized kidney
biopsy image. In the future, we plan to develop a model
that can distinguish between normal and partially scle-
rosed glomeruli. This task can be accomplished success-
fully when we have access to a large collection of NPS
and GS glomerular images.

Our paradigm for identifying and segmenting
glomeruli is likely to be useful for the processing of the
pathology slides and can be easily extended to images
generated using other staining protocols. Adoption of
such methods without disturbing the workflow of a
pathologist can expedite the assessment of slides and
serve as a first step toward more comprehensive,
automated analysis. Further validation of the deep
learning framework along with the image processing
operations across different clinical practices and image
datasets is necessary to validate this technique across
the full distribution and spectrum of lesions encoun-
tered in a typical nephropathology service.
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SUPPLEMENTARY MATERIAL

Appendix S1. Glomerular dataset generation, model

training, and data augmentation.

Figure S1. Histogram-based thresholding. A sliding win-

dow operator scanned the entire original image of size

2560 � 1920 � 3 pixels and generated cropped images of
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size 300 � 300 � 3 pixels. For each cropped image, a his-

togram based on pixel intensity was generated (a1 for a

cropped image representing the background and a2 rep-

resenting a portion of the kidney biopsy). These histo-

grams were then reordered according to the bin frequency.

A threshold value of 100 was empirically selected as a

cutoff and median value for the bin frequency was

computed. Images with a median value below the cutoff

were selected as the ones representing the background

(b1), and the ones with a median value above the cutoff

were selected as part of the kidney biopsy (b2).

Supplementary material is linked to the online version of

the paper at www.kireports.org.
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