
 

Open Peer Review

F1000 Faculty Reviews are commissioned from
members of the prestigious  . In orderF1000 Faculty
to make these reviews as comprehensive and
accessible as possible, peer review takes place
before publication; the reviewers are listed below,
but their reports are not formally published.

Any comments on the article can be found at the
end of the article.

REVIEW

Brexanolone, a neurosteroid antidepressant, vindicates the
GABAergic deficit hypothesis of depression and may foster

 resilience [version 1; peer review: 4 approved]
Bernhard Lüscher , Hanns Möhler3,4

Department of Biology and Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802,
USA
Center for Molecular Investigation of Neurological Disorders, The Huck Institutes for the Life Sciences, Pennsylvania State University,
University Park, PA, 16802, USA
Institute of Pharmacology and Neuroscience Center, University of Zurich, Zurich, 8057, Switzerland
Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH), Zurich, 8057, Switzerland

Abstract
The GABAergic deficit hypothesis of depression states that a deficit of
GABAergic transmission in defined neural circuits is causal for depression.
Conversely, an enhancement of GABA transmission, including that
triggered by selective serotonin reuptake inhibitors or ketamine, has
antidepressant effects. Brexanolone, an intravenous formulation of the
endogenous neurosteroid allopregnanolone, showed clinically significant
antidepressant activity in postpartum depression. By allosterically
enhancing GABA  receptor function, the antidepressant activity of
allopregnanolone is attributed to an increase in GABAergic inhibition. In
addition, allopregnanolone may stabilize normal mood by decreasing the
activity of stress-responsive dentate granule cells and thereby sustain
resilience behavior. Therefore, allopregnanolone may augment and extend
its antidepressant activity by fostering resilience. The recent structural
resolution of the neurosteroid binding domain of GABA  receptors will
expedite the development of more selective ligands as a potential new
class of central nervous system drugs.
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Introduction
Major depressive disorder (MDD) represents the most common 
cause of total psychophysiological disability with a worldwide  
lifetime prevalence of 12 to 20% and estimated annual costs to 
the US economy of more than $100 billion1–3. MDD is difficult  
to treat, in part because it is a phenotypically and etiologically 
heterogeneous syndrome4. Accordingly, it is challenging to  
conceive of a single mechanism that could account for most  
forms of this disease and of a treatment that might alleviate  
symptoms in the majority of patients. Indeed, current first-line 
antidepressants that are designed to modulate monoaminergic  
transmitter systems separate from placebo in only about 50%  
of clinical trials5, are effective in fewer than two thirds of  
patients subjected to one or two regimens of treatment6, and act 
with a delay of several weeks to months7. Even among patients 
who respond to these treatments, only a small fraction show  
remission. These features often lead to endless and futile  
pursuits of an effective treatment and illustrate the enormous  
unmet need for better antidepressant therapies. Here, we sum-
marize the GABAergic deficit hypothesis of depression and its  
clinical support by the neurosteroid brexanolone, which largely  
acts by enhancing GABAergic inhibition.

The GABAergic deficit hypothesis of depression
The GABAergic deficit hypothesis of MDD posits that diverse 
defects in GABAergic neural inhibition can causally contribute 
to common phenotypes of MDD and conversely that the  
efficacy of current and future antidepressant therapies depends 
on their ability to restore GABAergic neurotransmission8,9.  
Consistent with this hypothesis, clinical studies over the past 
15 years have provided compelling evidence that MDD is  
associated with diverse defects in GABAergic neurotransmis-
sion. This includes well-replicated findings of reduced brain 
levels of GABA10–12, reduced expression of glutamic acid decar-
boxylase (GAD) as the principal enzyme responsible for GABA 
synthesis by GABAergic interneurons13,14, reduced density or 
function of GABAergic interneurons15–17, and reduced expres-
sion and function of the principal receptors for GABA known as  
GABA

A
 receptors18–20. Together, these changes explain the  

marked functional defects in cortical GABAergic inhibition 
observed in patients with MDD21.

Beyond MDD, GABAergic deficits are also broadly implicated 
in anxiety disorders, which are highly comorbid with MDD22  
but may have distinct developmental origins23. Compared with 
other neuropsychiatric disorders, MDD shows low heritability 
of about 38%24. Even this low heritability remains unexplained 
as attempts to replicate the identification of candidate genes of  
MDD have been failing25,26. Therefore, rather than relying on 
genetic models to explore disease mechanism, pre-clinical  
models of MDD are often based on the notion that chronic 
stress represents a major environmental vulnerability and  
precipitating factor of MDD. Consistent with a causative 
role of stress for MDD, chronic exposure of rodents to stress  
results in diverse behavioral alterations in a direction opposite 
to those induced by antidepressant drug treatment, and antide-
pressant drug treatments prevent or ameliorate the detrimental  
effects of stress in these models27,28. Chronic stress also results 

in reduced production and survival of adult-born hippocampal  
granule cell neurons and these cells are essential for at least 
some of the behavioral actions of antidepressants29. Importantly,  
stress-induced behavioral alterations of rodents are associ-
ated with impairment of GABAergic interneurons, reduced 
expression of GAD and of the vesicular and plasma membrane  
transporters for GABA, and reduced density and function of  
GABAergic synapses30–34. In addition, chronic stress leads to  
marked deficits in the synthesis of endogenous GABA-potentiating 
neurosteroids, as detailed below. Lastly, chronic stress also leads 
to a shift in the chloride reversal potential to more depolarized  
membrane potentials, which renders GABAergic inhibition  
ineffective35,36. In corticotropin-releasing hormone (CRH)  
neurons of the hypothalamus, corresponding stress-induced loss 
of inhibitory drive leads to chronic hypothalamic–pituitary– 
adrenal (HPA) axis activation35. Thus, stress-induced defects 
in GABAergic inhibition are self-perpetuating because they  
exacerbate stress-induced glutamate release and lead to chroni-
cally dysregulated stress axis function. Conversely, mechanisms 
that enhance GABAergic inhibition are predicted to confer stress 
resilience, a process that has been described by the American  
Psychological Association as “adapting well in the face of 
adversity, trauma, tragedy threats or significant sources of 
stress” (American Psychological Association, www.apa.org/ 
helpcenter/road-resilience, last checked April 25, 2019).

Some of the most compelling evidence that defects in GABA  
transmission can causally contribute to stress-induced anxiety-  
and depressive-like symptoms is available from analyses of  
GABA

A
 receptor mutant mice. Knockout mice that were  

rendered heterozygous for the γ2 subunit (γ2+/− mice, lacking one 
of 38 gene alleles that contribute to heteropentameric GABA

A
  

receptors) exhibit anxiety- and depression-related behavior,  
defects in hippocampal neurogenesis, cognitive deficits in  
emotional pattern separation, and chronic HPA axis activation 
that are expected of an animal model of MDD23,37–40. Some of  
these same behavioral defects have been described in mice  
lacking the α2 subunit of GABA

A
 receptors41 or the neurosteroid 

binding site of α2 GABA
A
 receptors42 and in mice with genetically 

reduced GABA synthesis43.

Chronic stress and defects in GABAergic transmission of 
γ2+/− mice further have in common that they result in similar  
homeostatic-like downregulation of ionotropic glutamate receptors  
(AMPA and NMDA receptors) and glutamatergic synaptic trans-
mission (Figure 1)44–46. The anxious and depression-related  
behavior and the functional defects in GABAergic and gluta-
matergic synaptic transmission of γ2+/− mice can be reversed 
for a prolonged period with the rapid-acting antidepressant  
ketamine46 (see below). Such defects in functional neural con-
nectivity and their rescue by antidepressant therapies represent 
functional hallmarks of MDD47,48. Importantly, chronic treatment  
of γ2+/− mice with the norepinephrine (NE) reuptake inhibi-
tor desipramine is able to similarly normalize the behavior of 
γ2+/− mice along with normalization of HPA axis function in  
these mice40. Chronic stress–induced or optogenetic activation of 
NE neurons of the locus coerulus (LC) that project to dopamin-
ergic (DA) neurons in the ventral tegmental area (VTA) mediates 

Page 3 of 13

F1000Research 2019, 8(F1000 Faculty Rev):751 Last updated: 29 MAY 2019

www.apa.org/helpcenter/road-resilience
www.apa.org/helpcenter/road-resilience


resilience to chronic social defeat stress of mice49. In the VTA, LC-
derived NE acts through α1- and β3-adrenergic receptors to induce 
homeostatic alterations of ion channel expression in DA neurons 
that contribute to stress resilience. Accordingly, we speculate that  
hyperexcitability of LC NE neurons in γ2+/− mice facilitates 
the antidepressant action of NE reuptake inhibitors to induce 
slow homeostatic changes in DA neurons that underlie stress  
resilience. Thus, both conventional antidepressants and ketamine 
can act to overcome genetic (that is, hard-wired) defects in 
GABAergic synaptic transmission, albeit by entirely different 
mechanisms. Moreover, directly and deliberately increasing the 
excitability of certain subsets of GABAergic interneurons in  
mice has robust anxiolytic and antidepressant-like behavioral 
and biochemical consequences50. Collectively, these findings 
lend strong support to the GABAergic deficit hypothesis of 
MDD and suggest that certain (but not all) agents that enhance 
GABAergic inhibition may have antidepressant properties8,9.  
For example, benzodiazepines, which act as positive allosteric 
modulators of GABA

A
 receptors and are first-line treatments for 

anxiety disorders, have only limited efficacy as antidepressants51, 
even though they are often used to augment conventional anti-
depressants and to treat comorbidities of MDD, such as anxiety 
and insomnia52–55. Limited antidepressant efficacy of benzodi-
azepines may be due to tolerance, which is thought to involve 

chronic drug-induced degradation of major subsets of GABA
A
  

receptors and corresponding loss of inhibitory synapses56,57. 
However, two negative allosteric modulators of α5-GABA

A
  

receptors—L-655,708 and MRK-016—have been shown to 
exhibit rapid antidepressant-like activity in a chronic stress 
model of rodents44,58. Notably, in contrast to benzodiazepines and  
comparable to ketamine (discussed in the following), these agents 
act by transient disinhibition of neural circuits, which results  
in antidepressant-like activity in the “drug-off” situation.

The antidepressant mechanism of ketamine is unique in that it 
is very rapid and has the clinical benefits observed in the “drug-
off” situation following a single acute dose of the drug. Recent 
progress in understanding of its mechanism has been thoroughly 
reviewed elsewhere59,60 and is only briefly recapitulated here. 
Key aspects of the antidepressant mechanism of ketamine are 
that it involves brief inhibition of GABAergic interneurons61  
followed by a transient surge in glutamate release62 (lasting at 
most 1 hour) that then triggers the release of brain-derived neu-
rotrophic factor (BDNF)63 and a wave of synaptogenesis64. The 
ensuing increase in synapse density, the corresponding restoration 
of neural connectivity, and normalized emotional behavior 
are all observed in the drug-off state and last for several days. 
Notably, ketamine-induced synaptogenesis and antidepressant  

Figure 1. Schematic of chronic stress and GABAergic deficit-induced downregulation of glutamatergic transmission and recovery by 
allopregnanolone. HPA, hypothalamic–pituitary–adrenal; MDD, major depressive disorder.
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behavioral response are drastically enhanced by GABAergic 
deficits, as observed in γ2+/− mice46 and also evident in animals  
exposed to chronic stress65,66, perhaps because neural hyper-
excitability in these models facilitates the ketamine-induced  
glutamate surge and BDNF release. Importantly, restoration of 
glutamatergic synapses in γ2+/− mice is associated with even more 
dramatic formation and pre- and post-synaptic potentiation of 
GABAergic synapses46, which appears to ensure that inhibitory 
and excitatory synaptic transmission remain balanced. Indeed,  
we found no evidence in the literature that ketamine treat-
ment triggers seizures, despite the glutamate surge and evi-
dence of a reduced seizure threshold in patients with MDD67.  
Similar to restoration of glutamatergic synapses, ketamine-
induced strengthening of GABAergic synapses is long-lasting 
and observed in the drug-off situation46 and temporally sepa-
rated from the initial direct action of ketamine at GABAergic 
interneurons mentioned above. Here, we propose that direct and 
potent pharmacological enhancement of GABAergic transmission 
(that is, by allopregnanolone) will act accordingly to transiently  
dampen glutamate release and allow for lasting recovery of 
glutamatergic and GABAergic synaptic transmission beyond  
the end of treatment (Figure 1).

Neurosteroids differentially modulate phasic and 
tonic GABAergic inhibition
Neurosteroids are metabolites of cholesterol-derived steroid  
hormones synthesized in the brain by neurons and astrocytes. 
They act as potent, endogenous, positive allosteric modulators 
of GABA

A
 receptors and include derivatives of progesterone and 

deoxycorticosterone, in particular 3a,5a-tetrahydroprogesterone 
(3α,5α-THP; allopregnanolone), 3α,5β-tetrahydro-progesterone  
(3α,5β-THP; pregnanolone), and 3α,5α tetrahydrodeoxycorticos-
terone (3α,5α-THDOC; allotetrahydro-deoxycorticosterone).

Neurosteroids such as allopregnanolone have little effect on the 
rise time or the amplitude of GABA-induced synaptic currents 
but primarily prolong the decay kinetics of the GABA-
gated ion channel68, which results in an increase of the mean  
channel open time of the GABA-activated chloride channel and 
a prolonged inhibitory post-synaptic current. However, when  
acting on extra-synaptic receptors that are kept tonically active by 
ambient concentrations of GABA, the allopregnanolone-induced  
prolonged decay kinetic results in an increased amplitude of 
the tonic current. In addition to potentiation of GABA

A
 recep-

tor channel function69,70, allopregnanolone and its synthetic 
derivatives may potentiate GABA transmission by promoting 
the cell surface expression of GABA

A
 receptors71. The impact 

on phasic or tonic inhibition can be strikingly different because 
of the type of GABA

A
 receptor subtype involved. The proto-

typic synaptic receptor contains α1, β2/3, and γ2 subunits and 
is sensitive to physiological concentrations of neurosteroids68.  
However, in certain cells, such as dentate gyrus (DG) granule 
cells or cerebellar granule cells, allopregnanolone at low  
concentrations (10–100 nM) selectively enhances tonic inhibition 
with little or no effect on phasic conductance. This appears to 
be due largely to the preponderance of highly neurosteroid- 
sensitive extra-synaptic δ subunit–containing receptors with 
the subunit combinations α4,β3,δ, and α6,β2,3,δ72–74. In addi-
tion, phosphorylation of the β3 subunit by protein kinase C 

appears to promote neurosteroid sensitivity of extra-synaptic 
receptors while limiting that of synaptic receptors75. In some 
neurons, the strict division of GABA

A
 receptors into synaptic 

and extra-synaptic receptors mediating phasic and tonic inhi-
bition, respectively, has become an oversimplification76. The 
therapeutic action of brexanolone (peak steady-state plasma  
concentration of about 150 nM; see below) is likely to comprise  
an enhancement of both phasic and tonic inhibition.

Downregulation of neurosteroids in affective 
disorders
The downregulation of neurosteroid biosynthesis has been 
implicated as a possible contributor to various psychiatric  
conditions, as shown in a number of clinical trials. In patients 
with MDD, allopregnanolone and pregnanolone were decreased 
in cerebrospinal fluid (CSF)77 and in plasma78,79. Plasma  
allopregnanolone was similarly decreased in postpartum “blues”80  
(but see below), post-traumatic stress disorder81,82, schizophre-
nia negative symptomatology83, pain84, and pharmacologically 
induced panic attacks85 but did not reach significance in  
general anxiety disorder86. Conversely, the 3β isomer of allopreg-
nanolone antagonizes GABA

A
 receptor function87 and is increased 

in panic attacks88. Based on studies of postmortem brain, changes  
in the neurosteroid synthesis pathways were also proposed 
to contribute to the pathologies of neurodegenerative and 
inflammatory diseases (Alzheimer’s and Parkinson’s disease  
and multiple sclerosis)89.

Stress-induced behavior linked to downregulation of 
neurosteroids
Because chronic stress is a major risk factor for depression, 
the influence of chronic stress on neurosteroids has become a 
major focus. In striking contrast to acute stress, which increases  
allopregnanolone levels89,90, chronic stress and pharmacological  
induction of panic attacks84 result in reduced levels of neu-
rosteroids. In animal models of chronic stress, the concentra-
tion of allopregnanolone was decreased in serum91–93 and in 
selected corticolimbic brain areas94. This decrease was attributed 
to stress-induced downregulation of the 5α-hydroxysteroid- 
dehydrogenase, the rate-limiting enzyme in the synthesis of  
allopregnanolone92,95,96. Moreover, the stress-induced reduction 
of allopregnanolone was associated with heightened depressive/
anxiety-like behavioral phenotypes, increased fear and aggres-
sion behavior, dysregulation of the HPA axis92,94,97, and impaired  
adult hippocampal neurogenesis98,99.

Allopregnanolone ameliorates anxiety- and 
depression-related behavior
Administration of allopregnanolone either before or after a 
period of chronic stress was able to alleviate the symptoms of 
depressive/anxiety behavior, prevent or normalize HPA axis 
dysfunction, and restore neurogenesis and cognitive deficits in  
transgenic mouse models of Alzheimer’s disease99–101. Furthermore, 
allopregnanolone and pregnanolone produced anxiolytic-like  
effects in various animal models of anxiety102. Micro-infusion 
of allopregnanolone identified the amygdala as being relevant 
for anxiolysis103 and both the hippocampus and amygdala for 
overcoming learned helplessness104. These results support a role 
of allopregnanolone in ameliorating symptoms of depression  
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and anxiety and thereby support the view that a pathological deficit 
of GABAergic transmission contributes to these disorders8,9,105.

Classic antidepressants normalize neurosteroid 
levels in depression
With allopregnanolone being able to overcome depressive-
like behavior, the question arose whether classic antidepressant  
drugs would act via an enhancement of neurosteroid levels. In  
animal models of depression, multiple antidepressants (fluox-
etine, fluvoxamine, sertraline, desipramine, venlafaxine, and  
paroxetine) normalized corticolimbic levels of allopregnanolone 
concomitant with reduced anxiety-like, fear, and aggression 
behavior83,92,106,107. This effect, as shown for selective serotonin 
reuptake inhibitors (SSRIs), was independent of their ability to 
inhibit serotonin reuptake108–110 and in the case of fluoxetine is 
thought to involve inhibition of a microsomal dehydrogenase  
that oxidizes allopregnanolone to 5α-dihydroprogesterone111.

These findings gave reason to test whether the clinical effective-
ness of SSRIs was linked to normalizing the allopregnanolone 
level. Indeed, in patients with unipolar depression, the decreased 
allopregnanolone level, measured in CSF, was normalized after 
8 to 10 weeks of treatment with fluoxetine or fluvoxamine and 
correlated with an improved symptomatology77. This finding 
was extended to a range of antidepressants (SSRIs and tricyclic 
antidepressants), which normalized plasma allopregnanolone 
levels concomitant with an improvement of depression109. A  
normalization of plasma allopregnanolone and pregnenolone was 
also seen following 3 weeks of mirtazapine treatment in patients 
with major depression79. Notably, the mirtazapine-induced maxi-
mal increases in these neurosteroids preceded their maximal 
clinical effects by about 2 weeks, suggesting that they are part 
of the pharmacological response mechanism rather than a  
subsequent measure of clinical improvement. These pre-clinical  
and clinical findings support the view that the neurosteroidog-
enic action of SSRIs may constitute a major part of their  
therapeutic effectiveness in patients with depressive disorders.

Postpartum risk of depression
Postpartum depression (PPD) is an important public health issue 
as it affects women at a highly vulnerable time and can affect 
the cognitive and emotional development of the child112. The 
risk of depression in women becomes significantly increased 
during the postpartum period, and nearly 20% of mothers have 
PPD, which is frequently preceded by antenatal anxiety- and 
depression-related symptoms or chronic stress as the strongest  
predictors113–115. PPD is frequently attributed to a maladapta-
tion to peripartum fluctuations in reproductive hormone lev-
els during pregnancy and the postpartum period116,117. Plasma  
allopregnanolone concentrations rise in parallel with progester-
one throughout pregnancy, reaching the highest level in the third  
trimester and decreasing abruptly after childbirth80.

Nevertheless, peripartum changes in gonadal hormones affect 
the emotional brain in vulnerable women. PPD was character-
ized by abnormal activation of the same brain regions implicated 
in non-puerperal major depression118. The resting-state func-
tional connectivity within corticolimbic regions implicated in 
depression was attenuated compared with healthy postpartum 
women114. Similarly, emotionally normal (euthymic) women 

with a history of PPD showed stronger signs of depression 
than controls in tests of withdrawal from supra-physiological  
gonadal steroid levels119. Additional factors that have been  
implicated in the pathophysiology of PPD include the lac-
togenic hormones oxytocin and prolactin, thyroid function, and a  
hyperactivity of the HPA axis117. As outlined below, the poten-
tial importance of GABA

A
 receptor plasticity in PPD has  

been derived largely from animal studies120.

Animal models of postpartum depression and 
GABAergic impact
Rodent models suggest that both phasic and tonic GABAergic 
inhibition in the brain are decreased during pregnancy in parallel 
with a decrease in GABA

A
 receptor expression as shown for the 

GABA
A
 receptor γ2 and δ subunit in mouse and rat hippocampus121.  

Within days after parturition, GABAergic transmission and 
the level of GABA

A
 receptor expression rebound to control  

levels121,122. This fluctuation in receptor expression is consid-
ered to be a homeostatic response to the elevated levels of preg-
nenolone and allopregnanolone in plasma and brain during 
rodent pregnancy and their rapid return to control levels  
postpartum122,123.

A transgenic animal model of PPD supports the view that the 
pathophysiology of PPD may be related to a deficit of GABA

A
 

receptor plasticity. Mice that lacked the GABA
A
 receptor δ sub-

unit partly or fully (Gabrd+/− and Gabrd−/−) exhibited PPD-like 
behavior (reduced latency to immobility in the Porsolt forced 
swim test and reduced sucrose preference) and abnormal maternal 
behavior (reduced nesting behavior and pup care)121. Remarkably,  
the mice were behaviorally unremarkable until an animal was 
exposed to pregnancy and the postpartum state. Thus, repro-
ductive events unmask the genetic susceptibility to affective 
dysregulation. The abnormal postpartum behavior in Gabrd+/− 
mice was ameliorated by THIP, a GABA analogue with prefer-
ential affinity to GABA

A
 receptors containing the δ subunit121  

and the neuroactive steroid SGE-516115.

Another animal model suggests that the dysregulation of the 
HPA axis is sufficient to induce abnormal postpartum behavior115.  
CRH neurons in the paraventricular nucleus (PVN) of the  
hypothalamus govern the HPA axis and are critical for mounting 
the physiological response to stress. Chemogenetic activation 
of CRH neurons in the PVN was sufficient to induce abnormal 
postpartum behavior. Similarly, when GABAergic currents 
were reduced selectively in CRH neurons (KCC2/Crh mice), a 
depression-related phenotype and a deficit in maternal behavior 
were apparent in the postpartum period. In wild-type mice, the 
stress-induced activation of the HPA axis and the correspond-
ing elevation of circulating corticosterone are normally blunted  
during pregnancy and postpartum124. The inability to blunt this 
stress-induced HPA axis activation in this model is thought 
to contribute to PPD. The neuroactive steroid SGE-516 amel-
iorated the behavioral deficits caused by the dysregulation  
of the HPA axis115.

Brexanolone in the treatment of postpartum 
depression
In line with the evidence described above, brexanolone, an intra-
venous formulation of allopregnanolone, underwent clinical 
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tests to treat PPD. In a double-blind, randomized, placebo- 
controlled phase II trial, female in-patients with PPD (n = 21) 
received a 60-hour continuous infusion of brexanolone at a  
dose of up to 60 μg/kg per hour or placebo. Women who 
received treatment, in comparison with those who received pla-
cebo, had a significant and clinically meaningful reduction in 
mean total score on the 17-item HAMILTON Rating Scale for  
Depression (HAM-D) at the 60-hour time point125. In a subse-
quent phase III study with 246 patients, performed in two parts 
using the same design but two doses of drug, the HAM-D score 
was again significantly and clinically meaningfully decreased. 
The HAM-D total score mean reductions versus placebo  
were −5.5 and −3.7 points for the high and low dose, respec-
tively (90 and 60 μg/kg per hour), and dizziness and somno-
lence were potential side effects126. Notably, brexanolone is 
very rapidly cleared from plasma, which explains the need for 
continuous drug infusion127. The higher dose explored above  
(90 μg/kg per hour) results in peak steady-state plasma  
concentrations of allopregnanolone (50 ng/mL) equivalent to 
those naturally reached in the third trimester of pregnancy128.  
The antidepressant drug effect was shown to become signifi-
cant within 48 hours of drug infusion for both doses. Moreover,  
the mean reduction in HAM-D total scores observed for the 
high-dose treatment at the end of the study (day 30) was simi-
lar in magnitude to that observed at the end of the 60-hour  
infusion. Thus, in the context of PPD, brexanolone showed 
a rapid mode of action that is reminiscent of that of  
ketamine in MDD and appears to result in durable clinical 
improvement (Figure 1). Brexanolone was very recently approved  
for the treatment of PPD129.

Although a decrease in serum allopregnanolone (but not pro-
gesterone) was reported in one study in women with postpar-
tum “blues”80, there is no consistent evidence of abnormal 
basal circulating levels of allopregnanolone in PPD114,116,117,130.  
With allopregnanolone levels being normal, the antidepres-
sant action of brexanolone is attributed to an enhancement of 
GABA

A
 receptor function, thereby supporting the GABAergic 

deficit hypothesis of depression. In addition, emerging evidence 
suggests that allopregnanolone has anti-inflammatory effects 
in vitro, a property that could contribute to its antidepressant 
activity in vivo78. The antidepressant properties of brexanolone  
in PPD may be applicable to other forms of depression that 
are less clearly linked to altered neurosteroid physiology and 
that may be associated with defects in phasic rather than tonic 
GABAergic inhibition113,114,118. Indeed, emerging evidence  
suggests that the anxiolytic effects of endogenous neuroster-
oids (even at their natural physiological concentrations) are 
mediated in part by α2 subunit–containing synaptic GABA

A
  

receptors42. Moreover, a synthetic derivative of allopregnanolone 
(zuranolone, SAGE-217) is currently in phase 3 clinical devel-
opment for PPD and MDD131. Notably, potentiation of GABA 
transmission by brexanolone and potentially also zuranolone, 
unlike SSRIs that exhibit therapeutic delays of weeks or 
months, confers rapid and lasting antidepressant effects that are 
observed in the drug-off situation, reminiscent of mechanisms of  
ketamine. Interestingly, since allopregnanolone promotes  
proliferation of progenitor cells and restores neurogenesis in  

disease states99–101,132, it may also support neurogenesis-dependent 
resilience behavior, as outlined below.

Resilience due to changes in neural circuits
Studies of stress resilience have opened up a fundamentally new 
way of understanding an individual’s response to adverse life 
events such as trauma, tragedy, and chronic stress and its abil-
ity to avoid deleterious behavioral changes such as anxiety  
disorders, post-traumatic stress disorder, or depression. Although 
resilience, as defined in humans, is difficult to relate to animal 
studies, animal models are indispensable in the search for bio-
logical determinants of resilience (that is, protective changes 
that occur in resilient animals). This is all the more impor-
tant as mechanisms that promote resilience to stress hold  
the promise of enabling the development of more efficacious  
antidepressant therapies.

After chronic social defeat stress, about 40% of the stressed 
mice do not exhibit social avoidance or anhedonia in subsequent  
testing133,134. This is interpreted as resilience behavior and is  
associated with many distinct changes, particularly in the brain’s 
reward regions133–135. These changes include homeostatic adap-
tations of dopamine neurons in the VTA that prevent chronic 
stress–induced aberrant hyperexcitability of these cells49,136,137,  
the induction of immediate early gene products in the medial 
prefrontal cortex (mPFC)138, the sustainment of GABAergic 
inhibition and reduction of excitatory activity in the nucleus  
accumbens139, the prevention of spine density loss in the mPFC 
and hippocampus140, and epigenetic genomic changes that promote 
resilience in later life because of greater maternal care141,142.

Adult neurogenesis linked to resilience via 
GABAergic inhibition
More recently, adult neurogenesis in the DG of the hippocam-
pus has been implicated in conferring resilience to the detri-
mental depressive-like consequences of chronic stress exposure 
of mice143. Chemogenetic inhibition of immature adult-born 
neurons in ventral DG (vDG) in vivo promoted susceptibility 
to social defeat stress. In contrast, increasing neurogenesis by 
inducible deletion of the proapoptotic gene Bax (iBax mice)  
selectively from adult neural progenitor cells conferred resil-
ience to chronic stress as measured by the time spent socially 
interacting with a novel mouse and the time spent exploring 
the center in an open field. On the cellular level, a subset of 
mature DG cells was identified as stress-responsive cells that  
were active preferentially during attack (17% of cells on 
defeat day 1 to 34% of cells on defeat day 10). The activity 
of the stress-responsive mature cells was decreased when  
neurogenesis was increased. Thus, immature adult-born gran-
ule cells inhibit mature stress-responsive granule cells in the  
vDG, which protects the animals from chronic stress–induced 
depressive and anxiety-like consequences. The inhibition of 
mature granule cells by immature adult-born cells is likely to 
involve activation of hilar GABAergic interneurons that are 
known to confer a strong inhibitory influence on mature granule  
cells144. Neurosteroids are predestined to inhibit DG granule cells 
because of their high level of expression of δ subunit–containing 
GABA

A
 receptors, which are highly neurosteroid-sensitive68,72–74.
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The finding that GABAergic interneuron activity can support 
resilience may give rise to a potential GABAergic hypothesis  
of resilience, which conceivably is independent of the prerequi-
site of adult neurogenesis. Decreased GABAergic interneuron 
activity would be expected to reduce resilience behavior whereas 
enhancing GABAergic transmission would sustain it. The  
neurosteroid allopregnanolone appears to be a case in point. Its 
clinical effectiveness as an antidepressant in treating PPD might  
be supported, at least in part, by its ability to foster resilience.

Outlook
The demonstration of the clinical effectiveness of allopregna-
nolone in PPD lends new support to the GABAergic deficit 
hypothesis of MDD. This finding bodes well for further inves-
tigations of ligands for the neurosteroid site as a new class of 
drugs for affective disorders. To achieve this goal, a differen-
tiation of GABA

A
 receptors beyond that achieved by allopregna-

nolone is required. The recent molecular x-ray resolution of the  

neurosteroid binding domain is an essential step forward. In chi-
meric homopentameric GABA

A
 receptor constructs, the neuros-

teroid THDOC was bound at the bottom of the transmembrane 
domain across each of the subunit interfaces145–147 and similar find-
ings are expected for heteropentameric GABA

A
 receptors145,148. 

These studies provide a structural framework for the develop-
ment of more selective ligands acting at the neurosteroid site 
for the treatment of affective disorders, including PPD and  
MDD, but also pain and epilepsy.
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