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ABSTRACT

Numerous cellular factors belonging to the DNA
repair machineries, including RAD18, RAD52, XPB
and XPD, have been described to counteract
human immunodeficiency virus type 1 (HIV-1) repli-
cation. Recently, Uracil DNA glycosylase 2 (UNG2),
a major determinant of the uracil base excision
repair pathway, was shown to undergo rapid
proteasome-dependent degradation following HIV-
1 infection. However, the specific role of intracellular
UNG2 depletion during the course of HIV-1 infection
is not clearly understood. Our study shows for the
first time that overexpression of UNG2 inhibits HIV-
1 replication. We demonstrate that this viral inhibi-
tion is correlated with a marked decrease in
transcription efficiency as shown by monitoring
HIV-1 LTR promoter activity and quantification of
HIV-1 RNA levels. Interestingly, UNG2 inhibits LTR
activity when stimulated by Tat transactivator or
TNFa, while barely affected using Phorbol ester acti-
vation. Mutational analysis of UNG2 indicates that
antiviral activity may require the integrity of the
UNG2 catalytic domain. Altogether, our data
indicate that UNG2 is likely to represent a new host
defense factor specifically counteracted by HIV-1
Vpr. The molecular mechanisms involved in the
UNG2 antiviral activity still remain elusive but may
rely on the sequestration of specific cellular
factor(s) critical for viral transcription.

INTRODUCTION

Multiple cellular DNA repair enzymes have been described
as potential cellular cofactors required for human

immunodeficiency virus type 1 (HIV-1) integration. These
cofactors include components of the base excision repair
(BER), the homologous recombination (HR) and the non-
homologous end joining DNA repair pathways (1). In
contrast, multiple DNA repair components have also
been shown to counteract HIV-1 replication. For instance,
RAD18, a cellular protein implicated in post-replication
DNA repair, decreases the susceptibility of target cells to
MLV and HIV-1 infection, probably by targeting the
incoming viral DNA (2). The HR molecule RAD52 has
also been shown to reduce retroviral infection by
competing with active integration complexes (3). Finally,
the human TFIIH complex proteins XPB and XPD, two
DNA helicases with opposite polarity, play a critical role
in the degradation of the retroviral DNA (4). To establish
a productive infection, HIV-1 must be able to overcome
these cellular DNA damage response machineries.

In this report, we investigated the role of the human
Uracil DNA glycosylase 2 (UNG2) in the HIV-1 life
cycle. Nuclear UNG2 and mitochondrial UNG1
isoforms are DNA repair enzymes that act in removing
uracil bases from the sugar backbone of genomic and
mitochondrial DNA respectively, leaving abasic sites and
initiating the uracil BER pathway (5). Particularly, UNG2
activity is crucial for rapid removal of dUMP residues
incorporated during genomic DNA replication (6).
During HIV-1 infection, UNG2 was initially reported to
be specifically packaged into virions via direct interaction
with the viral integrase (IN) (7,8) or the Vpr regulatory
protein (9). When packaged into HIV-1 particles, UNG2
was described to be essential for efficient viral replica-
tion by preventing dUMP misincorporation into the
nascent viral DNA during the reverse transcription step
(10,11). This role was proposed to be specific for HIV-1
since neither the related HIV-2 nor SIV retroviruses
were found able to incorporate UNG2 into cell free
particles (12). However, the contribution of UNG2 in
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the HIV-1 life cycle is highly debated. A recent report
suggested that virion-associated UNG2 is dispensable
for an efficient HIV-1 replication (13). Moreover, in the
context of HIV-1 infected cells, UNG2 complexes with
HIV-1 Vpr (14). This UNG2-Vpr interaction was
recently shown to trigger the degradation of UNG2 in a
proteasome-dependent manner through the specific
recruitment of the damage-specific DNA-binding protein
1 (DDB1) by HIV-1 Vpr (15,16).

In this context, the aim of our study was to decipher
the complex relationship that exists between UNG2 and
HIV-1. First, we show that UNG2 overexpression inhibits
HIV-1 RNA synthesis and viral particles production.
Furthermore, we determine that depletion of endogenous
UNG2, following RNA interference, promotes Tat-
mediated activation of HIV-1 LTR promoter. UNG2
overexpression also inhibits TNFa-induced HIV-1 tran-
scription but barely affects PMA-induced-LTR activation.
Mutation of residues Q153D154 in UNG2 catalytic domain
altered UNG2 anti-transcriptional activity. Testing
UNG2 effects on a vast variety of promoters from
cellular or viral origin put in evidence that UNG2
harbors a wide anti-transcriptional effect, suggesting that
this activity may rely on the inhibition of cellular factor(s)
critical for transcriptional regulation of multiple cellular
and viral genes. Altogether, these data show for the first
time that UNG2 harbors an antiviral activity. In addition,
we do confirm that endogenous UNG2 is degraded in the
presence of HIV-1 Vpr but is barely affected in cells
infected with the related HIV-2 retrovirus. Therefore,
these results support the hypothesis that the Vpr-
mediated degradation of UNG2 may specifically protect
HIV-1 from a negative regulatory effect of UNG2 on viral
transcription.

MATERIALS AND METHODS

Reagents and antibodies

The following antibodies were used: rabbit polyclonal
anti-UNG2 clone PU059 (17) (from Geir Slupphaug,
Trondheim, Norway); this antibody cross reacts with
human UNG1 (31 kDa), UNG2 (37 kDa) and
phosphorylated isoforms of UNG2 (38–40 kDa); mouse
monoclonal (mAb) anti-actin (C4, MP Biomedicals,
France); mouse mAb anti-p24 ab9069 (Abcam, France);
goat polyclonal anti-p24 (AbD serotec, France); Alexa
fluor-594 F(ab’)2 fragment of goat anti-rabbit IgG and
Alexa fluor-488 F(ab’)2 fragment of goat anti-mouse
IgG (Invitrogen, France). PMA and TNF-a were
obtained from Sigma-Aldrich (France).

Plasmids

The following plasmids encoding for viral molecular
clones were used: pNLAD8, pNL4.3, pNL4.3-VprW54G,
pNL4.3-INLK172/173AA (from J. Sire, Marseille, France),
pNL4.3�Vpr (from W.C. Greene, San Francisco, USA)
and pROD10 (from K. Peden, Bethesda, USA).
pUNG2-EGFP-N1 (here termed pUNG2-GFP) has been
obtained from Geir Slupphaug. pcDNA3.1-UNG2 (here
termed pUNG2) and the UNG2 catalytic mutant

QD153-154LE were from J. Sire. pAS1B-Vpr was from
Serge Bénichou (Paris, France). The pC53SN3,
pG13PY-Luc, pcDNA-c-Jun and the pCollagenase-Luc
plasmids have been kindly provided by Jean-Michel
Mesnard (Montpellier, France).

Cell culture

Immortalized CEM T cells were maintained in
RPMI 1640 medium. HEK 293T, MAGIC-5B (from
M. Tatsumi, Tokyo, Japan) and Hela-LTRHIV-1-Luc
cells (from S. Emiliani, Paris, France) were maintained
in DMEM medium. Complete media were supplemented
with penicillin-streptomycin and 10% heat-inactivated
fetal bovine serum (FBS) (Cambrex, France).

Viral stocks production

Viral stocks were produced by calcium phosphate
transfection of HEK 293T cells. Briefly, cells were
transfected with the proviral DNA constructs for 8 h,
washed with pre-warmed DMEM-10% SVF medium.
For VSV-G pseudotyped HIV-1 production, the proviral
DNA was cotransfected with pHEF-VSV-G as previously
described (18). Viral supernatants were collected 48 h post-
transfection, filtered and frozen in aliquots at –80�C.
Viral stocks were titered using either an HIV-1 p24
Enzyme-linked immunosorbent assay (ELISA) kit
(Beckman Coulter, France) or a reverse transcriptase
(RT) assay as previously described (19).

Enzymatic assays

Plasmid transfections into Hela-LTRHIV-1-Luc and
MAGIC-5B cells were carried out using cationic
polymer (JetPei, Polyplus, France). Two days post-
transfection or infection, cell extracts of Hela-LTRHIV-1

-Luc were analyzed for luciferase (Luc) activity according
to the manufacturer’s protocol (Yelen Corp., France).
Cell extracts from MAGIC-5B cells were analyzed for
b-galactosidase (b-Gal) activity, used as an index of
HIV-1 LTR activity. Reporter activities were normalized
to total protein contents.

Fluorescence microscopy

Infected MAGIC-5B cells were fixed in 3.7% para-
formaldehyde for 10min, washed, permeabilized with
0.1% triton X-100 for 20min. Then, cells were incubated
with mouse anti-p24 (1/300) and rabbit anti-UNG1/2
primary antibodies (1/300), washed, and incubated with
Alexa-Fluor conjugated secondary antibodies (1/1000).
Cells were mounted onto glass slides covered with anti-
fade medium (Hardset Vectashield, Clinisciences, France).
Two-color images were obtained with a light microscope,
Leica DC250 (Leica, France) with a Plan Apo 63� /
1.32-0.6 oil-immersion objective lens. Digital images
were processed with Adobe Photoshop.

Reverse transcription-quantitative PCR experiments

Quantification of viral genomic RNA was assessed by
amplifying a 235-bp fragment from the HIV-1 gag gene
(20) and quantification of LTR-luciferase mRNA was
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assessed by amplifying a 145-bp fragment from the
promoter-proximal region (21). Briefly, total cellular
RNA was extracted with Tri-Reagent (Sigma, France).
Oligo(dT) was used as RT-primer and subsequent qPCR
was conducted with a SYBR Green Kit (Roche, France)
on the RotorGene system (Labgene, France). A standard
curve was generated from 50 to 500 000 copies of pNL4.3
plasmid. Each assay was accompanied by controls without
reverse transcriptase (DNA contamination levels < 1% of
HIV-1 RNA). The copy numbers of HIV-1 genomic RNA
or LTR-luciferase mRNA were normalized to that of the
GAPDH mRNA quantified in parallel as endogenous
control.

Western blot experiments and analysis

Proteins were separated by SDS–PAGE with 12% gels,
transferred to a nitrocellulose membrane (Millipore,
france) and immunoblotted with the appropriate primary
and horseradish peroxidase–conjugated secondary anti-
bodies (Immunotech, France). Autoradiographic films
were scanned and quantified using Image J (NIH)
software.

Stealth RNAi transfection

The Stealth RNAi sequence duplexes directed against
UNG2 are as follows: sense, 50-CGCGUUCGCUGCCU
CCUCAGCUCCA-30 and antisense, 50-UGGAGCUGA
GGAGGCAGCGAACGCG-30. This target sequence
corresponds to the 50 untranslated region of UNG2
mRNA (positions 44–68 according to NM_080911
entry). As a negative control, we used the Stealth RNAi
negative control duplexes with high GC content (from
Invitrogen, France). Stealth RNAi duplexes (20 mM)
were transfected using Lipofectamine 2000 following man-
ufacturer’s instructions (Invitrogen). To obtain optimal
conditions for endogenous UNG2 expression, cells were
maintained at low density during the entire experiment.
Forty-eight hours after transfection, cells were harvested
and cell lysates were analyzed for their content in b-Gal
activity used as an index of HIV-1 LTR activity.

RESULTS

Different capacity to inhibit intracellular UNG2
expression between HIV-1 and HIV-2

Conflicting results have been reported in the literature, on
the fate of UNG2 following HIV-1 expression, raising
either its possible incorporation into viral particles (8),
or its targeting to the proteasome in cells expressing
the Vpr accessory HIV-1 protein (15,16). Hence, we
reexamined the expression of endogenous UNG2 in cells
infected with HIV-1. Immunofluorescence experiments
were performed with HIV-1-infected MAGIC-5B cells
dually stained with antibodies raised against UNG1/2
and HIV-1 p24 antigen. As shown in Figure 1A, both
mitochondrial UNG1 and nuclear UNG2 isoforms
are recognized by anti-UNG antibody. Interestingly,
endogenous UNG2 is highly expressed in the nucleus of
p24-negative cells (left of the picture). In contrast, UNG2

is barely detected in HIV-1 positive cells (right of the
picture), while UNG1 remains detectable into the cyto-
plasm of these cells.

We confirm these data using immunoblotting
experiments of HIV-1-infected CEM T cells (Figure 1B).
Increasing expression of HIV-1 p24 antigen was observed
from total cell lysates at Days 1 and 2 post-infection.
Concomitantly, expression of UNG2, detected as a 37
kDa, protein, was found decreased by 66 and 91% at
Days 1 and 2 post-infection, respectively, as compared
with basal expression level determined from uninfected
cells. The UNG1 isoform was simultaneously detected
from the same immunoblotting experiment as a 31 kDa
protein. No significant variation of UNG1 levels was
observed when uninfected and HIV-1-infected samples
were compared (Figure 1B).

The present analysis was further extended to the study
of HIV-2ROD, a close relative to HIV-1 that was previously
reported unable to package UNG2, suggesting major
differences between these related lentiviruses (12). Hence,
we investigated whether endogenous UNG2 expression is
affected in HIV-2-infected CEM cells. As shown in Figure
1B, UNG2 expression was found slightly decreased at Day
1 post-infection and was maintained around 60% at Day 2
post-infection. No significant variation in expression
levels of UNG1 was observed in HIV-2-infected cells.
Altogether these data indicate that the pool of cellular
UNG2, but not UNG1, is strongly depleted following
HIV-1 infection. In contrast, HIV-2 strain barely affects
expression of endogenous UNG2, indicating that UNG2
depletion in infected cells is variable depending on the
HIV strain.

Depletion of endogenous UNG2 is proteasome dependent
and requires a direct interaction with Vpr but not
with Integrase

UNG2 has been found to specifically interact with the Vpr
accessory protein (14) and the IN domain of HIV-1 Gag-
Pol precursor (8). Therefore, we investigated the contribu-
tion of both Vpr and IN proteins in UNG2 depletion
observed in infected cells. When CEM cells are infected
with HIV-1 deleted for the Vpr gene (�Vpr) and processed
for immunoblotting experiments, UNG2 is detected at
levels comparable to those detected in uninfected cells
(Figure 1C). In similar conditions, HIV-1 expressing
VprW54G, a Vpr mutant deficient for UNG2 binding
(22), induces an intermediate phenotype corresponding
to the partial depletion of endogenous UNG2. In these
cells, UNG2 expression levels persist on average at 27%
compared with uninfected control cells. In addition, we
found that endogenous UNG2 is fully depleted in cells
infected with HIV-1 coding for a LK172-173AA
Integrase mutant, that was reported to abolish incorpora-
tion of UNG2 into HIV-1 particles (23) (Figure 1C).
Altogether, our data indicate that in HIV-1 infected T
cells, interaction of Vpr with UNG2 is required to
induce the depletion of the intracellular pool of UNG2.
In contrast, the direct recruitment of UNG2 by IN is dis-
pensable for UNG2 depletion.
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We further extended these observations by analyzing
the role of a proteasome-dependent process in UNG2
depletion (Supplementary Figure 1). We show that Vpr
expression strongly decreases the intracellular expression
level of UNG2 fused to the GFP protein (UNG2-GFP)
(24) in a dose-dependent manner. When cells are main-
tained in the presence of MG132, a specific proteasome
inhibitor, UNG2-GFP levels were strongly restored in
cells co-transfected with a Vpr expression vector. These
data confirm that Vpr-directed depletion of cellular
UNG2 is mainly mediated by the proteasome as initially
reported by Schröfelbauer et al. (15,16).

UNG2 overexpression inhibits HIV-1 particles production

The cellular APOBEC3G cytidine deaminase was
previously identified as an innate immune factor against
retroviral infection (25). Concomitantly, the HIV-1 Vif
protein was reported to counteract this antiviral activity
by targeting APOBEC3G to the proteasome (26). In light
of this recent description, we speculate that the depletion
of intracellular UNG2 observed in presence of Vpr could
represent a mechanism of protection against an antiviral
activity harbored by UNG2. To study this hypothesis, we
evaluated the production level of Vpr deficient HIV-1
particles in presence of UNG2. 293T cells were transfected
with an HIV-1 proviral DNA lacking the Vpr coding
sequence (pNL4.3�Vpr) and either the pGFP or the
pUNG2-GFP vectors that direct expression of GFP or
UNG2-GFP, respectively. As shown in Figure 2A, we
observed a strong decrease in the amount of viral particles
released in the culture supernatants of UNG2-GFP

positive cells, as measured by HIV-1 p24 ELISA. We
have also determined, using immunoblotting experiments,
that intracellular p24 expression levels are dramatically
reduced in cells cotransfected with pNL4.3�Vpr and
increasing amounts of pUNG2 expression vector
(Figure 2B). DNA repair mechanisms and cell cycle
control are intimately linked (27). Therefore, we
excluded any effect of UNG2 transfection on the
cell cycle progress that could explain the antiviral
activity using propidium iodide labeling experiments
(Supplementary Figure 2).

UNG2 exerts its antiviral activity at the transcriptional
level

Next, we hypothesized that inhibition of HIV-1 expres-
sion observed in presence of UNG2 could result from a
decrease in viral gene transcription. Thus, we designed a
Reverse transcription-quantitative PCR (RT-QPCR)
assay to monitor the level of intracellular full length
HIV-1 transcripts produced in infected cells over-
expressing or not UNG2 (20). As shown in Figure 2C,
when values are normalized to GAPDH mRNA levels,
UNG2 overexpression reduces HIV-1 RNA levels in a
dose dependent manner (for copy number data, see
Supplementary Figure 3A). A 3-fold decrease in HIV-1
genomic RNA levels was observed when a 1 : 8
pNL4.3�Vpr:UNG2 ratio was used. Interestingly, such
modulation at the RNA level may account for the
10-fold inhibition of viral particles production
observed in Figure 2A. Indeed, this observation is rem-
iniscent of previously published data indicating that a

Figure 1. Endogenous UNG2 expression profile in HIV-infected cells. (A) Immunofluorescence of 5� 104 MAGIC-5B cells infected with
HIV-1NLAD8 (100 ng/ml of Gag p24) for 48 h. After fixation and permeabilization, cells are labeled for HIV-1 p24 antigen (Green) and mitochondrial
UNG1 and nuclear UNG2 (Red). Scale bar, 20 mm (B) Cell lysates of immortalized CEM T cells (2� 106) infected with HIV-1NL4.3 or HIV-2ROD

(RT of viral input 4� 105 cpm) were analyzed by immunoblot using anti-UNG1/2 or anti-p24 or anti-actin mAbs, either 1 day (D1) or 2 days (D2)
after infection. These data are representative of two experiments (C) Infection in triplicate of CEM T cells with wild type NL4.3 (WT), Vpr-deleted
NL4.3 (�Vpr), Vpr mutant NL4.3-VprW54G and Integrase mutant NL4.3-INLK172-173AA as in B. Forty-eight hours after infection, cells were analyzed
for endogenous UNG2 expression by immunoblot (upper panel). Expression of p24 and actin are shown. In lower panel, densitometry scanning of
immunoblots obtained with anti-UNG2 serum are expressed as the percentage of UNG2 expression observed in non-infected (NI) cells. Values are
the mean of three separate experiments with standard deviations.
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siRNA directed against HIV-1 gag can lead simultane-
ously to a 10-fold reduction in full length viral
transcripts and to a 25-fold decrease in viral particles
production (28).

Overexpressed UNG2 negatively regulates HIV-1 LTR
transcription

An efficient transcription of the HIV-1 genome requires
the interaction of the viral transactivating protein Tat with
the viral LTR promoter. Thus, we analyzed whether

UNG2 interferes with viral transcription at the level of
Tat-mediated LTR promoter activation. We used the
reporter cell line Hela LTRHIV-1-Luc stably transfected
with a single copy of the luciferase gene under the
control of the entire HIV-1BRU LTR promoter (29).
UNG2 overexpression in these cells strongly inhibited
Tat-mediated luciferase expression, as shown by luciferase
reporter assay (Figure 3A). These results were confirmed
using Hela MAGIC-5B cells, which contain a stably
integrated lacZ gene under the control of the HIV-1
LTR promoter (data not shown). To determine whether

Figure 2. UNG2 overexpression impairs HIV-1 particles production and full length HIV-1 RNA transcription. (A) 293T cells were cotransfected
with 2 mg of pUNG2-GFP and either 1 mg of pNL4.3�Vpr (pNL4.3�Vpr:pUNG2-GFP ratio of 1 : 2) or 0.25mg of pNL4.3�Vpr
(pNL4.3�Vpr:pUNG2-GFP ratio of 1 : 8). In absence of pUNG2-GFP (1 : 0), the transfection mixture was complemented with pGFP empty
vector. Forty-eight hours post-transfection, viral production was monitored using an HIV-1 p24 ELISA kit. Experiment was carried out in triplicate
and results are represented as the percentage of the pGFP control condition with standard deviations. Transfection efficiency has been controlled by
flow cytometry analysis (86±1% and 85±2% of GFP and UNG2-GFP positive cells respectively). (B) 293T cells were cotransfected with 1mg of
pNL4.3�Vpr and increasing amounts of pUNG2 as indicated. Forty-eight hours later, equal amounts of cell lysates were immunobloted for total
UNG2, p24 and actin protein content. This result is representative of two different experiments. (C) Aliquots of 293T cells used in panel A were
analyzed by RT-QPCR for their intracellular amount of genomic HIV-1 RNA as described in material and methods. Copy numbers of HIV-1
genomic RNA from three different experiments are represented as percentage values of pGFP control conditions with standard deviations.

Figure 3. UNG2 overexpression inhibits Tat-mediated stimulation of HIV-1 LTR transcription. (A) Hela LTRHIV-1-Luc cells were transfected with
pCMV-Tat (0.25 mg) and either 2.5 or 5 mg of pUNG2-GFP (ratio 1 : 10 and 1 : 20, respectively). In absence of pUNG2-GFP, the transfection mixture
was complemented with pGFP empty vector. Two days post-transfection, cell extracts were analyzed for content in luciferase activity. Experiment
was carried out in duplicate and results are represented as the percentage of the pGFP control condition (1 : 0) with standard deviations. Transfection
efficiency has been controlled by flow cytometry analysis (30±1% of GFP (1 : 0), 37±1% of UNG2-GFP (1 : 10) and 38±3% of UNG2-GFP
(1 : 20) positive cells). (B) Aliquots of Hela LTRHIV-1-Luc cells used in the panel A were analyzed by RT-QPCR for their intracellular amount of
luciferase mRNA. Copy numbers of luciferase mRNA from two different experiments are represented as percentage values of GFP control condition
(1 : 0) with standard deviations.
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this inhibition of luciferase expression is the consequence
of a transcriptional repression, luciferase mRNA trans-
cripts have been quantified in Tat-expressing HeLa
LTRHIV-1-Luc cells using a specific RT-QPCR assay. As
shown in Figure 3B, luciferase mRNA levels, normalized
to endogenous GAPDH mRNA levels, are diminished
by 68% in cells expressing a 1 : 20 Tat to UNG2 ratio
(for copy number data, see Supplementary Figure 3B).
We do not observe a linear correlation between the
repression level of the luciferase mRNA transcription
and translation. Such discrepancy may result from a
nonlinear process, typical in biological systems (30).
However, we do not exclude the existence of an additional
post-transcriptional antiviral effect of UNG2 exerted
on HIV-1.

The antiviral activity of UNG2 requires the integrity
of its catalytic domain

To define more precisely whether the catalytic domain of
UNG2 is involved in the inhibition of HIV transcription,
we analyzed the activity of the LTR promoter in presence
of a UNG2 catalytic mutant (UNG2QD153-154LE) (31).
First, expression of UNG2 constructs was controlled.
293T cells were transfected with vectors encoding either
the GFP-fused UNG2 protein or the well characterized
UNG2QD153-154LE mutant previously described by Priet
et al. (11). Forty-eight hours post-transfection, similar
expression levels were observed for both UNG2 constructs
using immunoblotting experiments (Figure 4A). Sub-
sequently, LTR-driven transcription was investigated
by cotransfection of 293T cells with UNG2 constructs,
a LTR-luciferase construct and a Tat-expressing vector.
Luciferase activity was then measured 48 h post-
transfection and used as an index of LTR activity
(Figure 4B). The strong inhibition of Tat-induced LTR
transcription observed in presence of wild-type UNG2
(12.4-fold compared with 77-fold LTR activity in
absence of UNG2) was abolished in cells expressing the
UNG2QD153-154LE catalytic mutant (72-fold LTR activity).
This result suggests that the antiviral activity of UNG2
may require its glycosylase activity.

Effect of UNG2 overexpression on PMA and
TNF-induced HIV-1 LTR transcription

In order to assess whether UNG2 is acting specifically on
Tat-induced LTR transcription, LTR activity has been
stimulated 24 h into HeLa LTRHIV-1-Luc cells with
extracellular effectors and LTR activity has been
monitored in absence or presence of UNG2 as described
above. As shown in Figure 5, UNG2 harbors a modest
inhibitory effect on the basal transcriptional activity
of HIV-1 LTR promoter. Furthermore, we observed a
5.6-fold increase of LTR activity in cells stimulated
with tumor necrosis factor alpha (TNF-a) compared
with basal transcriptional activity of HIV-1 LTR. This
activity was strongly inhibited in presence of
UNG2-GFP, close to the background (1.4-fold). This
result is similar to the one observed for Tat-induced
LTR transcription in presence of UNG2 (decreased
LTR activity from a 104- to 14-fold activity).

Figure 4. Consequences of UNG2 mutations on inhibition of LTR-
driven transcription. (A) 293T cells were transfected with equivalent
amounts of pcDNA-UNG2-GFP or pcDNA-UNG2QD153-154LE (QD)
or left untransfected (Mock). Expression of UNG2 constructs in the cor-
responding cell extracts was controlled using anti-UNG2 immunoblots
(upper panel). Actin immunoblots were used as protein loading controls
(lower panel). (B) 293T cells (8� 104) were cotransfected with 0.2 mg of
HIVLTR-Luc and 0.1 mg of pCMV-Tat plasmids or with 0.2 mg pcDNA-
UNG2-GFP or 0.2 mg pcDNA-UNG2QD153-154LE (QD). Two days after
transfection, cells were analyzed in triplicate for luciferase expression used
as an index of HIV-1 LTR activity. Data are represented as the fold of
LTR promoter activity observed in absence of Tat expression.

Figure 5. Consequences of UNG2 overexpression on PMA- and TNF-
a-induced HIV-1 LTR transactivation. Hela LTRHIV-1-Luc cells were
transfected with 0.8 mg of pGFP or pUNG2-GFP and cultured for 24 h
in medium alone (CTL), or supplemented with PMA (20 ng/ml) or
TNF-a (50 ng/ml). Subsequently, cell extracts were analyzed for
content in luciferase activity. Experiment was carried out in triplicate
and results are represented as the fold of activation observed in the
pGFP control condition normalized to one. As a control, some Hela
LTRHIV-1-Luc cells were co-transfected with 0.1 mg pCMV-Tat and 8 mg
of pGFP.
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Interestingly, LTR activity induced by an extracellular
mitogen like the phorbol myristate acetate (PMA), a
strong LTR activator (15.6-fold) is barely affected by
UNG2 (11.9-fold). This result highlights the specificity
of UNG2 acting on HIV-1 LTR activity through the
inhibition of specific signaling pathways that are still to
be identified.

Effects of UNG2 overexpression on cellular promoters
transactivation

Analysis of the UNG2 inhibitory effect on gene transcrip-
tion was further investigated using different cellular
promoters. 293T cells were cotransfected with DNA
encoding the transcription factors c-jun or p53 and their
specific DNA target, consisting of the luciferase gene
under the control of either a collagenase promoter or
repeated p53 binding sites, respectively (Figure 6A and
B). Data from these experiments revealed that UNG2
overexpression repressed transactivation of these pro-
moters to different extent. While a significant repression
of the p53 promoter was observed in cells expressing
UNG2, the collagenase promoter containing AP1 recog-
nition sites transactivated by c-Jun was only mildly
affected. Again, these data suggest that UNG2 acts nega-
tively on specific signaling pathways. Hence, promoters
from different origins, either from the host or pathogens
like HIV-1 can be affected.

Depletion of endogenous UNG2 promotes Tat-mediated
LTR transcription

The inhibitory effect of UNG2 on HIV-1 LTR activity has
been observed in overexpressed conditions. Therefore, we
decided to investigate the impact of endogenous UNG2
depletion on Tat-dependent transcription. Expression of
endogenous UNG2 in the MAGIC-5B indicator cell line
was reduced over 80% after transfection with a specific

Stealth siRNA (siUNG2) in comparison with the control
Stealth siRNA (siCTL) condition (Figure 7A). These cells,
stably expressing the LTR-lacZ construct, were then
used to monitor LTR activity after transfection with the
Tat expression vector pCMV-Tat. As shown in Figure 4B,
the analysis of b-galactosidase (b-gal) activity induced by
Tat revealed that the LTR promoter was transactivated
more efficiently (180%) in cells depleted for endogenous
UNG2 by siUNG2 compared with cells transfected with
the siCTL control. Similar experiments were finally
designed to monitor LTR activity after infection with
HIV-1 in MAGIC-5B cells depleted for endogenous
UNG2. For that, MAGIC-5B cells were transfected with
siUNG2 or siCTL stealth siRNA and were subsequently
infected with NL4-3�Vpr. As shown in Figure 7C, b-gal
activity measured from cells transfected with siUNG2 was
significantly enhanced (145%) when compared with cells
expressing siCTL. Altogether, these observations suggest
that endogenous UNG2 behaves as a negative regulatory
factor that represses HIV-1 replication in human cells
at the level of HIV-1 LTR promoter transactivation.

DISCUSSION

The function of UNG2 in the HIV-1 life cycle has been
highly debated during the past few years. The DNA repair
enzyme has been first found to be specifically incorporated
into purified HIV-1 particles. This incorporation was
successively proposed to be mediated through a direct
interaction with the Vpr accessory protein (10) or with
the viral integrase (8). More recently, the expression of
Vpr was reported to induce a drastic proteasome-
dependent depletion of the intracellular pool of UNG2
through the recruitment of DDB1 (15). Here, we do
confirm that expression of Vpr in HIV-1 infected cells is
sufficient to deplete endogenous UNG2. In light of

Figure 6. Assessment of UNG2 antiviral activity on cellular promoters. (A) 293T cells were cotransfected with 0.4 mg of a collagenase promoter-
driven luciferase gene, pcDNA3.1-lacZ (b-galactosidase-containing reference plasmid; 0.1 mg), the c-Jun expression vector pcDNA-c-Jun (0.2 mg), and
pUNG2-GFP (0.2 mg) or pGFP empty vector (0.2 mg). (B) 293T cells were co-tranfected with the p53 promoter-driven luciferase gene (pG13PY-Luc;
0.4 mg), pcDNA3.1-lacZ; 0.1 mg), the p53 expression vector pC53SN3 (0.2 mg), and pUNG2-GFP (0.2 mg) or pGFP empty vector (0.2 mg). Two
days post-transfection, cell extracts were analyzed for their content in luciferase activity. Transfection efficiency was normalized by quantification
of b-galactosidase activity in cells extracts. Experiment was carried out in duplicate and results are represented as the fold of activation observed in
the pGFP control condition normalized to one.
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repeated description of UNG2 packaging into HIV-1
particles, such depletion may however be incomplete,
allowing either the incorporation of residual UNG2 or
the packaging of degradation products that remain to
be characterized. UNG2 depletion was less effective in
HIV-2-infected cells where endogenous UNG2 persists at
high levels despite an active replication of the virus.
Interestingly, Priet et al. (11) have previously shown that
depletion of endogenous UNG2 had no effect on HIV-
2ROD infectivity. Moreover, they have shown that highly
purified HIV-2ROD and SIVmac viral particles did not
incorporate host UNG2, contrasting with the presence
of UNG2 in HIV-1 viral particles (12). Such differences
between HIV-1 and HIV-2 have been related to the
capacity of UNG2 to interact preferentially with IN
from HIV-1 and to a weaker extent with IN from HIV-2
or SIVmac (12). In our study, UNG2 was efficiently
depleted following infection with HIV-1 INLK172-173AA

mutant supporting no role for a direct IN-UNG2 interac-
tion in UNG2 depletion. Accordingly, we hypothesized
that HIV-2 Vpr may either bind to UNG2 with reduced
efficiency or poorly redirect UNG2 to the DDB1-Cul4-
Roc1 E3 Ubiquitin Ligase complex, leading to efficient
expression of endogenous UNG2 in HIV-2 infected cells.

Next, we investigated the consequence of an HIV-1
Vpr mutation on the tryptophan residue 54 (VprW54G).
Infection with HIV-1 VprW54G allows the expression of
endogenous UNG2 at an intermediate level when
compared with UNG2 expression in uninfected cells.
The VprW54G mutant was reported previously to retain
the capacity to recruit DBB1 (15), while it failed to
interact with UNG2 (22). This mutant also retains the

property to cause cell cycle G2 arrest (22). Interestingly,
a recent investigation has shown that UNG2 expression is
downregulated in the G2 phase of the cell cycle (32).
Therefore, the partial recovery of UNG2 expression that
we observed in cells infected with HIV-1 VprW54G may
reflect the gain of UNG2 expression related to the
absence of a direct interaction between Vpr and UNG2
while almost 70% of the intracellular pool of UNG2 may
be depleted consecutively to the cell cycle G2 arrest. We
have also observed that inhibition of the proteasome-
dependent degradation pathway in Vpr-transfected cells
revealed an incomplete recovery of endogenous UNG2
expression in cells treated with efficient amounts of
MG132 proteasome inhibitor (Supplementary Figure 1).
Hence, the existence of some other inhibitory mechanism
of UNG2 expression in Vpr positive cells, like the cell
cycle G2 arrest, needs to be considered. Nevertheless,
such mechanism is unrelated to the capacity of UNG2
to interact with HIV-1 integrase. Indeed, we show that
UNG2 expression was dramatically impaired in cells
infected with HIV-1 INLK172-173AA, an IN mutant unable
to interact with and to direct viral packaging of UNG2
(23). We also did not observe any effect of HIV-1 Vpr on
UNG2 transcript levels using RT-QPCR experiments
(not shown), excluding a potential effect of Vpr on
UNG2 at the transcriptional level.
The main result reported herein is that HIV-1 replica-

tion is dramatically altered when UNG2 is overexpressed.
The inhibition of viral particles release was found to cor-
relate with a significant reduction in Tat-dependent LTR
transactivation and decrease in full-length HIV-1 RNA
synthesis. These data suggest that UNG2 harbors an

Figure 7. Depletion of endogenous UNG2 promotes Tat-mediated LTR transcription. (A) MAGIC-5B cells (6� 104) were cotransfected with 200 ng
of pCMV-Tat and 5 pmol of Stealth RNAi directed against UNG2 (siUNG2) or Stealth RNAi control (siCTL). Two days after transfection, cells
were analyzed in triplicate for endogenous UNG2 expression by immunoblot (see lower panel). Results are represented as the percentage of UNG2
expression observed in siCTL condition. (B) Cell lysates were analyzed in parallel for their content in b-gal activity used as an index of HIV-1 LTR
activity. Data are represented as the percentage of LTR promoter activity observed in presence of siCTL with standard deviations. (C) MAGIC-5B
cells (3� 105) were transfected with 20 pmol of siUNG2 or siCTL. After 24 h, cells were diluted (6� 104/well) and infected in triplicate with VSV-G
pseudotyped NL4-3�Vpr (RT of viral input 103 cpm). Cell lysates were analyzed two days post-infection for their content in b-gal activity as in B.
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inhibitory activity at the level of viral transcription. This
model is reinforced by the observation that LTR-directed
transcription mediated by Tat is increased in UNG2
depleted cells using an RNA interference approach.
Vpr-mediated HIV-1 LTR activation has previously
been attributed to the establishment of a cell cycle G2
arrest and also the direct interaction of Vpr with
the glucocorticoid receptor and diverse transcription
factors (Sp1, TFIIH) (33). Our data support the idea
that depletion of UNG2 by Vpr might be a new way to
increase HIV-1 replication at the level of LTR-directed
transcription.
In the past literature, crosstalks have been identified

between DNA repair pathways and gene transcription reg-
ulation. Of note, human DNA glycosylases have been
implicated in transcription regulation, especially the
thymine DNA glycosylase (TDG) and the Methyl-CpG
binding domain protein 4 (MBD4) (34–38). The molecu-
lar mechanisms underlying UNG2-induced inhibition
of HIV-1 transcription remain elusive at this time.
However, results obtained in the present study indicate
that the UNG2-induced transcriptional repression is inde-
pendent of cell cycle progress. Moreover, LTR promoter
inhibition by UNG2 depends on the type of stimuli or
transactivators used to activate the LTR. Of note, PMA-
induced LTR activity is barely affected by UNG2. Finally,
UNG2-induced transcriptional repression is not only
observed for markers under control of the HIV-1 LTR
promoter but also under the control of some cellular
promoters. Therefore, we hypothesize that such inhibi-
tion, may at least in part, rely on the sequestration of
cellular factor(s) critical for transcriptional regulation of
multiple cellular genes. In support of this hypothesis,
human TDG and MBD4 were previously reported to
interfere with gene transcription through specific
interactions with diverse transcription factors, receptors
and chromatin-remodeling complexes (34–37).
Interestingly, UNG2 has recently been shown to be
recruited to the promoter of Kaposi’s Sarcoma-associated
Herpesvirus, leading to latent persistence of the virus (39).
The ability of UNG2 to repress HIV-1-LTR transcription
through a direct recruitment to the HIV-1 LTR promoter
needs to be investigated.
Next, we found that transcriptional inhibition observed

in presence of wild type UNG2 is abolished in cells
expressing the UNG2QD153-154LE catalytic mutant. Given
that upon transfection this mutant reached expression
level comparable to that of WT protein without inhibiting
LTR-driven transcription, this result may reflect the
requirement for UNG2 enzymatic activity. However,
UNG2 is a truly constrained protein whose structure has
been previously defined (31). The insertion of mutations
may drastically alter the overall structure of the protein
and result in an unspecific alteration of the UNG2
antiviral property. Therefore, at this stage of the study,
one should be cautious to draw any general conclusion
regarding the role of this protein domain in the antiviral
phenotype.
To our knowledge, this is the first time that UNG2

is linked to transcriptional regulation and more
particularly described as a new class of viral transcription

inhibitor. Despite the broad spectrum of action observed
for UNG2 anti-transcriptional activity, HIV-1 has
evolved and acquired a specific viral factor to counteract
UNG2, identified as the Vpr regulatory protein. This
observation is reminiscent of HIV-1 Vif described as a
protective factor against the cytidine deaminase
APOBEC3G (25). The antiviral activity of APOBE3G
relies on its capacity to induce cytidine deamination
and severe uracilation of the viral genome during the
reverse transcription step, leading to G to A accumulation
(26). Interestingly, the direct binding of Vif to
APOBEC3G targets these latter to the proteasome (40).
Thus, we propose that the specific interaction of HIV-1
Vpr with the DNA repair enzyme UNG2, an interaction
described more than a decade ago, is likely to represent
a new viral mechanism of protection against an innate
antiviral activity exerted by UNG2 at the level of viral
transcription. Our data support the idea that
depletion of UNG2 by Vpr might be a new way to
increase HIV-1 replication at the level of LTR-directed
transcription.

In conclusion, our data together with other recent
publications highlight the capacity of HIV-1 to counteract
innate antiviral activity through the specific design of pro-
tective viral factors and support the idea that interactions
between viruses and DNA repair components can result in
inhibition of the infection rather than cooperation
towards its establishment.
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