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Abstract: DNA double-strand breaks (DSBs) jeopardize genome integrity and can—when repaired
unfaithfully—give rise to structural rearrangements associated with cancer. Exogenous agents such
as ionizing radiation or chemotherapy can invoke DSBs, but a vast amount of breakage arises during
vital endogenous DNA transactions, such as replication and transcription. Additionally, chromatin
looping involved in 3D genome organization and gene regulation is increasingly recognized as a
possible contributor to DSB events. In this review, we first discuss insights into the mechanisms of
endogenous DSB formation, showcasing the trade-off between essential DNA transactions and the
intrinsic challenges that these processes impose on genomic integrity. In the second part, we highlight
emerging methods for genome-wide profiling of DSBs, and discuss future directions of research that
will help advance our understanding of genome-wide DSB formation and repair.

Keywords: DNA double-strand breaks; replication; transcription; chromatin looping; topoisomerases;
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1. Introduction

Out of the thousands of DNA insults that hit our cells every day [1], double-strand breaks
(DSBs) are among the most deleterious lesions. DSBs can trigger cell death or give rise to structural
genomic rearrangements associated with carcinogenesis and other diseases [2–4]. The frequency
of DSBs is estimated to be 10–50 events per cell per day [5,6]. While exogenous genotoxic insults
contribute to this [7,8], in healthy individuals the majority of DSBs is thought to originate from
within the nucleus, where DSBs form during fundamental processes such as DNA replication, meiosis,
antibody diversification, gene transcription, and—although indirectly—cellular metabolism [1,9–13].
Fortunately, most DSB events are quickly sensed and—orchestrated by the cell’s DNA damage
response (DDR) [1,7]—faithfully resolved by two partially redundant repair pathways: homologous
recombination (HR) and classical non-homologous end-joining (C-NHEJ) [1,14]. While HR mainly
operates in the G2 and S phases of the cell cycle, C-NHEJ is active throughout the cell cycle and
is considered the predominant DSB repair pathway in cycling cells. Although C-NHEJ is more
error-prone than HR, mistakes of this classical NHEJ repair route are generally minimal [5,15,16].
However, errors become more frequent when alternative end joining pathways (a-EJ) such as
microhomology-mediated end joining (MMEJ) engage [17–19].

In Part I of this review, we describe how DSBs can form during essential DNA
transactions—especially during DNA replication, transcription, and 3D genome folding—after which
we touch upon the undesired outcomes of DSB repair and their possible consequences. In Part II we
attempt to provide a comprehensive overview of the diverse methods that have emerged to profile
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genome-wide DSB landscapes and we hypothesize how future efforts can help to answer some of the
open questions that exist in the field.

Part I—Endogenous Causes of DSBs

2. DNA Replication as a Source of Endogenous DSBs

During the S phase of the cell cycle, thousands of replication forks work in a highly coordinated
manner to precisely replicate the entire genome exactly once. In the absence of perturbations,
a replication fork proceeds undisturbed until it approaches a neighboring fork traveling in the opposite
direction. At this point, the two forks fuse, the replication machineries disassemble, and the catenated
sister chromatids separate [20–23]. However, numerous factors can hinder fork progression or interfere
with proper execution of the replication program, altogether referred to as replication stress.

2.1. Exhaustion of Replication Resources and Disturbed Replication Programs

Replication forks are forced to slow or stall in a global manner when resources required for
faithful completion of replication run out [24]. Essential components such as dNTPs, replication
protein A, or chromatin constituents—required for repacking of the replicated DNA and packaging
of the newly produced copy—can, for instance, be depleted as a result of perturbed replication
timing [24]. Proper licensing of replication origins is crucial for replication precision, and deregulated
licensing—which induces systemic replication stress—is believed to contribute to carcinogenesis [25,26].
Activated oncogenes can perturb replication timing by increasing origin firing—which concomitantly
depletes replication factors—or by invoking origin re-firing. The latter leads to re-replication, which is
particularly detrimental as it not only increases the consumption of resources, but also directly
transforms unligated Okazaki fragments into single-ended DSBs [27–30]. Although oncogene-triggered
perturbations of replication timing can lead to genome instability and, as such, play a key role
during early cancer development [31,32], oncogene activation can also provoke premature cellular
senescence in a process called oncogene-induced senescence, which has been uncovered as an
important tumor-suppressing strategy in premalignant cells [33,34].

2.2. Conflicts with Pre-Existing DNA Damage and Secondary Structures

Individual replication forks can be brought to stall when an obstacle on the DNA prevents helicase
or polymerase activity of the replisome (Figure 1A). If stalling is not properly resolved, the fork can
collapse and endanger genome integrity [35–37], as we will discuss below in Section 2.4. Pre-existing
DNA lesions—including base alterations and strand damage such as inter-strand crosslinks—can
cause replication fork stalling [36]. Furthermore, secondary non-B DNA structures that can form
at repetitive sequences upon transient strand separation also block fork progression, rendering
certain regions of the genome particularly difficult to replicate. Examples of such regions include
repetitive telomeric sequences, which can form G-quadruplexes held together by strong Hoogsteen
hydrogen bonds [38–41], centromeres, which are rich in protein-bound heterochromatic AT-rich alpha
satellite repeats [42], and tightly compacted, repeat-rich, heterochromatin [24]. In general, obstacles
that impede fork progression are believed to have worse consequences when they are encountered
on the leading strand, as discontinuous DNA synthesis on the lagging strand may help to bypass
obstructions [43,44]. In the next section, we look at another major impediment for replication fork
progression: the transcription bubble.

2.3. Transcription-Replication Conflicts, R-Loops, and Backtracking

Transcription bubbles present a natural obstacle for the replication fork [45–47] (Figure 1B),
and consequences of so-called transcription-replication conflicts (TRCs) are believed to be particularly
detrimental when the two machineries encounter each other head-on [46,48,49]. Although DNA
replication and transcription are spatiotemporally separated—they globally anti-correlate, occur in
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distinct cell cycle phases and nuclear sub-compartments, and are presumably subjected to
co-orientation bias, which suppresses head-on encounters [21,50–54]—both transactions use the same
DNA template, and collisions are inevitable, especially for long genes that require more than one
interphase to be transcribed [55]. While TRCs may be rare in healthy human cells, their frequency
increases when replication timing is perturbed and in situations in which the transcription machinery
lingers [27,56].

Genome-wide transcription rates are inherently heterogeneous [57,58], and are influenced
by regulatory events such as RNA polymerase II (RNAPII) pausing and/or backtracking [59,60].
Two transcriptional intermediates that have been implicated in TRCs are DNA/RNA hybrids known
as R-loops and backtracked RNAPII complexes (Figure 1B). R-loops can form co-transcriptionally when
the nascent RNA behind RNAPII anneals back to its DNA template, creating a stable triple-stranded
hybrid structure [61,62]. R-loops have been identified in genic regions—at promoters, sites of
RNAPII pausing, and transcription terminal regions of genes with short intergenic distances—and,
more generally, in regions rich in guanines, expanded trinucleotide repeats, supercoils, and DNA
nicks [53,63,64]. Recent work has revealed that R-loops can result from head-on TRCs, whereas
co-directional TRCs act as R-loop erasers [65]. Although R-loops can exert regulatory roles [63,66,67],
they can also obstruct replication and transcription, and are frequently associated with genomic
instability and mutagenic potential, especially when longer stretches of DNA are involved [62,68–70].
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Figure 1. Endogenous DNA double-strand breaks (DSBs) during DNA transactions. (A) Left panel: 
during DNA replication, pre-existing DNA lesions such as G-quadruplexes and inter-strand 
crosslinks invoke replication stress and cause replication fork stalling. Right panel: an example of how 
intermediate structures during fork remodeling can lead to formation of a single-ended DSB. Bottom: 
replication through a single-strand break or nick can result in a single-ended DSB [36,39,41]. (B) 
Transcription complexes obstruct replication fork progression, particularly when transcription-
replication encounters are head-on (top) [68], when the nascent RNA has formed an R-loop that 
stabilizes the RNAPII association with the DNA (middle) [62], and when the RNAPII complex is 
paused and displays backtracking (bottom, arrow indicates backward sliding of the RNAPII) [59]. (C) 

Figure 1. Endogenous DNA double-strand breaks (DSBs) during DNA transactions. (A) Left
panel: during DNA replication, pre-existing DNA lesions such as G-quadruplexes and inter-strand
crosslinks invoke replication stress and cause replication fork stalling. Right panel: an example
of how intermediate structures during fork remodeling can lead to formation of a single-ended
DSB. Bottom: replication through a single-strand break or nick can result in a single-ended
DSB [36,39,41]. (B) Transcription complexes obstruct replication fork progression, particularly when
transcription-replication encounters are head-on (top) [68], when the nascent RNA has formed an
R-loop that stabilizes the RNAPII association with the DNA (middle) [62], and when the RNAPII
complex is paused and displays backtracking (bottom, arrow indicates backward sliding of the
RNAPII) [59]. (C) Transcription-related activity-induced DSBs emerge at sites of topoisomerase 2
(TOP2) action [56,71], which is required to release positive (+) supercoiling building up ahead of the
RNAPII complex. TOP2-mediated DSBs enable transcription but can also lead to non-resolved DSBs
when repair is escaped or fails [72]. (D) Genomic regions involved in 3D genome looping experience
torsional stress that requires TOP2 activity to be resolved [73]. As a result, chromatin loop boundaries
or anchors may accumulate TOP2-dependent DSBs [74].
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A backtracked transcription complex—composed of a dangling 3’ end of the nascent RNA and
an inactive RNAPII that might slide backwards—presents another direct impediment to replication
fork progression [59]. Backtracking is associated with promoter-proximal RNAPII pausing—which is
considered essential for controlling the accuracy and rate of transcriptional elongation [60,75]—as well
as with transcriptional pausing relevant to transcription termination, co-transcriptional RNA folding
and processing, and handling of pre-existing obstacles such as DNA adducts and R-loops [59,76].
When not swiftly released or removed, backtracked transcription complexes increase the chance that a
replisome switches from the DNA strand onto RNA, which generates a DNA single-strand break (SSB)
that can give rise to a DSB during subsequent replication [59]. Although both R-loops and backtracking
are frequently related to genomic instability, revealing their direct contribution is complicated by the
many co-occurring sources of instability [62].

2.4. The Cellular Response to Replication Stress and the Impact of Replication Timing

In general, sensing of replication stress leads to activation of the replication checkpoint, temporary
cell cycle arrest, and orchestration of the DDR. Diverse DNA repair pathways can then engage to
attempt stabilization of the stalled replication fork—aimed at preventing irreversible fork collapse—and
promote removal or repair of blocking impediments or lesions. Ultimately, to restart replication the
stabilized fork can be reprimed or, if this fails, replication can be rescued by firing nearby dormant
replication origins [24,26,35,37,77–82]. Importantly, sustained DDR activation, for example due to
failed repair of a lesion, can also lead to apoptosis or senescence [33,83].

2.4.1. Fork Stabilization and Restart

Stalled replication forks are predominantly stabilized by components of the HR repair pathway,
which also protect nascent DNA at the stalled fork and support repair of DSBs induced by replication
stress [24]. Furthermore, the NHEJ pathways C-NHEJ and MMEJ have been identified at stalled
replication forks, although they are believed to be mainly implicated in repair of single-ended DSBs at
collapsed forks [78,84,85]. Transcription-coupled nucleotide excision repair is thought to assist removal
of obstacles that cause replication stress such as R-loops, bulky lesions, and arrested transcription
complexes [86–88], although rather than stalling, the replisome may also bypass encountered lesions
and other impediments with the help of specialized but error-prone DNA polymerases [89,90].

After removal of the source of replication stress, restart of the replication fork is believed to
occur with the help of HR factors and via repriming mediated by local ssDNA, although the precise
underlying fork remodeling and reversal mechanisms remain to be elucidated further (for the main
proposed models we refer elsewhere [24,91,92]). While HR is among the most faithful approaches
to repair, it can prime error-prone replication restart [78,93]. In Section 5, we elaborate on the
consequences of this and discuss more notorious repair processes linked to rearrangements introduced
during fork restart.

2.4.2. DSB Formation from Stalled Replication Forks

When fork stabilization and restart fail the persistently stalled replication fork can collapse,
which terminally inactivates the replisome and can result in the formation of a single-ended
DSB [24,27,78]. Furthermore, single-ended DSBs can arise at stalled forks that undergo fork reversal
or remodeling, for example due to endonuclease-mediated cleavage of chicken foot structures
(Figure 1A) or other remodeling intermediates that have been hypothesized to allow DSB-mediated
fork restart [77,92,94–96]. Single-ended DSBs can also form as the result of replication through nicked
DNA [97] (Figure 1A), in case of extensive origin refiring—with or without actual fork collisions
(comprehensively reviewed in [30]), or from passively broken ssDNA near stalled forks [24,30,35,98,99].
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2.4.3. Common Fragile Sites

DSBs associated with replication stress occur at higher frequency in certain regions of the genome
such as common fragile sites (CFSs). CFSs are defined as chromosomal cytobands that appear
broken in metaphase spreads following induced replication stress [100–102]. CFSs are largely cell
type-specific, overlap with recurrent copy number alterations (CNAs) seen in cancer—especially with
large deletions—and contain genes with presumed tumor-suppressor activity [102], or belonging to
larger functional hubs associated with cancer-related loss of homeostasis [103]. CFS fragility has been
attributed to various features that can convey replication stress: repetitive sequence content, premature
mitosis, late replication timing or paucity of replication origins, and delayed replication of long active
genes [101,102,104,105].

2.4.4. Replication Timing and Fragility

In contrast to CFSs, early replicating fragile sites (ERFSs) represent a different class of fragile
genomic regions that replicate early, reside in gene-rich accessible chromatin, and overlap with sites
of recurrent translocations and rearrangements observed in cancer [106]. In a large study of somatic
CNAs across human cancers, breakpoints of large duplications were found to more often reside in early
replicating genomic domains, while deletions and overall CNA levels were enriched in late-replicating
chromatin [107]. Similarly, translocation breakpoints in neuroblastoma cells mapped more frequently
to early-replicating regions, where the overall breakpoint frequency was estimated to be more than
three times higher compared to the rest of the genome [108]. In contrast, point mutation rates are
generally higher in late-replicating genomic regions across eukaryotic species [109,110].

Although still poorly understood, the connection between replication timing and both fragility
and the outcome of erratic repair might in part relate to inherent differences between early and late
replication. Regions with early versus late replication timing exhibit roughly mirroring patterns of
DNA accessibility, gene activity, and nuclear positioning—in line with A/B compartmentalization.
Simultaneously replicating regions may thus reside in closer spatial proximity [111,112]. The more
permissive state of chromatin in early-replicating regions likely allows efficient replication, whereas
late-replicating—and oftentimes more compact—chromatin requires more origins and thus shorter
inter-origin distances [113,114]. The presence of many concurrently active forks in a tighter space in
late-replicating regions is thought to present more recombination partners and increase the probability
of deletions [110]. In contrast, early-replicating regions are at higher risk of re-replication because a
longer period is spent in an already replicated state. As a result, the chances of short-range duplications
and rearrangements within the borders of topologically associating domains (TADs)—with intra-TAD
rearrangements ranging from 10 to 300 Kb—may be increased [110,115]. Larger and inter-TAD
rearrangements (>500 Kb) often seen in cancers [116] are believed to be favored by long-range
chromatin contacts between spatially juxtaposed domains with similar characteristics in terms of
replication timing and accessibility [107,110,117–119].

Although we already briefly touched upon how transcription bubbles contribute to replication
stress, accumulating evidence also connects the act of transcription activation itself to elevated levels
of DSBs and genomic alterations. In the following section we will therefore focus further on the
relationship between transcription and DSB formation.

3. Transcription as a Source of Endogenous DSBs

Besides its share in hampering replication fork progression and generating roadblocks in
the shape of R-loops and backtracked transcription complexes, transcription is in itself, in a
replication-independent manner, considered to be a source of DSBs [53,56,71,120,121]. As during
replication, various types of transcription stress can affect progression of the transcription machinery,
and the transient strand separation during transcription is thought to render the non-transcribed
strand particularly vulnerable. Although we specifically focus on transcription as a cause of DSBs here,
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it should be noted that the relationship between transcription and genome instability and mutation
is not limited to DSB events, but also encompasses other types of DNA damage. For an extensive
overview of transcription-related DNA damage and the connection between transcription and DDR,
we refer the reader to an excellent review [121].

3.1. DSBs Accumulate around Activated Genes

The genome-wide frequency of DSBs is not only elevated in CFSs, ERFSs, and long, late-replicating
genes, but also in accessible chromatin and, in particular, near transcriptionally active genes, with a
significant enrichment around the transcription start site (TSS) [122–126]. Transcription-induced DSBs
have, for example, been identified near genes responding to signaling invoked by sex hormones
and transcription factors in human cancer cells [120], in activated promoters of stimulated neuronal
stem/progenitor cells (NSPCs) [127], and DSB levels in mouse brain have been shown to increase upon
physiological neuronal activity [128]. In turn, translocation breakpoint clusters, indicative of frequent
DSB formation, were found near long, active genes in NSPCs and in activated B cells [124,129].

3.2. Transcription Activation through DNA Damage

In contrast to previous work that related DSBs and, more generally, DNA damage to
the suppression of transcription [130,131], the observed association between fragility and
transcription activation suggests that DSBs, in certain situations, may be positively involved
in transcription [121,132,133]. Similar concepts have been described before for SSBs generated by type
I topoisomerase (TOP1), which emerged at sex hormone-responsive transcribed regulatory elements
upon hormone stimulation of prostate cancer cells. In this context, depletion of TOP1 led to reduced
transcription of these elements [134]. Furthermore, TOP1 has been implicated in the suppression of
long R-loops, by resolving negative supercoiling [62].

Examples of transcriptional activation through DSBs—formed as a consequence of DDR
pathways—are plentiful [133]. For example, in estrogen-responsive breast cancer cells, DSBs form
at estrogen-responding genes through base excision repair (BER), aimed at repairing cytosines
deaminated by the action of the APOBEC3B enzyme, which is frequently deregulated in cancer
cells [11,121]. In line with the observation that APOBEC3B knockdown led to reduced transcription
of the responsive genes, APOBEC3B-induced DSBs are thought to be essential for the recruitment of
RNAPII and histone modifications that promote transcription [121]. Furthermore, upon pathogen
infection of intestinal cells, endonucleases involved in nucleotide-excision repair (NER) have been
identified to cause genome fragmentation. These infection-induced DSBs were shown to be required
for activation of the key native immune response, and counteracted infection-associated apoptosis of
the infected cells [135,136].

3.3. Transcription Activation Assisted by TOP2-Induced DSBs

Transcription-induced DSBs near activated genes in physiological contexts, such as stimulated
NSPCs, have been attributed to the action of type II topoisomerase isoforms α (TOP2A) and β (TOP2B),
and TOP2-induced DSBs have been suggested to be needed for the transcription of some or all
genes [120,127,137–140] (Figure 1C). This is in line with previous work that found TOP2B-induced
DSBs in gene promoters to be required for transcription activation upon hormone stimulation [121,137],
and similar observations have since then been described in response to diverse stimuli, including heat
shock, serum induction, and various hormonal and neuronal stimuli [11,133].

TOP2 forms transient DSBs that help resolve positive DNA supercoiling, which builds up ahead of
transcription and replication forks, halting their progression or leading to strand breaks [72,141–144].
Although the precise mechanism underlying DSB-induced transcription activation remains elusive,
TOP2-mediated release of the topological stress brought about by supercoils may be sufficient to
stimulate RNAPII processivity [121]. Other postulated models associate both TOP2 and TOP1
activity at transcribed elements to the release of promoter-proximal pausing of RNAPII, allowing
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transcriptional elongation, or suggest that chromatin alterations upon DSB formation may induce a
more transcription-compatible state [121].

3.4. TOP2 Poisons Are Associated with Therapy-Related Acute Myeloid Leukemias

Despite the vital function of TOP2 in removing supercoils, its activity is a double-edged sword.
On the one hand, TOP2-induced DSBs are thought to be rapidly religated, thereby securing genome
integrity [72,145,146]. On the other, the TOP2 religation cycle can occasionally fail, which leaves
TOP2 covalently trapped onto cleaved DNA. When the trapped adduct is not removed and repaired
via the action of, among others, BRCA1 [147], it can lead to the emergence of a persistent DSB.
The danger of this is demonstrated by the TOP2 poison etoposide, a widely used anti-cancer drug
that prevents the release of TOP2 cleavage complexes, and thereby generates protein-linked DSBs that
block transcription and replication, and eventually kill cancer cells [148]. Despite its successful use in
chemotherapy, etoposide has also been associated with the emergence of therapy-related secondary
acute myeloid leukemias driven by recurrent genomic translocations between regions coinciding
with etoposide-induced DSBs [74,149–151]. Of note, etoposide is not the only chemotherapeutic
agent that is recognized to increase the chance of secondary malignancies: other TOP2 inhibitors,
alkylating agents, and anthracyclines are also associated with an increased risk of developing acute
myeloid leukemia, whereas cyclophosphamide treatment increases the risk of bladder cancer [152].
Furthermore, radiotherapy-related secondary cancers can emerge throughout the body depending on
the type of irradiation [152,153].

In the previous two sections we have discussed relevant work that shows how strongly
transcription and formation of endogenous DSBs are interconnected—with and without the interplay
with DNA replication. Furthermore, we have seen how transcription activation frequently involves
the formation of a transient DSB by TOP2. In the next section we will focus on another functional role
of TOP2: resolving topological issues that arise during 3D genome folding.

4. 3D Genome Architecture and DSBs

Topological or torsional stress brought about by DNA overwinding not only affects replication
or transcription, in which traversing of the linear genome must be made possible, but it can also
impact processes involved in organizing the higher-order three-dimensional folding of the genome.
Furthermore, supercoils have been hypothesized to transit through chromatin structure and as such,
influence larger stretches of chromatin [144]. In this section, we highlight recent work that has
suggested elevated DSB susceptibility at genomic regions involved in 3D genome organization.

4.1. TOP2-Induced DSBs at Chromatin Loop Anchors

In addition to its binding to gene promoter regions, TOP2B has been identified at cis-regulatory
genomic elements bound by CCCTC-binding factor (CTCF) or by both CTCF and cohesin [73,154].
These TOP2B/CTCF/cohesin-bound elements overlap regions uncovered to be relevant for 3D genome
organization, such as the borders or anchors of transcriptionally active supercoiling domains [143]
and TADS [155,156], as well as the elements involved in regulatory chromatin loops [157]. At these
sites, genomic knots and tangles—which require the remodeling activity of TOP2 and perhaps other
enzymes—are thought to result from processes proposed to govern chromatin loop dynamics, such as
loop extrusion [74,158,159] (Figure 1D).

Accordingly, chromatin loop borders and loop anchor points are increasingly associated with
enhanced levels of DSBs and genomic breakpoints underlying structural variants (SV), and as a result,
genome instability and cancer [159–161]. While the levels of etoposide-induced DSBs correlate with
gene expression levels [126,162], TOP2B-induced DSBs have been reported to be largely transcription-,
replication-, and cell type-independent [74], and instead related to the action of TOP2B at the border
of chromatin loops [73,74]. However, with chromatin loops forming throughout the genome—often
coinciding with active genes [163]—an intertwined relationship between transcription, torsional stress,
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and TOP2-related DSBs cannot be excluded easily. Indeed, a recent study demonstrated that the
frequency of TOP2-induced DSBs enriched at CTCF/cohesin bound loop anchors correlates with
expression levels and directionality of coinciding highly transcribed genes—such as those frequently
involved in oncogenic translocations in leukemias [164]. Furthermore, inhibition of transcription
elongation led to a decrease in DSB levels across transcribed regions and reduced formation of
gene fusions, altogether suggesting that both transcription and 3D chromatin folding contribute to
TOP2-related genomic instability [164].

4.2. Intertwined Actions Predispose Regulatory Regions to Fragility

The topological stress that results from chromatin loop extrusion and other chromatin-related
remodeling activities can, besides directly impacting strand integrity, in turn also affect the transcription
machinery. As torsional stress can contribute to transcription regulation [142,165], supercoiling
and knots emerging during chromatin looping could be involved in, for instance, safeguarding
timely termination of transcription, transcription direction, or seclusion of regulatory effects [166].
Furthermore, as mentioned above, the increased susceptibility to indirect breakage at both overwound
and underwound DNA [144] can, in principle, affect any region involved in looping, transcription,
regulation, or genome condensation. Together with the previous sections, this notion illustrates the
complexity that we face when attempting to unravel the mechanisms that underlie the formation of
DSBs at a given genomic location, and emphasizes the concept that genomic regions with many
concurrent regulatory transactions, such as highly active genes and TAD boundaries in active
chromatin, have an inherently higher risk of suffering attacks on strand integrity under physiological
as well as diseased conditions.

4.3. Special Cases of Genome Rewiring Require Programmed DSBs

In the sections above, we have covered DNA replication, transcription, and 3D chromatin folding
as important endogenous contributors to genome-wide DSB landscapes. However, this overview of
endogenous causes is far from complete, as we have deliberately omitted several specialized processes
that induce programmed DSBs in specific gene classes or during specific moments in development.
We refer elsewhere for excellent literature on programmed physiological DSBs [133], which form
in a highly regulated manner during meiotic recombination and the lymphocyte-specific processes
V(D)J recombination—which shuffles gene segments to contribute to antigen receptor diversity—and
class switch recombination (CSR)—which occurs in mature B lymphocytes and involves a second
round of exon substitution to diversify effector antibodies [133,167–169]. DSBs essential for V(D)J
recombination and CSR are brought about by recombination-activating gene (RAG) endonucleases and
activation-induced cytidine deaminase (AID), respectively. Despite the importance of recombination
for proper functioning and adaptation of the immune system, the dependency on programmed DSBs
poses oncogenic risks [168,170]. For an overview of the protective mechanisms in place to suppress
adverse outcomes of DSBs during lymphocyte maturation, we refer to a recent review [171].

Although the DDR can in principle repair programmed and accidental DSBs quickly and faithfully,
and rescue stalled replication forks to prevent their collapse, DSBs are drivers of most of the structural
genomic rearrangements observed in human (cancer) genomes [172]. In the following section, we will
summarize some of the main insights into unsuccessful and/or unfaithful DSB repair, and how this
can have detrimental effects on genome integrity and stability.

5. Adverse Outcomes of DSB Repair

Imbalances in the regulatory circuitries of the nucleus can cause DNA replication, cell cycle
checkpoints, and DDR to go haywire and invoke an avalanche of increasing replication stress,
DNA damage, and genomic instability [32,173]. During early carcinogenesis, increasing levels of
DSBs—due to enhanced replication stress and transcriptional rewiring—can exhaust the DDR and
eventually compromise faithful DSB repair. When C-NHEJ and HR are too slow or simply fail to



Genes 2018, 9, 632 10 of 31

repair DSBs—for example, due to scarcity or mutational inactivation of one or more of the required
factors—alternative mechanisms can engage, of which most are considered to be typically error-prone
and hence implicated in the genesis of structural genomic rearrangements [174–176]. When DSB repair
becomes increasingly erratic during cancer progression, the formation of more oncogenic fusions and
CNAs is promoted, which can in turn fuel intra-tumor evolution and heterogeneity. This process is
of high clinical relevance, since it can lead to therapy resistance and/or the development of distant
metastases [32,173,177].

In the following subsections, we first focus on various processes known to be involved in the
transformation of a DSB or a stalled replication fork into potentially harmful non-natural junctions.
Then, we describe how profiling of the resulting repair signatures—encountered with variable
frequencies in cancer genomes—have become a tool to better understand cancer etiology, and predict
disease and therapy outcome.

5.1. Mechanisms Underlying Structural Genomic Alterations

Copy number variation (CNV) is widespread in the human genome and underlies natural
variation and evolution, but also cancer and developmental and neurological disorders [175,178].
CNVs—large segmental duplications or deletions—require the formation of junctions between
sequences that are not normally juxtaposed in the reference genome [175]. The chaotic reassembly
of DSB ends or entire genomic fragments—which can give rise to CNVs but also to highly complex
genomic rearrangements seen in cancer genomes—has been attributed to complex processes that
entail one or multiple rounds of DSB formation and low-fidelity repair, possibly combined with
erratic template switching—a strand switch within the same or between distinct replication forks—or
replication restart, for example. Below we briefly discuss some of the major processes thought to be
involved in generating structural alterations, but for detailed and more complete reviews of proposed
mechanisms underlying structural change in the genome we refer the reader elsewhere [174,175].

Although HR is considered to be more faithful than C-NHEJ because it utilizes homologous
sequences for repair, homology-directed repair is intrinsically mutagenic. In contrast to healthy
cells, where HR is strictly controlled [175] and minimized to S-G2 phase and specific recombinogenic
processes such as meiotic crossover—which uses allelic HR (AHR)—and V(D)J recombination, HR can
jeopardize genomic integrity in oncogenic situations [93,175]. HR repair can cause the formation
of genomic rearrangements via abortive intermediates, and at stalled replication forks it can give
rise to recurrent CNVs, via non-allelic HR (NAHR), or to non-recurrent CNVs, via error-prone
homology-directed break-induced replication (BIR) or single-strand annealing (SSA) [78,93,174,175].
Non-recurrent CNVs can also be formed by NHEJ and other replication-based repair mechanisms,
including microhomology-mediated BIR (MMBIR), fork stalling and template switching (FoSTeS),
or serial replication slippage (SRS) [174,175]. It has been suggested that multiple rounds of FoSTeS
and MMBIR can, for example, underlie the formation of complex rearrangements, while highly
complex rearrangements classified as chromothripsis have been hypothesized to emerge during a
single catastrophic breakage event, after which the generated chromosomal fragments are erroneously
stitched back together, most likely via NHEJ and MMEJ [24,172,174].

In C-NHEJ, DSB ends are repaired without the need for homology, and although the resulting
junctions are mostly accurate or have small deletions, free DNA may be inserted or translocations
can be formed [175]. In contrast, MMEJ—the best-known a-EJ pathway—joins DSB ends based
on microhomology (<25 nt), mediated by the error-prone DNA polymerase θ, which is frequently
upregulated in cancer. Its involvement in DSB repair is associated with chromosome rearrangements
and small deletions between the microhomologous sequences, giving rise to a typical genomic pattern
at the predicted breakpoints [17,18,172]. Rearrangements of larger sections, long-range template
switching, and MMBIR are thought to involve the action of other replicative polymerases such as DNA
polymerase δ. Other polymerases, including translesion synthesis polymerases—which allow lesion
bypass—have also been associated with the induction of local template switching [174].
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Although most of the mechanisms underlying copy number gains involve replication-based
mechanisms, segment amplifications can also arise in a non-replicative manner via
breakage-fusion-bridge (BFB) cycles, in which the loss of extensively homologous (sub)telomeric
regions induces unstable dicentric chromosomes. It is believed that BFB cycles play a major role in
cancer, and the same process has been invoked to explain segmental duplications frequently observed
in breast and ovarian cancer [172,175].

5.2. Repair Signatures in Cancer Genomes

For many years, patterns of single nucleotide variants (SNVs) have helped uncover distinct
mutational signatures in cancer genomes, which has led to improved understanding of the
underlying causative processes in certain cancer types. Increasingly, a similar approach is applied to
multi-nucleotide structural rearrangements or copy number changes in cancer genomes, based on the
identification of junctions between genomic sequences that are not naturally together in the reference
genome [179]. Although the computational analyses required to identify complex rearrangement
patterns are challenging, successful reconstruction of the genomic junctions in a cancer genome can
reveal repair signatures composed of gains, losses, amplifications and rearrangements. As these repair
signatures represent scars of impaired repair pathways, studying cancer genomes on a large scale
using whole genome sequencing approaches can help to improve our understanding of the molecular
history of various cancer types. As certain repair signatures are largely cancer type-specific, they have
been harnessed to classify cancers and improve stratification of specific cancer subtypes, as well as to
study clonal relationships among metastases and the corresponding primary tumors [172,180–182].

Although genome-wide profiling of structural rearrangements enables investigation of repair
signatures and errors—based on identification of non-linear junctions—these approaches typically
reveal past events that have occurred at some point in the history of the cell. In the next section
of this review, we change gears back towards the lesions that underlie most of the rearrangements
described here, and provide an overview of the various methods that are available for the profiling of
genome-wide DSB landscapes.

Part II—Studying Genome-Wide Fragility Landscapes

6. Methods for Genome-Wide DSB Profiling

With DSBs structurally underlying most types of structural genomic alterations, insight into DNA
fragility landscapes and their associated processes—such as transcription and replication, but also
recruitment of repair proteins—is essential to broaden our understanding of the genome, particularly
in the context of cancer. Over the past few years, various methods for genome-wide DSB detection
and identification have been developed, with the aim of obtaining insight into genome fragility and
its molecular basis. These methods can be broadly classified into indirect and direct DSB detection
methods (Table 1), depending on whether they probe directly for DSBs or for DSB proxies, such as
signaling or repair proteins that accumulate at genomic regions hit by DSBs, or products of DSB repair.

6.1. Indirect Identification Based on Association of Recruited or Responsible Proteins

The first genome-wide DSB landscape was mapped in yeast, using chromatin
immunoprecipitation (ChIP) on a tiled microarray (ChIP-chip) based on antibodies against
the phosphorylated form of histone variant H2AX, γH2AX [183]—a ubiquitous component of DSB
signaling in eukaryotes [184–186] (Figure 2; top). This pioneering work revealed γH2AX enrichment at
loci prone to replication fork stalling and breakage, of which half mapped to repressed protein-coding
genes [183]. Around the same time, ChIP-chip and ChIP-qPCR [187], as well as ChIP followed by
next-generation sequencing (NGS) (ChIP-seq) [188] for γH2AX were applied to human AsiSI-ER
cells engineered to conditionally express the AsiSI endonuclease for genome-wide induction of
sequence-specific DSBs [187]. These studies revealed that DSB formation triggers large γH2AX
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domains spreading up to two megabases around the induced DSBs, with active genes protected
from γH2AX spreading [187,188]. More recently, ChIP-seq for TOP2B binding was used in addition
to γH2AX to indirectly detect DSBs in NSPCs upon exogenous activation. This revealed that
TOP2B-dependent DSBs accumulate in the promoter region of early-response genes and are required
for their transcription [127]. In recent experiments based on ChIP-exo—in which an exonuclease
trims ChIP-ed DNA up to the site of the actual protein-DNA crosslink [189]—TOP2 was found to be
positioned at accessible regulatory regions and CTCF/cohesin-bound sites [73].

Although highly insightful, exploiting proteins as a proxy for DSBs has the disadvantage of
being indirect, and assay outcome may be affected by unspecific binding [190] and spreading of
the chosen protein around DSB sites. For example, γH2A.X not only accumulates around DSB
sites, but is also recruited to regions with SSBs and to sites undergoing nucleotide excision repair in
G1 [186,191–193]. To overcome these limitations and enable precise DSB mapping in a genome-wide
manner, various approaches to more directly capture and identify DSB ends have been developed,
and to comprehensively review these approaches, we distinguish between methods that capture DSBs
based on in vivo integration or translocation events mediated by the cell’s DSB repair efforts (Figure 2;
right), and methods that directly tag unrepaired DSB ends by in vitro ligation of dedicated adapter
sequences (Figure 2; left).
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Figure 2. Methods for genome-wide DSB profiling. (TOP) Proteins recruited to DSB sites—or 
associated with DSB formation—serve as a proxy for DSB formation. Chromatin containing the 
protein of choice is pulled down, and the extracted DNA—representing the underlying genomic 
regions—can then be analyzed by microarray (ChIP-chip) or high-throughput sequencing (ChIP-seq) 
[183,187]. The resolution of the generated binding profiles typically depends on the chosen protein. 
(RIGHT) Methods for in vivo capturing of DSBs utilize the non-homologous end-joining (NHEJ) 
repair machinery of the cell to either incorporate short dsDNA oligos (ODN) (in genome-wide 
unbiased identification of DSBs enabled by sequencing, GUIDE-seq [194]), or integration-deficient 
lentiviral vectors (in IDLV capture [195,196]) at the genomic sites of DSBs, or to generate translocation 
junctions between emerging DSB ends and a bait DSB, exogenously introduced and then induced in 
the cell (translocation-capture sequencing (TC-Seq) and high-throughput genome-wide translocation 
mapping (HTGTS) or linear amplification-mediated (LAM)-HTGTS, and derived methods [197–200]). 
Afterwards, cells are lysed and DNA is isolated, followed by method-specific approaches for specific 
amplification or capture of integration or translocation junctions. Subsequently, sequencing libraries 
are prepared, and sequence reads are aligned to the genome, typically revealing breakpoint clusters 
genome-wide. (LEFT) In vitro methods for genome-wide DSB identification directly label DSB ends 
with a dedicated adapter—with or without prior DSB end processing—in fixed cells immobilized on 
a surface (Breaks Labeling In Situ and Sequencing, BLISS [201]) or fixed cell suspensions (Breaks 
Labeling, Enrichment on Streptavidin, and Sequencing, BLESS [122]), in unfixed cells embedded in 
agarose plugs or beads (END-seq [202] and i-BLESS [203], respectively), in isolated DNA (DSB-Seq 

Figure 2. Methods for genome-wide DSB profiling. (TOP) Proteins recruited to DSB sites—or associated
with DSB formation—serve as a proxy for DSB formation. Chromatin containing the protein of
choice is pulled down, and the extracted DNA—representing the underlying genomic regions—can
then be analyzed by microarray (ChIP-chip) or high-throughput sequencing (ChIP-seq) [183,187].
The resolution of the generated binding profiles typically depends on the chosen protein. (RIGHT)
Methods for in vivo capturing of DSBs utilize the non-homologous end-joining (NHEJ) repair
machinery of the cell to either incorporate short dsDNA oligos (ODN) (in genome-wide unbiased
identification of DSBs enabled by sequencing, GUIDE-seq [194]), or integration-deficient lentiviral
vectors (in IDLV capture [195,196]) at the genomic sites of DSBs, or to generate translocation junctions
between emerging DSB ends and a bait DSB, exogenously introduced and then induced in the
cell (translocation-capture sequencing (TC-Seq) and high-throughput genome-wide translocation
mapping (HTGTS) or linear amplification-mediated (LAM)-HTGTS, and derived methods [197–200]).
Afterwards, cells are lysed and DNA is isolated, followed by method-specific approaches for specific
amplification or capture of integration or translocation junctions. Subsequently, sequencing libraries
are prepared, and sequence reads are aligned to the genome, typically revealing breakpoint clusters
genome-wide. (LEFT) In vitro methods for genome-wide DSB identification directly label DSB ends
with a dedicated adapter—with or without prior DSB end processing—in fixed cells immobilized on a
surface (Breaks Labeling In Situ and Sequencing, BLISS [201]) or fixed cell suspensions (Breaks Labeling,
Enrichment on Streptavidin, and Sequencing, BLESS [122]), in unfixed cells embedded in agarose plugs
or beads (END-seq [202] and i-BLESS [203], respectively), in isolated DNA (DSB-Seq [126]), or isolated
DNA in agarose plugs (Break-seq [204]). After labeling, DSB ends are selectively linearly amplified
by in vitro transcription enabled by the BLISS adapter in BLISS. In the other methods, DSB ends
are captured onto streptavidin beads that selectively capture the biotin-labeled DSB ends, and then
amplified. Finally, sequencing libraries are prepared and the resulting mapped sequence reads reveal
single DSB ends distributed genome-wide.
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Table 1. Methods for genome-wide nucleotide-resolution DSB identification.

Method Detection Main Features Sample (Input) Reported Applications

GUIDE-seq [194] Indirect In vivo incorporation of
dsODN through NHEJ.

Transfected live
cells

• Specificity of Cas9 and Cpf1
[194,206]

IDLV capture [195] Indirect

In vivo random
incorporation of

integration defective
lentiviral vectors, through

NHEJ.

Transduced live
cells

• Cas9 and TALEN specificity
[195,196,205]

TC-Seq [200,207],
(LAM-) HTGTS

[197,199],
and3D-proximity

based break joining
assay [208]

Indirect

Sequencing of
translocation products

between DSBs ends and a
bait DSB, produced via

NHEJ.

Live cells treated
to induce

translocations

• Cas9 specificity [198]
• Replication stress and

transcription-associated DSBs
[124,129]

• Translocations in B lymphocytes
[197,200]

• DSB clusters in NSPCs [208]

ChIP-chip and
ChIP-seq

[183,187,188]
Indirect

Capture of chromatin
marked by DSB markers or

associated with
DSB-inducing enzymes.

Fixed cells (at
least 107)

• Replication-stress DSBs in yeast
[183]

• AsiSI-induced DSB processing
[187,209]

• Transcription-associated DSBs
[210]

BLISS [201] Direct

In situ blunting and
ligation of an adapter

containing a T7 promoter,
UMI and sample barcode.
IVT to selectively, linearly

amplify DSB ends.

Fixed cells or
tissue sections (at

least 103 cells)

• Etoposide-induced DSBs,
natural DSBs in cells and tissues,
and Cas9 and Cpf1 specificity
[201]

• AsiSI-induced DSBs in DIvA
cells [211]

BLESS [122] and
i-BLESS [203] Direct

In situ or in agarose
blunting and ligation of

biotinylated adapters. DSB
capture on streptavidin,
then PCR amplification.

Fixed cells (at
least 106) for

BLESS, i-BLESS
can use

non-fixed cells

• Replication stress-induced DSBs
in mammalian cells [122]

• Cas9 specificity [210,212]
• Rare DSBs in yeast [203]

DSBCapture [125] Direct

In situ blunting and
A-tailing, ligation of

adapters with Illumina
sequences.

Fixed cells (at
least 106)

• DSBs at G-quadruplex-rich
regions, active genes and
transcription start sites [125]

End-Seq [202] Direct

In vivo blunting and
A-tailing in agarose plugs.

Labeling with adapters
that contain Illumina

sequences.

Live cells (at
least 107)

• AsiSI-induced DSBs, resection
mapping, RAG specificity [202]

• Etoposide-induced DSBs at loop
anchors, with and without
transcription inhibitors [74]

Break-Seq [204] Direct

Biotin labeling of DSB
ends in HMW gDNA in

agarose, then capture and
sequencing.

Live cells
embedded in
agarose (106)

• DSB peaks in yeast, to overlap
with fork progression during
replication stress [204]

DSB-Seq [126] Direct

Biotin labeling of DSB
(and SSB) ends in HMW
gDNA, then capture and

sequencing.

500 µg HMW
gDNA (extracted

from 108 cells)

• Etoposide-induced DSBs in
human colon cancer cells [126]

• Can be combined with SSB-Seq
[126,213]
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Table 1. Cont.

Method Detection Main Features Sample (Input) Reported Applications

dDIP [214] and
DBrIC [215] Direct

Biotin labeling of DNA
ends in gDNA, then IP

and qPCR.

0.5–1 µg
extracted DNA

• In vitro DSB on a plasmid and
induced DSBs and telomeres in
yeast [214]

• I-sceI induced and genome-wide
DSBs in HeLa cells [215]

• DSB hotspots during chromatin
remodeling in mouse
spermatids [216]

HCoDES [217] Direct
Hairpin capture of

ssDNA-ligated DSB ends,
then PCR and sequencing.

10 µg gDNA for
ssDNA ligation

• 5′ and 3′ end analysis of DSBs by
RAG, Cas9 and zinc finger
endonucleases, and DSBs in G1
repair-impaired lymphocytes
[217]

6.2. Methods for In Vivo DSB Capture

Among the earliest in vivo capture approaches for genome-wide identification of DSBs
is integration-defective lentiviral vector (IDLV) capture. IDLV employs in vivo NHEJ-assisted
incorporation of lentiviral vectors into DSB sites, which are then amplified by linear amplification-
mediated PCR (LAM-PCR) and sequenced [195,196]. IDLV has been applied to detect DSBs
introduced by zinc finger nucleases [195], transcription activator-like effector nucleases (TALENs) [196],
and CRISPR/Cas9 nucleases [196,205]. Limitations of IDLV capture include integration of the IDLV at
varying distances from the actual break site, low detection frequency, sequence bias, low numbers of
informative reads, and high costs [194,199].

In order to overcome some of these limitations, genome-wide unbiased identification of DSBs
enabled by sequencing (GUIDE-seq) was developed [194]. Similar to IDLV capture, GUIDE-seq
labels DSBs in vivo via NHEJ-mediated integration of short blunt dsDNA oligodeoxynucleotides
(ODNs) at the site of a DSB, after which ODN-labeled genomic regions are amplified and sequenced.
GUIDE-seq was established to assess Cas9 and Cpf1 specificity, and is considered to be a highly
sensitive and precise method that enables the identification of DSBs that form during a period of
several days [194,206]. In GUIDE-seq, identification of a DSB end critically depends on the cell’s NHEJ
repair machinery to ligate the blunt ODN to a given DSB end, as well as on the transfection efficiency.

Rather than identifying DSBs genome-wide via local insertion of an ectopic sequence, several
groups have developed techniques that exploit the inherent threat of DSBs being converted into
genomic translocations. Translocation-capture sequencing (TC-Seq) [200,207] and high-throughput
genome-wide translocation mapping (HTGTS) [197] were developed around the same time, and both
methods indirectly identify DSB ends through translocation junctions formed in vivo with a bait
DSB, introduced at an ectopically integrated I-SceI endonuclease recognition site. After amplification
by conventional PCR or LAM-PCR [198,199], the bait–prey junctions are sequenced. HTGTS and
TC-Seq were both applied to identify translocation junctions in B lymphocytes induced for IgH
class-switching [197,200], while LAM-HTGTS was also used to assess Cas9 specificity [198]. Moreover,
LAM-HTGTS has been harnessed to uncover transcription-associated DSBs in neuronal cells upon mild
replicative stress [124,129], and the method has been tailored to uncover antibody repertoires generated
during V(D)J recombination in B cells [218]. While the sensitivity of HTGTS methods is biased by the
distance of a DSB to the bait—with nearby DSBs translocating with higher efficiencies—LAM-HTGTS
was recently further improved by introducing DSB baits on twenty different mouse chromosomes via
CRISPR/Cas9. This enabled identification of a more complete set of DSBs as well as appreciation of
translocation preferences [208].

Although more direct and with higher resolution compared to ChIP-seq, the applicability of IDLV,
GUIDE-seq, and HTGTS-based methods is limited by the need for transfection or transduction to enable
integration or translocation. This can become especially disadvantageous when aiming to map DSB
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landscapes in primary cells or tissues, with poor or unknown transfection efficiency and possibly toxic
effects of transfection or transduction. Furthermore, as these methods critically depend on active DSB
repair, their applicability may be limited when working with cells with impaired DSB repair pathways,
such as cancer cells. In IDLV, GUIDE-seq, and HTGTS-based methods, all identified DSB sites have
undergone active repair, either locally, with ODN or IDLV sequences being integrated into the broken
site, or over larger distances, with translocations onto the DSB bait in HTGTS. This suggests that the
identified DSB sites only represent a subgroup of all the DSBs present at a given moment—those that
are actively but not faithfully repaired. DSBs that are mostly perfectly and rapidly repaired, for example
those induced by TOP2 at promoters, may be largely missed. Furthermore, translocation-based DSB
identification methods such as HTGTS can only uncover DSBs in genomic regions that are prone to
translocate, and can thus underestimate the actual DSB frequency and the propensity of certain DSBs
to give rise to genomic alterations different from translocations. In line with this, the dependency of
DSB detection methods on NHEJ repair implies that these methods can miss DSBs repaired through a
different pathway [199].

6.3. Methods for In Vitro Tagging of DSBs

The first method to directly capture and identify DSBs in fixed cells in situ was Breaks
Labeling, Enrichment on Streptavidin, and Sequencing (BLESS) [122]. BLESS captures DSBs by
ligating short biotinylated hairpin-like adapters to blunted DSB ends, followed by capture on
streptavidin beads, second adapter ligation, PCR and sequencing. BLESS was applied to identify
endogenous and replication stress-induced DSBs [122], and to determine the specificity of CRISPR
endonucleases [210,212]. Although BLESS does not depend on transfection or NHEJ repair, its
labor-intensive protocol requires large amounts of input material and cell fixation, which has been
related to the observed high background levels of DSBs [194,199,201]. Recently, two improvements to
the original BLESS protocol were described: i-BLESS for highly sensitive unbiased DSB labeling in
yeast immobilized in agarose beads [203], and qDSB-seq, enabling normalization of DSB frequency in
a sample by spiking in cells in which DSBs were introduced at I-SceI sites [219].

Two years prior to BLESS, a method for direct labeling of DNA ends in yeast was published.
In contrast to BLESS, damaged DNA immunoprecipitation (dDIP) [214]—among the first methods
to generate a nucleotide-resolution map of DNA strand breaks in yeast—does not label DSBs in
situ, but in extracted genomic DNA (gDNA). dDIP encompasses end-labeling with biotinylated
nucleotides, followed by DNA fragmentation, IP with anti-biotin antibodies, and read-out by qPCR
although NGS was also proposed. DNA break immunocapture (DBrIC) applies a similar strategy for
immunocapture of DSB ends from gDNA and followed by NGS [215]. Initially, DBrIC was used to
demonstrate locus-specific and genome-wide DSBs in human cancer cells. More recently, the approach
was harnessed to profile DSB hotspots during the transient genome fragmentation that accompanies
post-mitotic chromatin remodeling in mouse spermatids [215,216].

Biotin labeling of the 3’ ends of DSBs in isolated high-molecular-weight (HMW) gDNA is also
performed in DSB-Seq [126,213], but rather than capture via biotin IP as in dDIP, DSB-Seq exploits
the high biotin-streptavidin affinity to capture the labeled ends, which is followed by NGS. Unlike
BLESS and most other methods, DSB-Seq can be complemented with the identification of SSBs
via SSB-Seq, in which SSBs are tagged by nick translation, captured by immunoprecipitation, and
sequenced [126,213]. DSB-Seq and SSB-Seq were applied to map DSBs induced by replication stress
using the TOP2 poison etoposide. A major limitation of dDIP, DBrIC, and DSB-Seq is that tagging
DSB ends in extracted gDNA may result in increased levels of artificial breaks. This is bypassed in
Break-seq, in which isolated chromosomal DNA is embedded into agarose prior to DSB end-repair and
biotin labeling [204], after which labeled extracted DNA is captured with streptavidin and sequenced.
Break-seq was applied to identify DSB peaks overlapping with DNA replication origins, and to relate
DNA fragility to replication fork progression and transcription during and after replication inhibition
in yeast [204].
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Aiming to overcome some of the limitations of BLESS, DSB-seq, and Break-seq, DSBCapture [125]
and END-seq [202] were developed. Both methods feature an A-tailing step after blunting of DSB ends,
and incorporate the Illumina RA5 adapter sequence directly into the ligated adapter. DSBCapture
was applied to identify AsiSI-digested sites as well as endogenous DSBs at regulatory sites and G-rich
regions, and revealed that persistent DSBs can be identified under physiological conditions, despite
the presence of an intact DDR [125]. In END-seq, besides the adapter improvements mentioned
above, DSB labeling is carried out in cells embedded and lysed inside agarose plugs, avoiding cell
fixation, which can allegedly cause artificial DSBs [202,220], although a recent study reported very low
noise levels in gently fixed samples [203]. END-seq was applied to map AsiSI-induced DSBs and to
determine the specificity of DSBs introduced by zinc-finger nucleases, RAG endonucleases involved in
V(D)J recombination, and CRISPR-Cas enzymes. Compared to BLESS, END-seq is reported to be more
specific and sensitive, and to better preserve the structure of DSB ends [202].

To improve the sensitivity and specificity of BLESS, Breaks Labeling In Situ and Sequencing (BLISS)
was recently developed [201]. In BLISS, the DSB-labeling adapter contains a T7 promoter sequence,
allowing linear amplification of labeled DSB ends by in vitro transcription, and a sample barcode and
unique molecular identifier (UMI) to enable high-throughput multiplexing and quantification of DSB
ends. T7-mediated amplification helps to overcome the need for streptavidin-mediated pull-down
of biotinylated DSB ends, which reduces the required amount of input material. As BLISS can label
DSBs in cells or tissue sections immobilized and fixed onto a solid surface, the input requirements
are further decreased, making BLISS particularly suitable for studies of genome fragility in clinical
specimens [201,221]. BLISS was applied to identify endogenous and exogenous DSBs in cultured cells
and tissue sections, as well as to chart the specificity of the RNA-guided endonucleases Cas9 and
Cpf1 [201], and Cpf1 variants engineered to recognize alternative protospacer adjacent motifs [222].
Furthermore, BLISS has been used to assess AsiSI-induced DSBs and their repressive effect on gene
expression in the DSB inducible via AsiSI (DIvA) human cell line [211].

Since the structure of DSB ends is believed to affect DSB repair pathway choice [223],
DSB identification approaches that apply DSB end blunting prior to adapter ligation, and especially
those that apply formaldehyde fixation [202], are at risk of altering the original and potentially
informative structure of DSB ends. To specifically study DSB end structures and to unravel the
activities of DSB repair pathways in protecting DSB ends, hairpin capture of DNA end structures
(HCoDES) was developed [217], in which DSB ends are treated with ssDNA ligase to form hairpins
that allow PCR-based amplification and subsequent sequencing to analyze the precise 5′ end and 3′

end position of both strands.

6.4. On Assay Choice

From the previous two sections it becomes clear that a variety of methods is now available for
generating genome-wide DSB maps, with DSB ends identified at (near-)nucleotide resolution (Table 1).
However, navigating the different methods and their differences and advantages can be complicated
and overwhelming. Ultimately, assay choice should be steered by the specific research question and the
characteristics of the sample to be profiled. To map endogenous DSBs, the differences between mapping
DSBs over a period of several hours and based on repair, versus generating a snapshot of all DSBs
including very transient ones, as well as intermediates of DSB repair or replication fork remodeling,
should be considered. As discussed above, IDLV and especially GUIDE-seq or HTGTS can be great
choices for mapping of induced DSB sites, recurrent DSBs and DSB hotspots, but their applicability
for the profiling of endogenous genome-wide fragility or fragility related to transcription stress may
be somewhat limited by the need for transfection and the time-range required for introduction of
the IDLV or ODN sequence or translocation. In relation to this, when repair speed and accuracy at
endogenous DSB sites are expected to be high, these methods may specifically miss a considerable
amount of endogenous DSB events. Yet, even though genome-wide methods for in vitro tagging of
DSB ends are less biased by differences in the type and outcome of the pathways that engage in repair,
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they can be affected by genome-wide differences in accessibility for DSB blunting and end labeling or
adapter ligation, for example.

When resources permit and when not restricted by cell number or the nature of a clinical specimen,
the combination of a genome-wide assay with nucleotide resolution, such as BLISS, with a repair-based
assay such as HTGTS, could help to place the results in a broader context. Together, these assays
may provide a complementary picture in which both the fragility at a certain moment and then those
DSBs able to engage in translocations or insertions over a period of time can be assessed. However,
when working with clinical specimens where cell numbers are generally limited and transfectability
may be suboptimal and variable between successive samples, it may be favorable to work with cell
fixation and in vitro tagging of DSBs.

Another important aspect worth considering is how the generated data will be analyzed to
grasp the factors that shape the genome-wide landscape of DSB frequency and distribution in a
particular cell type. Fragility scores can for example be correlated to maps of replication timing,
transcriptional activity, or chromatin accessibility, preferentially generated in parallel on the same cell
type. Furthermore, the frequency of DSB events can be analyzed in light of genome-wide maps of
R-loops generated with DNA-RNA immunoprecipitation combined with sequencing (DRIP-seq) [224],
binding of transcription or architectural factors created with (exo-)ChIP-seq, and 3D genome folding or
nuclear organization, for instance assessed with (capture) Hi-C [225,226] or DamID technology [227].

7. Concluding Remarks and Outlook

7.1. Conclusions and Additional Remarks

In this review, we have highlighted several endogenous processes that can lead to the formation
of DSBs—either planned or as a result of local disturbances. Furthermore, although some endogenous
DSBs play vital physiological roles—for example, in the context of planned genomic recombination,
transcription, or replication fork rescue—any type of DSB represents a threat to the stability of the
genome when faithful repair fails. The variety of methods to profile DSBs discussed in Part II, as well
as their diverse applications, illustrates the complexity and diversity of the field of DSB identification,
especially when one considers that genome-wide nucleotide-resolution methods only represent one of
several angles to approach DSB biology.

7.1.1. Integrative Approaches and Confounding Factors

In the years to come, to deepen our understanding of variation in DSB susceptibility and cellular
implications, integrative approaches will be needed to help decipher how genome-wide landscapes of
endogenous DSBs, mapped through one of the methods outlined above (Table 1), are shaped by and/or
shape the underlying transcriptome, epigenome, 3D genome, and, possibly, the compartmentalized
context of the nucleus. While the genome-wide DSB frequency, distribution [122], and repair
rate [228] differ between underlying causative processes, these will in turn also be affected by
the spatiotemporally varying architecture of the genome and cell cycle dynamics. Importantly,
many factors associated with genome-wide fragility, including DNA replication and transcription,
are inherently interconnected, and correlate to underlying genomic and epigenomic features across
multiple genomic scales, such as gene density, GC levels, and DNase I hypersensitivity [229]. Hence,
understanding the relative impact of a given feature on DSB susceptibility is complicated by potential
confounding factors [230], and fragility should be approached as a probabilistic outcome. In the next
paragraphs, we will briefly touch upon two features that relate to the observed fragility landscapes
and to the possible long-term consequences of repair outcome: clustering of DSBs and repair
pathway choice.
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7.1.2. Compartmentalized DSB repair

In addition to certain genomic regions being more prone than others to form DSBs under specific
conditions, the possibility of compartmentalized DSB repair and the sequestering of some DSBs to
dedicated nuclear regions in mammalian cells is now emerging [231–234]. For example, using capture
Hi-C [225,235] to assess the genomic surroundings and clustering of DSBs induced by the AsiSI
endonuclease, clustering was observed in the case of DSBs induced in transcriptionally active genes
during G1, and cluster formation was associated with delayed DSB repair [233,236]. Large 53BP1 and
γH2AX clusters have also been observed upon mild replication stress in human fibroblasts [237,238],
and re-localization of DSBs in heterochromatin to the nuclear periphery—to enable safe HR repair—was
recently further elucidated in Drosophila [239,240].

DSB repair compartmentalization might allow for spatiotemporal uncoupling of different DSB
repair pathways in a cell cycle phase-dependent manner [231,241], potentially acting to suppress
genomic rearrangements between juxtaposed repetitive chromosomal domains. Related to this,
the choice of DSB repair pathway is controlled by multiple factors, including cell cycle phase and
proliferative state, as well as local chromatin composition [209], and by the severity and nature of the
DSBs [242]. Interestingly, a recent attempt to quantify the kinetics and fidelity of repair of DSBs induced
by the Cas9 nuclease revealed that—in this context—DSB repair is variably slow and surprisingly
error-prone [228]. Although these findings may not be directly representative of endogenous DSBs,
the presented approach can serve as an inspiration for future studies of repair pathway choice, rate,
and fidelity.

7.1.3. Studying DSB Biology at Ectopically Induced Genome-Wide DSB Sites

Although endogenous DSBs can be induced by cell stimulation with hormones or transcription
factors, or by applying mild replication stress, the effects on fragility are generally not homogenous
throughout the cell population, which makes it challenging to draw general conclusions about their
effects on transcription or repair. While not valid as endogenous DSBs, the frequently used cell system
DIvA [187] and its auxin-inducible degron variant (AID-AsiSI-ER, to rapidly degrade AsiSI and allow
DSB repair) [243], have elegantly enabled assessment of the chromatin surrounding the over one
thousand AsiSI cut sites, and have helped to pave the way towards better understanding of DSB
biology. For instance, a recent study uncovered preferences of different DSB repair pathways as well
as chromatin alterations around the most frequently digested AsiSI sites using ChIP-seq [209,243].
While this system presents a powerful tool to study genome-wide effects of DSB formation on
transcription of nearby genes, repair, 3D genome organization and many more nuclear processes,
a downside is that many of the AsiSI sites in the genome cannot be efficiently cut, and even for the
most frequently successfully digested sites, digestion frequency is probabilistic and not uniform across
the cell population.

To our knowledge there is, at present, no method that allows for 100% efficiency of DSB induction
at defined sites in the human genome. Although RNA-guided endonucleases are an arguable exception,
it has been suggested—as mentioned above—that the cellular response to CRISPR/Cas9-induced DSBs
may not be indicative of regular repair of endogenous DSBs [228]. In line with this, also the events
observed at the AsiSI sites introduced in DIvA cells may not fully recapitulate the same processes that
occur upon endogenous DSB formation. Yet, both of these approaches are highly valuable to broaden
our knowledge of DSB biology in the context of the nucleus.

Furthermore, we envision methods that combine identification of endogenous DSBs with,
for example, concurrent assessment of local features such as protein identity or 3D genomic
neighborhoods. Another venue of future technology development will be the implementation of
combinatorial assays to simultaneously map DSBs and key epigenomic features in the same sample
and even single cells, over time. In line with this, single-cell approaches to DSB identification will not
only be key to deciphering cell-to-cell variation in fragility landscapes, repair outcomes, and genome
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folding, but also to helping advance our knowledge of the heterogeneous nature of DSB landscapes in
cancer cells and tumor populations underlying tumor evolution.

7.2. Open Questions in the Field and Outlook

Despite the variety of assays available to map genome-wide DSB landscapes, several issues have
not been solved so far. As pointed out previously [121], due to the genome-wide nature of these assays,
the focus is mostly on sites that form recurrent DSBs. Even when single-cell DSB profiling could be
performed robustly, single DSBs would not be easily identified above the background. Furthermore,
whether DSB profiling is applied to endogenous or exogenous DSBs, the effect of noise—as well as
the absence of a proper notion of what may be considered as background signal—is hard to work
around, and low-abundance yet recurrent or pathological DSBs may be masked. Although different
assays have their specific caveats, the community would benefit from a reference standard to which all
mapped landscapes of DSBs can be compared, and on which novel and existing assays can be tested in
addition to regular validation assays [121].

In line with the emerging relevance of repair signatures in cancer genome studies, exploring
the levels of ongoing genome fragility by mapping DSBs directly in clinical specimens might
provide new insights into the mechanisms that shape cancer genomes and their evolution. Ongoing
fragility underlies most of the future CNAs and SVs, and especially in the context of a cancer cell,
DSB landscapes may hold clues on highly fragile regions that underlie rearrangements frequently
associated with a tendency to metastasize. In line with that, comparing DSB profiles with the landscape
of rearrangements at a later timepoint during tumor evolution, as recently attempted [244], will be
instrumental for a better understanding of how DSBs are converted into rearrangements that fuel
tumor progression.
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