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ABSTRACT: Macrocycles are of considerable interest as highly specific drug
candidates, yet they challenge standard conformer generators with their large
number of rotatable bonds and conformational restrictions. Here, we present a
molecular dynamics-based routine that bypasses current limitations in conforma-
tional sampling and extensively profiles the free energy landscape of peptidic
macrocycles in solution. We perform accelerated molecular dynamics simulations
to capture a diverse conformational ensemble. By applying an energetic cutoff,
followed by geometric clustering, we demonstrate the striking robustness and
efficiency of the approach in identifying highly populated conformational states of
cyclic peptides. The resulting structural and thermodynamic information is
benchmarked against interproton distances from NMR experiments and
conformational states identified by X-ray crystallography. Using three different
model systems of varying size and flexibility, we show that the method reliably
reproduces experimentally determined structural ensembles and is capable of identifying key conformational states that include
the bioactive conformation. Thus, the described approach is a robust method to generate conformations of peptidic macrocycles
and holds promise for structure-based drug design.

■ INTRODUCTION

Macrocycles are an intriguing compound class, as they promise
to address long-standing druggability challenges such as
protein−protein interfaces with remarkably high affinity.1−3

Especially peptidic macrocycles show significantly increased
activity and bioavailability compared to their acyclic counter-
parts.4 The advantages of peptidic macrocycles were demon-
strated for several challenging drug targets, such as the HIV-1
protease,5,6 where the cyclization of peptidic compounds
increased their affinity by up to 4 orders of magnitude. The
striking affinity enhancement due to macrocyclization, which
has been observed repeatedly, is proposed to originate from a
structural preorganization:6−8 In macrocyclic compounds, the
ring closure reduces the accessible conformational states which
ideally would be able stabilize the peptide in its bioactive
conformations. Following the concept of conformational
selection, this shift of state populations toward the active
state favors binding.9 However, in case the macrocyclization
stabilizes a nonbioactive conformational state in solution, it
could also slow down binding. Additionally, the conformational
restraints decrease the loss in conformational entropy upon
binding, which contributes to the increased affinities found for
macrocyclic compounds.10

Hence, macrocycles are among the most promising
compound classes in the “beyond-rule-of-5” orally available
drug space.4,11−13 Peptidic macrocycles in particular benefit

from the conformational restraints, which allow them to bypass
the fast proteolytic degradation observed for their acyclic
analogs.14 Peptidic macrocycles are typically characterized by a
large polar surface area, which presumably hinders membrane
permeability.15 Nevertheless, it has already been demonstrated
that the exceptional structural characteristics of peptidic
macrocycles can allow considerably high permeability and
bioavailability.16,17 In the prominent case of cyclosporine A, the
observed permeability is attributed to a particular N-
methylation pattern which promotes a conformational switch
upon changes in solvent polarity.18−21 Several other studies on
varying model systems also reported a remarkable permeability
and metabolic stability for macrocyclic peptides with rigidified
scaffolds.6,22

To perform rational drug design, a reliable and extensive
description of the conformational space of putative ligands is
vital.23,24 For peptidic macrocycles, this task is particularly
important as their benefits in selectivity and bioavailability
originate from the exceptional characteristics of their structural
ensembles.25 Hence, a computational characterization of their
conformational space may significantly aid the drug develop-
ment process for macrocyclic compounds.
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Several comprehensive studies demonstrated that standard
algorithms to generate small molecule conformations fail to
sample physically meaningful ensembles of macrocycles.26,27

Hence, dedicated macrocycle conformation generators were
developed, but some challenges yet remain.14,28,29 While these
state-of-the-art algorithms excel in creating a diverse ensemble
of macrocycle conformations, they are typically not designed to
provide reliable thermodynamic insights.14,30,31 Peptidic macro-
cycles are particularly challenging even for dedicated macro-
cycle conformation generators due to their unique structural
preferences, dynamics, and biophysical properties.14,30,32

However, a recent study demonstrated the reliability of current
force-field-based sampling techniques by elucidating several key
features defining the conformational space of peptidic macro-
cycles.32 Also other force-field-based studies applying enhanced
sampling techniques, such as metadynamics33,34 and replica-
exchange MD,35 to characterize the structural ensemble of
cyclic peptides showed highly promising results.36−38

In the present work, we show accelerated molecular
dynamics (aMD) simulations39 to be a strikingly reliable tool
to gather a diverse and thermodynamically meaningful
conformational ensemble for peptidic macrocycles. In aMD
simulations, the introduction of a bias potential decreases the
height of the barrier between individual conformational states.
Thus, aMD simulations sample the conformational space more
efficiently than conventional MD (cMD) simulations, yet allow
the recalibration to the “real” phase space potential energy
surface (PES).40−42 Two further advantages of aMD simu-
lations are that no prior knowledge of the PES is required and
that the computational effort is comparable to cMD
simulations. The approach is well established as demonstrated
in several studies where aMD simulations capture diverse
conformational ensembles of biomolecules while preserving the
thermodynamic information on the original PES.43−47

For this first evaluation of the proposed aMD-based
approach, we exclusively considered data from NMR experi-
ments in aqueous solution. An enhanced understanding of
macrocycles in aqueous solution is urgently needed to enhance
our understanding of conformational preorganization for
binding. Despite the great interest in macrocyclic peptides as
potent drug candidates, we found that the available
experimental data on their structural ensembles in aqueous

solution are rather sparse, probably due to their limited
solubility in water.48

Additionally, organic solvents still hold numerous challenges
in MD-based computational modeling. There is much less
experience for MD simulations in explicit organic solvents
compared to water, which results in a limited reliability of
available force field parameters.49−51 Moreover, the correlation
times, which describe the time scale needed for molecular
reorientation, are much longer for organic solvents than for
water, and thus the necessary simulation time increases
significantly.52

To keep the computational effort tractable, we further
restricted the size of our model systems to a maximum of 12
rotatable bonds, corresponding to 6 amino acid residues. We
profile the conformational space of three different cyclopeptidic
model systems of varying size, flexibility, and available
experimental data (Figure 1). The first system studied is the
integrin-binding pentapeptide cyclo-(Pro-Ser-leu-Asp-Val)53 for
which NOE restraints in aqueous solution and the relative
prevalence of two of its major components, a cis- and a trans-
proline state, were reported.54 Furthermore, we characterize the
structural ensemble of the cyclic pentapeptide cilengitide, cyclo-
(Arg-Gly-Asp-phe-[(N-Me)-Val]). Cilengitide has been studied
as an anticancer drug candidate and its conformational space in
aqueous solution as well as its target-bound structure have been
thoroughly characterized using NMR and X-ray crystallog-
raphy.55−57 The third system is the antimicrobial hexapeptide
cyclo-(Arg-Arg-Trp-Trp-Arg-Phe)58 for which comprehensive
NMR data in aqueous solution were kindly provided by Peter
Schmieder.59

The scope of present study is to evaluate the accuracy of the
enhanced sampling approach in reproducing structural features
and relative state ratios.

■ METHODS
Structure Preparation. All structures were generated and

prepared in Molecular Operation Environment (MOE)
2016.0860 using the implemented protonate3D tool.61 For
the cis and trans state of the cyclic pentapeptide cyclo-(Pro-Ser-
leu-Asp-Val), starting conformations were constructed based on
published backbone torsions using the “Protein Builder” tool in
MOE. Starting coordinates of cilengitide were obtained by

Figure 1. Studied peptidic macrocycles. (1) The integrin-binding pentapeptide cyclo-(Pro-Ser-leu-Asp-Val), where ωVal‑5, (the peptide bond between
Val-5 and Pro-1) distinguishes the cis- and trans-proline state, (2) the anticancer drug candidate cyclo-(Arg-Gly-Asp-phe-([N-Me]Val)), known as
cilengitide, and (3) the antimicrobial hexapeptide cyclo-(Arg-Arg-Trp-Trp-Arg-Phe).
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isolating the macrocycle from the complex X-ray structure
(PDB 1L5G).57 To reduce a possible bias introduced by the
starting structure, a geometry optimization in vacuum was
performed using the Amber10:EHT force field and default
settings. This yielded a starting conformation with a backbone
RMSD of 1.0 Å (2.6 Å all atom RMSD) to the crystal structure
(Figure S2). For the simulations of the cyclic hexapeptide
cyclo-(Arg-Arg-Trp-Trp-Arg-Phe), we started from an unpub-
lished NMR structure kindly provided by Peter Schmieder.58,59

Simulation Setup. MD simulations were performed and
analyzed using the Amber16 simulation package.62 We used the
program tleap to generate an Amber topology and initial
coordinate files.62 The starting coordinates of the macrocycles
were prepared as described above, then a octahedral box of
TIP3P waters63 was added so that every macrocycle atom was
at least 12 Å from the box boundary. The three model systems
were parametrized using the Amber force field 14SB;64

additional parameters for N-methylated amino acids were
taken from Forcefield_NCAA.65 A thorough equilibration
scheme was applied as described previously66 to minimize
and relax the system. NpT MD simulations were run at
atmospheric pressure, by applying the Berendsen barostat,67

and 300 K using the Langevin thermostat.68 The SHAKE
algorithm69 was applied to restrain all bonds involving
hydrogens, allowing a time step of 2 fs. Productive cMD and
aMD simulations of 1 μs length were performed using the GPU
implementation of pmemd70 with a nonbonded cutoff of 8 Å
and stored as 500,000 equally spaced snapshots. For cilengitide,
20 aMD simulations of 50 ns each (25,000 frames) were run
with randomized starting velocities and combined to a 1 μs
trajectory for further analysis. In Figure S1 we illustrate that we
are not able to capture significant structural changes with the 1
μs cMD simulation using cyclo-(Pro-Ser-leu-Asp-Val) as a
representative example.
All aMD simulations were performed using the dual-boost

algorithm implemented in Amber16,62 thus a bias was applied
on the total potential with an additional boost on the dihedral
term.39,71 The parameters determining the boosting were
derived as proposed by Pierce et al.42,43 based on average
energies from prior cMD simulations, the number of atoms and
residues, and are listed in the Supporting Information.
Trajectory Analysis. Thermodynamic information on the

unbiased ensemble is reconstructed from the aMD ensemble
with Boltzmann reweighting using Maclaurin series expansion
up to the 10th order.40 For small biasing potentials, which
exactly show Gaussian distribution, the cumulant expansion to
the second order produces the most accurate results.40,72 For
large biomolecular systems and high boosting potentials,
Maclaurin series expansion is the more robust method.42,43,73

To sample the state transitions in the studied macrocycles, we
applied parameters that are expected to achieve high boosting
potentials, and thus Maclaurin series expansion was used to
estimate the exponential term in the reweighting scheme.
The aMD trajectories are analyzed with cpptraj74 and in-

house scripts. A protocol provided by Miao et al.40 was applied
to perform the Boltzmann reweighting. For each system, the
covered conformational space was analyzed by performing
principal component analysis (PCA) based on the backbone
dihedral angles φ, ψ, and ω as implemented in cpptraj.
Likewise, also principal components based on Cartesian
coordinates of backbone heavy atoms were calculated (Figure
S1). For the studied macrocycles, we found that PCA in
Cartesian space leads to a less distinct representation of highly

populated states compared to dihedral PCA. Additionally, we
characterized the internal motions using the eccentricity ε75 as
a global variable for each snapshot. A value of ε near 1 describes
an aspherical compound and 0 indicates perfect globularity. As
shown in Figure S3 we find that this metric is able to capture
the topological differences between the cis and trans state of
cyclo-(Pro-Ser-leu-Asp-Val). Yet, similar to the Cartesian PCA,
the differentiation between densely sampled states is not as
distinct as observed in the dihedral PCA space. Therefore, for
further investigations we used the representation of the
structural ensemble in dihedral space.
The resulting PCA plots of the reweighted structural data

projected on the respective eigenvectors were created using
Gnuplot 5.0.76 To study varying structural properties, dihedral
angles and backbone RMSD to the bioactive conformation
were calculated with cpptraj and used to color-code the
projected data in PCA coordinates. Furthermore, reweighted
flexibilities were retrieved by calculating dihedral entropies
using in-house scripts.43 Dihedral entropies are an alignment-
independent metric to quantify backbone motions of proteins
and peptides and have been shown to be applicable for cMD as
well as aMD simulations.43,77

To simplify the clustering, we benchmarked the minimum
number of representative snapshots required to achieve reliable
and coherent results. We applied an energetic cutoff based on
the boosting potential discarding high-energy conformations.
For the studied systems, we found that incorporating 2000
snapshots, that is, 0.4% of the total number of snapshots,
significantly reduces the calculation time and increases
robustness of cluster analysis compared to using all 500,000
snapshots. We found that including only snapshots with high
boosting potentials consistently leads to cluster representatives
that are located near the free energy minima in PCA space.
Height and distribution of the boosting potentials are strongly
varying for each system, hence so does the range of the
boosting potential of the top 2000 snapshots. For cyclo-(Pro-
Ser-leu-Asp-Val), the incorporated snapshots comprise boost-
ing potentials from 31 to 49 kcal/mol, and for cilengitide, this
window ranges from 27 to 42 kcal/mol and for the largest
system cyclo-(Arg-Arg-Trp-Trp-Arg-Phe) from 31 to 51 kcal/
mol. The average interproton distances and asymmetric errors
calculated from the reduced ensemble are consistent with the
full ensemble. However, the optimal number of snapshots
entirely relies on the analysis objectives and is strongly
dependent on the system under investigation.
We conducted a hierarchical agglomerative clustering based

on the sine and cosine contributions of the backbone dihedrals
using cpptraj to accomplish a thorough structural character-
ization of representative conformations. The number of clusters
was used as a stop criterion for the clustering and was gradually
increased until at least one representative structure was found
for each free energy minimum in the reweighted PCA.
To compare the aMD ensemble to experimental NOE

measurements, we calculated an inverse sixth power ensemble
average of the reweighted hydrogen distances, as described in
the literature.78,79 The aMD reweighting procedure was
performed using a python toolkit by Miao et. al as described
above. An additional distance weighting, that is, the use of r−6

averaging is necessary to make aMD and NMR-derived
distances comparable.79 As expected, we observed that the
sampled NOE distances are not evenly distributed around the
average. To account for this asymmetric distance distribution,
we determined asymmetric error bars by separately calculating
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the population weighted RMSD from the mean NOE distance
for values above and below the mean.
Experimental References. Special care has to be taken

when comparing interproton distances from MD simulations

and NMR experiments. First of all, the sign of the NOE in
NOESY spectra depends on the correlation time of the
molecule. Particular unfortunate combinations of field strength
and molecular size can even lead to zero or near zero NOEs.

Figure 2. Conformational space of cyclo-(Pro-Ser-leu-Asp-Val). (A) The aMD ensemble was color-coded according to the reweighted free energies
and depicted as projection onto the first two PCA eigenvectors. (B) The 2000 most favorable snapshots, color-coded according to their
conformational state, were projected onto the same PCA eigenvectors. Structures with |ωVal‑5| ≤ 90° were considered as cis (blue) and the remaining
structures with |ωVal‑5| > 90° as trans state (red).

Figure 3. Comparison of interproton distances in Å from NOESY experiments and aMD simulations of the cis and trans state of cyclo-(Pro-Ser-leu-
Asp-Val). The gray diamonds indicate the experimentally estimated average distance. The allowed area within the NMR boundaries is depicted in
white. Average distances calculated from the aMD snapshots corresponding to the cis and trans state with the according asymmetric error bands are
shown in color.
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Thus, the measured NOE may be biased toward too long
distances or completely vanish even though two protons are
close in space.52,80 Furthermore, experimental NOE signals may
overlap and thus cannot be resolved.52,80 Hence, not all close
hydrogen distances observed in MD simulations are expected
to be found experimentally, but all experimental NOEs should
be present within a given range in our MD simulations.
Cyclo-(Pro-Ser-leu-Asp-Val). A comprehensive study char-

acterized the conformational ensemble of the cyclic pentapep-
tide cyclo-(Pro-Ser-leu-Asp-Val) using NMR experiments.54 In
the 1H-spectrum published in this work, five slowly
interconverting conformational states were identified, but
only two of them were sufficiently populated to distinguish
them in the NOESY spectrum. Hence, hydrogen distance
restraints and populations for two out of the five states were
reported, which were identified as cis- and trans-proline states
(Figure 1).
Cilengitide. Structure and activity of the integrin binding

peptide cilengitide have been thoroughly characterized in
several experimental studies.55,56,81 The available structural data
comprise distance restraints from ROESY experiments in
aqueous solution55 as well as a crystal structure of the cyclic
pentapeptide bound to its target integrin (PDB 1L5G)57

(Figure 1).
Cyclo-(Arg-Arg-Trp-Trp-Arg-Phe). Structural characteristics

of cyclo-(Arg-Arg-Trp-Trp-Arg-Phe) were profiled in an
extensive NMR study comprising 2D NOESY and ROESY
spectra in varying environments.58 To determine the structure
in aqueous solution, a simulated annealing protocol was applied
using ROE and NOE distance restraints as well as homonuclear
coupling constants. Based on the high number of NOE/ROE
violations and high RMSD values, the cyclic hexapeptide was
reported as a remarkably flexible macrocycle in water (Figure
1).

■ RESULTS

Cyclo-(Pro-Ser-leu-Asp-Val). To illustrate the sampled
conformational space, we performed a PCA. We found that

36.9% and 14.3% of the total variance of dihedral movements in
the simulation were described by PC1 and PC2, respectively. In
Figure 2A, the 1 μs aMD trajectory was projected onto the first
two principal component vectors (PC1 and PC2) and color-
coded according to the Boltzmann reweighted free energy. In
the conformational space spanned by PC1 and PC2, we found
at least three clearly separated free energy minima located
approximately at [−3, −0.5], [0.8, −0.5], and [0.8, 2.5].
As described in the Methods section, we were focusing on

the 2000 snapshots with the highest boosting potential, that is,
the snapshots with the lowest potential energy. We compared
relative state ratios from aMD simulations and NMR
experiments by calculating the backbone torsion of Valine-5,
ωVal‑5 (highlighted in Figure 1B), as defined by Viles et al.54 to
distinguish between cis- and trans-proline states. Structures with
|ωVal‑5| ≤ 90° were considered as cis and the remaining
structures with |ωVal‑5| > 90° as trans conformational states.
Within the 2000 investigated snapshots, we found 491
structures in the trans state and 1509 in the cis state. This
corresponds to a distribution of 25/75 which agrees strikingly
well with the experimentally reported trans to cis state ratio of
20/80 (Figure 2B). Furthermore, we reweighted the state
distribution of the full aMD ensemble, again finding a trans to
cis state ratio of 25/75.
The average interproton distances and the respective

asymmetric errors are shown in Figure 3, where we plotted
the aMD distances for the cis and trans ensemble of cyclo-(Pro-
Ser-leu-Asp-Val) compared to the published NMR distances
and boundaries. For the trans structure, 10 NOE restraints were
reported, which were all fulfilled by the weighted ensemble
average of the aMD distance distributions. The cis state was
characterized by 18 NOE restraints. In the simulated ensemble,
all but one restraint, NOE 11, were fulfilled. The distance
between the amide hydrogen of Val-5 and Asp-4 Cα hydrogens
was found to be too short in the aMD ensemble compared to
the experimental boundaries. However, as discussed in the
Methods section, it is possible that NOE-derived distance
boundaries underestimate the true distance between two atoms.

Figure 4. Representative structures of the cyclo-(Pro-Ser-leu-Asp-Val) ensemble. The 30 representative structures are color-coded according to their
reweighted free energies and projected onto the PCA eigenvectors. Free energy minima in the PCA space are indicated with gray contour lines from
5.2 to 6.2 kcal/mol in 0.2 kcal/mol steps. Representatives of cluster c23 and c19 were both identified as cis clusters differing most prominently in the
backbone torsion ψAsp‑4, see Table S2 for further details.
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Thus, our results do not necessarily disagree with the
experimental data.
For a detailed characterization of the structural features

captured with aMD simulations, we clustered the 2000
snapshots with the highest boosting potentialthus lowest
energyresulting in 30 representative structures. In Figure 4
the cluster representatives were projected onto the PCA space.
As the color coding in Figure 2B shows, the cluster in the
highly populated area on the left-hand side of the PCA around
[−3, −0.5] represented structures in the trans state. Cluster
structures from the two remaining minima on the right-hand
side of the PCA plot both represented cis-proline states. The
structures around [0.8, 0.0] and [0.8, 2.5] could be
distinguished by the dihedrals of the amide bond between
Asp-4 and Val-5. In structures of cluster c23, representing the
least populated minimum, the carbonyl oxygen was oriented
toward the center of the ring. In cluster c19 which was found in
the center of the most populated minimum around [0.8, 0.0],
the same carbonyl oxygen is oriented perpendicular to the ring
plane.
In summary, Figure 2 indicated that three to five states were

visited in the aMD simulation. The clustering result (Figure 4)

further highlighted that at least three clearly distinct conforma-
tional states were densely sampled by the aMD ensemble.
These strongly sampled areas in the PCA comprised one trans
and two different cis states, which is in good agreement with the
available NMR experiments.

Cilengitide. We projected the reweighted structural data of
cilengitide on the first two PCA eigenvectors, which comprise
25% and 22% of the total variance (Figure 5A). The resulting
free energy surface showed two distinct areas separated by the
second eigenvector of the PCA. In each of the two densely
sampled areas, several local minima were connected by rather
broad pathways. The receptor-bound conformation (gray
diamond) was located in the free energy minimum around
[1.8, 0.8]. The 2000 conformations with the highest boost are
displayed in Figure 5B, color-coded according to their RMSD
to the bioactive conformation. We observed that snapshots that
were found in the same free energy minimum as the bioactive
conformation in PCA space also showed structural character-
istics highly similar to the target bound conformation.
The comparison of the calculated average interproton

distances with the experimentally derived NOE boundaries
showed that 9 out of 10 experimental upper boundaries are

Figure 5. Conformational space of cilengitide. (A) The aMD ensemble was color-coded according to the reweighted free energies and depicted as
projection onto the first two PCA eigenvectors. The gray diamond marks the bioactive conformation. (B) The 2000 lowest energy snapshots were
projected onto the PCA eigenvectors and color-coded according to the RMSD to the bioactive conformation.

Figure 6. Comparison of interproton distances in Å from NMR experiments and aMD simulations of cilengitide. Upper distance boundaries from
ROESY experiments in aqueous solution were used to benchmark the structural accuracy of the aMD ensemble. The white background area
indicates distances that fulfill the NMR-derived restraints. Interproton distances calculated from the aMD ensemble of cilengitide with the respective
asymmetric errors bands are depicted in orange.
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fulfilled by the aMD ensemble. (Figure 6) The outlier, NOE 6,
represented the distance between amide hydrogens of Asp-3
and phe-4, which on average was sampled as 0.22 Å too long in
the aMD simulation. The violation was rather small and might
result from force field inaccuracies, especially in the description
of the D-phenylalanine.
Clustering the reduced aMD ensemble, as described earlier,

allowed more detailed structural investigations. Figure 7 shows
the projection of the resulting cluster representatives onto PC1
and PC2 and selected representative snapshots to illustrate
structural features occurring in the individual free energy basins.
The representative of cluster c16 represented the same
minimum as the bioactive conformation, and the superposition
of both structures, shown in Figure 7, highlighted their
conformational similarity with a backbone RMSD of 0.6 Å.
Further details can be found in Table S3.
Cyclo-(Arg-Arg-Trp-Trp-Arg-Phe). As our third example,

we characterized the conformational space of the antimicrobial
cyclic hexapeptide cyclo-(Arg-Arg-Trp-Trp-Arg-Phe). In the

performed PCA, the first two eigenvectors comprised 33% and
15% of the total variance of dihedral motions. Projection of the
1 μs aMD trajectory onto PCA space yielded a potential energy
surface with a large number of minima, indicating a very diverse
conformational ensemble (Figure S3). This is in line with NMR
structure calculations, where large RMSD values were reported
for this macrocycle in aqueous solution.
The average interproton distances, calculated from 2000

snapshots, were all consistent with the NMR-derived
boundaries (Figure 8).
To illustrate some of the conformational motifs obtained

with the aMD approach, we discretized the ensemble into 15
clusters. Projecting the representative snapshots onto the PCA
space, we note that the selected cluster structures represented
the minima obtained from the full ensemble (Figure 9).

■ DISCUSSION

In the present study, we applied aMD simulations as a reliable
tool to characterize the structural as well as thermodynamic

Figure 7. Twenty representative structures of the cilengitide ensemble obtained by cluster analysis. The representative structures were color-coded
according to their reweighted free energies and projected onto the PCA eigenvectors. The free energy minima in the PCA space are indicated with
gray contour lines from 4.6 to 4.9 kcal/mol in 0.1 kcal/mol steps. The backbone conformation of cluster c16 closely resembled the bioactive
conformation. When comparing representatives of other minima with the bioactive conformation (gray diamond), the most prominent differences
were reflected by φArg‑1 and ψAsp‑3. See Table S2 for further details.

Figure 8. Comparison of interproton distances in Å from ROESY experiments and aMD simulations of cyclo-(Arg-Arg-Trp-Trp-Arg-Phe). The
white background area indicates distances that fulfill the NMR-derived restraints. Average distances calculated from the aMD ensemble and the
according asymmetric error band are depicted in green.
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properties of peptidic macrocycles. We assessed the perform-
ance of the approach for three different cyclic peptides with
varying physicochemical properties.
While previous studies reported unsatisfying structural

diversity from conventional MD simulations,14 we showed
that the aMD enhanced sampling approach is able to efficiently
sample a very diverse ensemble and reliable relative state ratios.
We used PCA as a straightforward tool to illustrate the

conformational space covered in the simulations of each cyclo-
peptide. For the first system, cyclo-(Pro-Ser-leu-Asp-Val), we
found at least three clearly delineated free energy minima in the
reweighted PCA plot. The representation of the conformational
ensemble in PCA space is well in line with NMR experiments
on this cyclic pentapeptide, which report clearly distinguishable,
slowly interconverting conformational states. The antimicrobial
cyclo-(Arg-Arg-Trp-Trp-Arg-Phe) on the other hand shows
exceptionally high flexibility in NMR experiments in aqueous
solution. The cyclic hexapeptide interconverts relatively fast
between different conformational states, as reflected by a high
number of NOE violations and large RMSD values in the NMR
structure calculations. The PCA from aMD simulations of this
system showed a large number of rather broad minima and
maxima, indicating a high number of rapidly interchanging
conformational states. Compared to the other, less flexible,
investigated compounds, the ensemble of cyclo-(Arg-Arg-Trp-
Trp-Arg-Phe) also shows a higher structural variance as
indicated by the significantly larger axes of the PCA. Thus,
PCA of the aMD ensemble reflects the experimentally
determined trends in conformational flexibility. To affirm
these findings, we further quantified the backbone flexibility of
each macrocycle using sum of dihedral entropies43,77 (Table
S4) and again found good agreement with the experimental
trends in flexibility.
To assess the structural accuracy of the macrocycle ensemble

generated with aMD, we calculated average interproton
distances and compared them to distance restraints from
NOESY and ROESY experiments. Observables from NMR

experiments excel as reference for MD simulations as they
provide information on the entire structural ensemble of a
compound. For all tested systems, we find reasonable
agreement with the NMR restraints. For the highly flexible
macrocycle cyclo-(Arg-Arg-Trp-Trp-Arg-Phe), all NMR re-
straints are fulfilled by the aMD ensemble. Yet, calculation of
interproton distances for single representative structures shows
large violations, which further highlights that NOE restraints
from NMR experiments represent ensemble averages and not
necessarily single structural states (Figure S2). Hence, the good
agreement with the NMR restraints implies physically mean-
ingful sampling of the conformational space of cyclo-(Arg-Arg-
Trp-Trp-Arg-Phe).
For the cis state of cyclo-(Pro-Ser-leu-Asp-Val), one distance

is found to be on average too short in the aMD ensemble. As
described in the Methods section, the possibility of a zero
crossing of the NOE cannot be ruled out. Thus, the
experimental interproton distance restraint might also be
artificially shifted toward higher values, and we do not consider
this an alarming result. In the cilengitide ensemble, on the other
hand, we find one average interproton distance as being 0.22 Å
too long in the aMD ensemble. This outlier clearly indicates a
slight discrepancy between aMD and experimental state
populations. This discrepancy might derive from simplifications
of the force field, for example, D- and L-amino acids being
described by the same parameters. Nevertheless, considering
the accuracy of the experimental reference paired with the
limitation of current force fields, the overall agreement of aMD
and NMR is strongly convincing.
Further experimental indications on the structural features of

the studied macrocycles were given by 3JαNH coupling
constants. These NMR coupling constants can be related to
the backbone dihedral angle Θ (Θ = |φ − 60| for L-amino acids
and Θ = |φ + 60| for D-amino acids) via the Karplus
equation.54,78 We calculated the reweighted distribution of Θ
for the cis and trans state of cyclo-(Pro-Ser-leu-Asp-Val) (Figure
S5). From the published 3JαNH coupling constants, we would

Figure 9. Representative structures of the cyclo-(Arg-Arg-Trp-Trp-Arg-Phe) ensemble obtained by clustering. The representative structures were
color-coded according to their reweighted free energies and projected onto the PCA eigenvectors. The free energy minima in the PCA space are
indicated with gray contour lines reaching from 6.2 to 7.4 kcal/mol in 0.2 kcal/mol steps. See Table S5 for further details.
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expect two significant changes in the respective backbone
torsion. On the one hand, the experimental data imply a shift of
the Θ(Val) distribution toward larger torsional angles when
switching from cis to trans. For the Θ(Asp) distribution, on the
other hand, the NMR measurements indicate a shift toward
smaller angles in the trans state compared to the cis state. As
shown in Figure S5, we find good agreement between the
distinct structural preferences of cis and trans states captured
with NMR and aMD. However, the agreement between average
3JαNH coupling constants estimated by NMR coupling constants
and aMD simulations is rather unsatisfying with a RMSD of 2
Hz. Due to the nature of the Karplus relation, calculation of
3JαNH coupling constants from dihedral data is very sensitive.
Small fluctuations of Θ around large angles lead to large
deviations in the average 3JαNH. Considering the height of the
boosting potential which is applied on all torsions and the
overall potential, it is not expected to achieve an accurate
reproduction of 3JαNH coupling constants. The strength of the
aMD approach lies in the efficient sampling of a large portion
of the conformational space but in the reweighting step, a large,
so-called “energetic noise” is introduced.41 Consequently, the
overall effects of large conformational rearrangements on
dihedral distributions are captured. But we observe that the
method does not provide the resolution to reweight the subtle
differences within the dihedral distributions, which would be
needed to accurately estimate the experimental coupling
constants. Nevertheless, while the small dissonances in the
backbone angle distributions lead to large deviations in the
average 3JαNH coupling constants, the overall structures still
agree well with experiment, as indicated by interproton
distances.
Summarizing, we showed that aMD simulations adequately

capture the dynamic and structural properties of peptidic
macrocycles in solution. Even more strikingly, we found that
also the relative ratio of trans- and cis-proline states of the
integrin binding peptide cyclo-(Pro-Ser-leu-Asp-Val) is coher-
ent with the published NMR data. Despite the known
limitations in current force fields and sampling techniques,
the presented results strongly indicate that aMD simulations
are well suited to structurally and also thermodynamically
profile the conformational space of peptidic macrocycles.

■ CONCLUSION

We evaluated the performance of explicit solvent aMD
simulations as conformer generator for peptidic macrocycles.
Applying the approach on three different cyclic peptides with
varying structural characteristics, we find excellent agreement
with experimentally determined structural features.
We showed that aMD simulations are a valid approach to

capture a diverse as well as structurally and thermodynamically
meaningful conformational ensemble for peptidic macrocycles.
The proposed approach allows an extremely thorough
characterization of the conformational space and the dynamic
behavior of cyclic peptides. Furthermore, for cilengitide we
found that also the target-bound conformation is among the
frequently sampled states in the aMD simulation. Hence, when
the target-bound conformation is already significantly popu-
lated in the solution ensemble, aMD identifies the bioactive
conformation as a key state, which should be considered in
further analysis. So far, the approach is computationally rather
expensive. Yet, the calculations can easily be parallelized and
further optimized to increase the sampling efficiency.

Altogether, aMD simulations are an excellent technique to
perform a comprehensive study on promising macrocyclic
compounds. Besides its function as a conformation generator,
the aMD approach also allows to estimate thermodynamic
properties, such as the flexibility of macrocycles. Furthermore, it
is possible to trace changes in the relative ratio of stable
conformational states upon modifications within the backbone
or functional groups of a macrocyclic compound. The
comprehensive computational characterization can be ex-
tremely beneficial in macrocycle drug design projects, where
synthesis is often rather complicated and costly. Thus, we
surmise that aMD simulations hold great potential to
significantly enhance the development of macrocyclic drugs.
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