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Abstract: Over the past years, colorectal cancer (CRC) was subtyped according to its molecular
and genetic characteristics, allowing the development of therapeutic strategies, based on predictive
biomarkers. Biomarkers such as microsatellite instability (MSI), RAS and BRAF mutations, HER2
amplification or NTRK fusions represent major tools for personalized therapeutic strategies. Moreover,
the routine implementation of molecular predictive tests provides new perspectives and challenges
for the therapeutic management of CRC patients, such as liquid biopsies and the reintroduction of
anti-EGFR monoclonal antibodies. In this review, we summarize the current landscape of targeted
therapies for metastatic CRC patients, with a focus on new developments for EGFR blockade and
emerging biomarkers (MSI, HER2, NTRK).
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1. Introduction

Colorectal cancer (CRC) is the third most common cancer and the second leading cause of death
worldwide [1]. Median overall survival (OS) in patients with previously untreated and unresectable
advanced colorectal (CRC) cancer now ranges from 25 to 30 months, when combining molecular
targeted therapies and chemotherapy [2].

Whereas treatment for localized CRC rely on surgery and chemotherapy, therapeutic strategies
in metastatic setting were improved through the development of biomarkers for targeted therapies,
such as EGFR (epithelial growth factor receptor) inhibitors, BRAF serine/threonine-protein kinase
B-Raf) inhibitors, HER2 (human epidermal growth factor receptor 2) inhibitors, immune checkpoint
inhibitors, or NTRK (neurotrophic tyrosine receptor kinase) inhibitors. Predictive biomarkers for
mCRC patients now include RAS (Kirsten rat sarcoma virus) and BRAF mutations, microsatellite
instability (MSI) and mismatch repair deficiency (dMMR), HER2 amplifications and NTRK fusions.
The challenge is now to implement these innovations in daily practice.

In this review, we discuss current predictive biomarkers for mCRC patients and their associated
targeted therapy, including emerging parameters for anti-EGFR agents, such as primary tumor
sidedness and longitudinal follow-up using circulating tumor DNA (ctDNA), immune checkpoint
inhibitors for MSI/dMMR tumors, new developments for BRAFV600E-mutated cancers, anti-HER2
treatments and NTRK inhibitors.

2. RAS/RAF Wild-Type Tumors and Anti-EGFR Agents

2.1. Predictive Factors for The Efficacy of Anti-EGFR Agents

Activating mutations of KRAS and NRAS are predictive of resistance to anti-EGFR agents in
CRC patients (see Figure 1) [3]. KRAS is mutated in 40 to 50% of CRC and NRAS in 4 to 8% [4].

Cancers 2020, 12, 2350; doi:10.3390/cancers12092350 www.mdpi.com/journal/cancers

http://www.mdpi.com/journal/cancers
http://www.mdpi.com
https://orcid.org/0000-0001-9602-5162
https://orcid.org/0000-0002-5103-7095
http://dx.doi.org/10.3390/cancers12092350
http://www.mdpi.com/journal/cancers
https://www.mdpi.com/2072-6694/12/9/2350?type=check_update&version=2


Cancers 2020, 12, 2350 2 of 17

Recommendations for RAS mutation testing include KRAS exons 2, 3, and 4 (codons 12, 13, 59, 61, 117,
and 146) and NRAS exons 2, 3, and 4 (codons 12, 13, 59, 61, and 117) [5,6]. Patients with KRAS/NRAS
wild type (WT) are eligible to treatments targeting the EGFR.
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Other mechanisms of resistance are described. These might involve the EGFR itself with mutations
of the EGFR ectodomain [7]. It can also be related to the overactivation of a protein downstream from
the EGFR in the MAPK (mitogen-activated protein kinase) pathway, such as BRAF [8], although the
BRAFV600E hotspot mutation was not formally demonstrated as a factor of resistance to anti-EGFR
agents (see below). The constitutional activation of the PI3K/Akt/mTOR pathway through PIK3CA
exon 20 mutation or PTEN loss, could participate in resistance to monoclonal antibodies (mAbs) [9,10].
Furthermore, amplifications of HER2, HER3, or MET and HER2 activating mutations seem associated
with resistance to anti-EGFR therapy [11]. Recent reports brought to light the predictive value of the
micro RNA miR-31-3p. Mir-31 plays a significant role in activating the RAS signaling pathway, and high
miR-31-3p expression could be the witness of the tumor’s EGFR independency and subsequently to its
resistance to anti-EGFR therapy. Several post hoc analysis of randomized trials showed the level of
expression of miR-31-3p is a valid biomarker of anti-EGFR efficacy [12–14].

2.2. Current Management of Anti-EGFR Therapy

First, anti-EGFR mAbs do not improve outcomes as adjuvant treatment for resected stage III
colon cancer [15]. Concerning patients with resectable mCRC, a warning signal concerning the use
of anti-EGFR mAbs in the peri-operative setting was raised by the NEW EPOC trial. This study
showed a detrimental effect of cetuximab, both on disease free survival (DFS) and overall survival (OS),
when added to chemotherapy [16]. Although anti-EGFR mAbs should not be used as perioperative
treatment for patients with resectable mCRC, these treatments could be useful as a converting therapy
to shrink potentially resectable metastatic diseases [17].

Anti-EGFR mAbs (cetuximab and panitumumab) are associated with improved response rates,
progression free survival (PFS), and OS in first-line setting, when combined with an oxaliplatin-based
or irinotecan-based regimen, as well as in second or latter lines alone, or combined with cytotoxic
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agents [18–29]. Although the NORDIC VII and COIN studies did not show a significant effect of
cetuximab in combination with an oxaliplatin-based regimen [30,31], recent data provided by the
TAILOR trial demonstrate that it can be safely prescribed with FOLFOX for RAS WT mCRC patients [32].
There is no direct comparison between panitumumab and cetuximab, except for chemo-resistant
patients with the ASPECCT trial that showed the non-inferiority of panitumumab in patients with
chemotherapy-refractory KRAS WT (exon 2) mCRC [33].

2.3. Primary Tumor Sidedness

Primary tumor sidedness (PTS) seems to play a decisive role in the sensitivity to anti-EGFR
mAbs. Indeed, there is growing evidence showing that the PTS is a prognostic factor in the RAS
WT population, as well as a predictive factor of response to anti-EGFR mAbs [34]. A retrospective
analysis of six randomized trials (CRYSTAL, FIRE-3, CALGB 80405, PRIME, PEAK, and 20050181)
showed poorer outcomes (response rates, PFS, OS) for right-sided tumors, compared to left-sided
tumors. This analysis also showed a predictive effect of PTS, with a greater effect of chemotherapy plus
anti-EGFR mAbs, compared to chemotherapy ± bevacizumab in patients with left-sided tumors [35].
A recent retrospective analysis of the ARCAD database showed that the prognostic value of PTS was
restricted to the KRAS WT population and confirmed the predictive value of PTS for cetuximab efficacy,
with improved outcomes for left-sided mCRC patients [36]. On the contrary, patients with RAS WT
right-sided mCRC seem to derive limited benefit from anti-EGFR treatments.

Although these results should be interpreted with caution due to their retrospective nature,
they suggest that one should use anti-EGFR mAbs plus chemotherapy as the first line treatment
only in patients with KRAS/NRAS WT and left-sided tumors, and might prefer chemotherapy plus
an antiangiogenic agent for patients with right-sided mCRC [37]. Nevertheless, it is worth noting
the optimal sequence with anti-EGFR mAbs in patients with RAS WT mCRC in the context of PTS,
remains unclear. Multi-line therapy trials such as the STRATEGIC-1 phase III study (NCT01910610)
would provide valuable information.

2.4. Rechallenge and Liquid Biopsies

Resistance to targeted therapies such as anti-EGFR mAbs emerges through the selection of
tumor clones harboring an innate mutation of resistance. When the anti-EGFR mAb is interrupted,
the selecting pressure on the sensitive clones is withdrawn and the tumor can regain sensitivity to
the targeted therapy (see Figure 2). Several strategies can be used to overcome tumor resistance
(rechallenge, reintroduction, sequential therapy, dose intensification), and rechallenge seems to be
the most promising in the context of anti-EGFR mAbs [38]. Rechallenge of anti-EGFR therapy could
be defined as retreatment after a progression while on treatment, for a tumor that initially displayed
sensitivity to the therapy [39].Cancers 2020, 12, x FOR PEER REVIEW 4 of 18 
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Longitudinal follow-up of mutant clones seems particularly seductive for rechallenge strategies.
Studies with longitudinal monitoring of ctDNA showed that RAS mutant clones arise in blood during
anti-EGFR therapy and decline exponentially upon withdrawal of treatment, with a half-life of 4
to 5 months [40]. The CRICKET phase II study (n = 38) was the first prospective demonstration
that a rechallenge strategy with cetuximab and irinotecan might be active in RAS/BRAF WT mCRC
patients with acquired resistance to cetuximab. No RAS mutation was detected in blood samples from
patients who experienced partial response [41,42]. Several clinical trials are currently evaluating the
use of liquid biopsy in the context of anti-EGFR rechallenge (CHRONOS, NCT03227926; RASINTRO,
NCT03259009) [41].

3. BRAFV600E Mutation and Targeted Therapies

BRAFV600E mutation, found in approximately 8–10% of mCRC (see Figure 1), induces am
RAS-independent constitutional activation of the MAPK pathway, leading to cell proliferation and
survival, and is associated with poor prognosis [43]. Although some BRAF mutations occur beyond the
V600 hotspot, representing 22% of all BRAF mutations in CRC, they do not have the same biological,
clinical, and therapeutic consequences as the V600E mutation [44]. These BRAF non-V600E mutated
tumors are more likely to be left-sided, with a lower grade of differentiation, and associated with
better prognosis and resistance to BRAF inhibitors, although some might be sensitive to EGFR [45,46].
To note, fusions of the BRAF gene were also reported. These genetic alterations are associated with
right-sided tumors and seem to confer resistance to anti-EGFR therapy [11,47,48].

BRAFV600E CRC patients are more likely to be older, female, with right-sided tumors harboring
mucinous component, associated with peritoneal and distant lymph node metastases but less pulmonary
metastases [49]. Importantly about 20% of BRAFV600E CRC exhibit the MSI phenotype, which is
predictive for the efficacy of immune checkpoint inhibitors, whatever the BRAF mutational status
(see below) [43,50].

BRAFV600E mCRC patients have a lower probability to receive second-line treatments than the BRAF
WT population. As a matter of fact, intensification strategies seem effective for these patients [51–53].
In the TRIBE study, first-line FOLFOXIRI (folinic acid, fluorouracil, oxaliplatin, and irinotecan) plus
bevacizumab was associated with a non-significant improvement of overall survival for BRAFV600E

mutants, compared to FOLFIRI (folinic acid, fluorouracil, and irinotecan) plus bevacizumab (n = 28) [54].
Despite the small population sample of this subgroup analysis, FOLFOXIRI-bevacizumab is considered
to be a valid option for chemotherapy-naïve patients with BRAFV600E mCRC. Importantly, no survival
benefit was reported for BRAFV600E patients in the subsequent TRIBE2 phase III trial, which tested
FOLFOXIRI plus bevacizumab and reintroduction, upfront after progression, versus mFOLFOX6 plus
bevacizumab, followed by FOLFIRI plus bevacizumab (33 patients in each arm) [55]. The triplet
chemotherapy regimen, associated with either bevacizumab or cetuximab, is currently being tested in
the AIO-KRK-0116 phase II trial (NCT04034459; see Table 1).

Table 1. Ongoing clinical trials for patients with BRAFV600E metastatic colorectal cancer.

Therapy Phase Condition Primary Endpoint NCT Identifier

Encorafenib 1 + cetuximab 2 + nivolumab 4 1/2 2 or 3rd line ORR, DLT NCT04017650
Encorafenib 1 + binimetinib 3 + nivolumab 4 1/2 >1st line ORR, DLT NCT04044430

Dabrafenib 1 + trametinib 3 + PDR 001 4 2 Any line ORR, DLT NCT03668431
FOLFOXIRI + cetuximab 2 or bevacizumab 5 2 1st line ORR NCT04034459

FOLFIRI + cetuximab 2 + vemurafenib 1 2 - ORR NCT03727763
Irinotecan + AZD 1775 6 1 >1st line DLT NCT02906059

Panitumumab 2 + trametinib 3 2 >2nd line ORR NCT03087071
1 RAF inhibitor; 2 EGFR inhibitor; 3 MEK inhibitor, 4 anti PD(L)-1; 5 Anti VEGF; 6 Wee-1 inhibitor; ORR: objective
response rate; and DLT: dose limiting toxicities.
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3.1. Antiangiogenic Agents for the BRAFV600E Mutants

There is currently no predictive biomarker for the efficacy of antiangiogenics in the overall
population of mCRC patients, and the activity of these agents are not specifically proven among
BRAFV600E mCRC patients. The AVF2107g35 and AGITG MAX36 trials showed no survival
improvement by adding bevacizumab to first-line IFL (bolus irinotecan, fluorouracil, and folinic
acid) or capecitabine [56,57]. Yet, the RAISE study (FOLFIRI ± ramucirumab) and the VELOUR
trial (FOLFIRI ± aflibercept) showed that the subset of BRAFV600E CCR tended to benefit from
these antiangiogenics in second line, although the small size of the cohorts precluded statistical
significance [58,59]. All in all, these retrospective analyses suggest that antiangiogenics could be
beneficial to BRAFV600E mCRC patients, in the first-line or latter [60].

3.2. Anti-EGFR Agents for BRAFV600E Mutants

Data regarding the efficacy of anti-EGFR therapies for BRAFV600E patients are not clear,
either as single agent or in combination with chemotherapy. Two meta-analyses were performed.
A meta-analysis performed by Pietrantonio et al. suggested that anti-EGFR agents are not effective
for BRAFV600E patients [61]. However, another meta-analysis by Rowland et al. failed to detect
any significant difference in the effect of anti-EGFR agents between the BRAFV600E and BRAF WT
population [62]. Additionally, a retrospective analysis of the BRAFV600E subgroup, the FIRE-3 study
(first-line FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab in KRAS WT mCRC patients)
identified a higher response rate in the cetuximab arm [63]. Moreover, a recent study (VOLFI AIO
KRK0109) comparing the efficacy of first line FOLFOXIRI with or without panitumumab, found
a significant increase in objective response in the subgroup of BRAFV600E patients (71% versus 22%,
n = 14) [18]. the positive results of the BEACON study also confirm that anti-EGFR agents are
valuable for the BRAFV600E population (see below) [64]. International guidelines did not contraindicate
anti-EGFR agents for BRAFV600E mCRC patients [6,37].

3.3. BRAF Inhibitors

In contrast to melanoma, BRAF inhibitors as single agents were associated with disappointing
results. One hypothesis is that BRAF inhibition induces feedback EGFR activation and might promote
MAPK constitutive signaling. EGFR-mediated reactivation of downstream signaling pathways
contributes to the inherent resistance of these tumors to BRAF inhibitor monotherapy [65]. With this
issue in mind, several combinations of BRAF inhibitor, anti-EGFR agents, PI3K inhibitors, or MEK
inhibitors were tested, with interesting results [66–70]. These studies supported the design of the phase
III BEACON study, which evaluated encorafenib and cetuximab ± binimetinib versus chemotherapy
(investigator choice regimen of cetuximab plus irinotecan or FOLFIRI). 665 BRAFV600E mCRC patients
with disease progression after one or two previous lines were randomized. Median OS was 9.3 months
in the triplet and the doublet experimental arms, compared to 5.9 months in the control arm (HR = 0.60,
95% confidence interval 0.47–0.75 and HR = 0.61, 95% confidence interval 0.48–0.77, respectively) [64,71].
The objective response rate was statistically improved (2% in the control group, compared to 20% and
26% in the doublet and triplet group, respectively). Toxicity was manageable, with grade 3 or higher
toxicities being comparable between the three arms, with gastrointestinal and skin-related events
occurring in the experimental groups. A complementary quality of life analysis found a reduced risk of
quality of life deterioration by more than 40% in both the doublet and the triplet group [72]. Although
the study was not designed to compare the two experimental arms, the benefit-risk balance might be
in favor of the encorafenib plus cetuximab combination, without the MEK inhibitor.

4. RAS Mutants and Targeted Therapies

Approximately 50% of mCRC are reported to have KRAS/NRAS pathogenic mutation.
The treatment of these tumors of poor prognosis was proven to be highly challenging. They are
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intrinsically resistant to anti-EGFR mAbs (see above). Antiangiogenics (bevacizumab, aflibercept,
ramucirumab) seem to be effective in this population but predictive biomarkers for the efficacy of these
compounds are lacking [59,73,74].

KRASG12D (glycine 12 to aspartic acid) is the most common KRAS mutation in colorectal
cancer. A new generation of KRAS inhibitor might be a game changer for this population [75].
Recently, promising results of a direct KRASG12C inhibitor were reported. AMG 510 is a novel small
molecule that specifically and irreversibly inhibits KRASG12C, by locking it in an inactive guanosine
diphosphate (GDP)-bound state. In the first in-human study evaluating AMG 510 in adult patients
with locally advanced or metastatic KRASG12C mutant solid tumors (CodeBreak-100; NCT03600883),
ORR and DCR were 12.0% (3/25) and 80.0% (20/25), in patients with KRASG12D-mutated mCRC [76].
Further confirmation is needed.

5. Microsatellite Instability and Immune Checkpoint Inhibitors

5.1. Colorectal Cancers, Mismatch Repair Deficiency, and Microsatellite Instability

While most CRCs develop via the chromosomal instability pathway (aneuploidy and loss of
genetic material), 10–15% of them arise from the microsatellite instability (MSI) pathway. MSI is caused
by the deficiency of the DNA mismatch repair (dMMR) system, resulting from a germline mutation in
MMR genes (MLH1, PMS2, MSH2, MSH6) predisposing to Lynch syndrome or from an epigenetic
inactivation of MLH1 (i.e., sporadic cancers). These sporadic cases are frequently associated with
the BRAFV600E mutation [77]. MSI/dMMR is observed in approximately 10–15% of localized CRC
and 4–5% of mCRC (see Figure 1) [43,78]. MSI/dMMR CRCs mainly arise from the proximal colon
and display specific features such as poor differentiation, abundant tumor-infiltrating lymphocytes,
and particular patterns of metastatic spread with frequent distant lymph node metastases and peritoneal
involvement [49]. In localized CRC, MSI/dMMR is associated with favorable prognosis [79,80]. Data are
more controversial in metastatic setting. Still, the available literature suggests MSI/dMMR mCRC
are less responsive to conventional chemotherapy, compared to microsatellite stable/MMR-proficient
(MSS/pMMR) tumors [43,81–83].

MSI/dMMR CRCs are characterized by a high tumor mutational burden (i.e., hypermutated
phenotype) with highly immunogenic neoantigens arising from frameshift mutations that induce
high infiltration through activated cytotoxic T CD8+ lymphocytes [84–86]. However, MSI/dMMR
neoplasms upregulates immune checkpoints that protects MSI cancer cells from their hostile immune
micro-environment [87,88].

5.2. Targeting the Immune System

MSI/dMMR has emerged as a major predictive biomarker for the efficacy of ICIs, especially for
mCRC patients. While pMMR/MSS CRCs are mainly resistant to ICIs (i.e., cold tumors), MSI/dMMR
tumors were associated with high sensitivity to immunotherapy (i.e., hot tumors). The activity
of ICIs for patients with chemoresistant MSI/dMMR mCRC was demonstrated in several phase
II trials, with objective response rates ranging from 33% to 58% and 12-month PFS rates between
31% and 71% [50,89–94]. Importantly, results of the non-randomized CheckMate-142 trial suggest
that combinations of anti-PD1 and anti-CTLA4 mAbs might be more effective than anti-PD1 or
anti-PDL1 agents alone. Pembrolizumab and nivolumab +/− ipilimumab are approved by the Food
and Drug Administration, for the treatment of patients with MSI/dMMR mCRC, who progressed after
fluoropyrimidine, oxaliplatin, and irinotecan-based treatment.

The efficacy of ICIs was also demonstrated as front-line treatment for patients with
chemotherapy-naive MSI/dMMR mCRC. In a third cohort of the CheckMate-142 trial, 45 patients
were treated with nivolumab plus ipilimumab as the first-line treatment. ORR was 77%, the 1-year
PFS estimate was 77% [95]. Of major importance, the phase III KEYNOTE-177 trial recently showed
pembrolizumab monotherapy to be superior to standard of care first-line chemotherapy (investigator’s
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choice of FOLFOX or FOLFIRI, with or without bevacizumab or cetuximab) in terms of PFS for
MSI/dMMR mCRC patients. Medians of PFS were 16.5 months versus 8.2 months (HR = 0.60, 95%CI
0.45–0.80). The 12- and 24-month PFS rates were 55% and 48% with pembrolizumab versus 37% and
19% with chemotherapy. It is highly likely that pembrolizumab will become the standard of care for
patients with newly diagnosed MSI/dMMR mCRC [96].

ICIs are currently evaluated for patients with localized MSI/dMMR colon cancer. The NICHE phase
II study paved the way for their development in this setting and might refine therapeutic strategies for
early-stage MSI/dMMR CC [97]. Indeed, in this trial testing nivolumab plus ipilimumab as neoadjuvant
treatment, all 21 dMMR CC patients had a pathological response, with 95% of major responses
including 12 complete pathological responses. These impressive results highlight neoadjuvant
immunotherapy as a promising strategy that warrants further research. ICIs are also evaluated in
combination with adjuvant chemotherapy for stage III MSI/dMMR colon cancer patients—the ATOMIC
trial (NCT02912559; FOLFOX +/− atezolizumab), and the POLEM trial (NCT03827044; 24 weeks of
single agent fluoropyrimidine chemotherapy or 12 weeks of oxaliplatin-based chemotherapy +/−

avelumab) [28].

5.3. Predictive Biomarkers among MSI/dMMR CRC Patients Treated with Immunotherapy

There is currently no robust predictive biomarker for the efficacy of ICIs among MSI/MMR CRC
patients. Despite the high clinical activity of ICIs in this population, some patients do not benefit from
these treatments, and there is currently no clear explanation for these cases of primary resistance. It is
noteworthy that misdiagnosis of MSI/dMMR status is responsible for a significant amount of cases
with primary resistance to ICIs [98,99].

First, MSI/dMMR tumors harboring the BRAFV600E mutation seem to be quite sensitive to
MSI/dMMR BRAF WT diseases [50]. Second, PD-1 expression, beta-2-microglobulin mutations,
and major histocompatibility complex class I expression were not found to be associated with resistance
to ICI [50,90,100]. Loss-of-function mutations in Janus kinases JAK1/2 might lead to primary resistance
of MSI/dMMR mCRC to ICI [101]. Interestingly, the tumor mutational load was reported to predict ICI
efficacy in 2 small cohort studies (<33 patients) [102,103]. Data are also emerging for the predictive
impact of the immune infiltrate for the efficacy of ICIs. Indeed, in a recent work by Loupakis and
colleagues, the level of T cell infiltration was linked to better response, PFS, and OS [98]. All these
results deserve confirmation in larger prospective studies.

6. HER2 and Anti-HER2 Agents

Approximately 1% to 8% of CRC harbor HER2 gene amplification (see Figure 1) [104–107]. HER2
overexpression is associated with distal cancers, with a frequency of 4.3–5.4% for rectal cancers,
and KRAS WT status, although these 2 genetic alterations could be observed together [106,108,109].
While the prognostic significance of HER2 amplifications is controversial, many arguments are
accumulating in favor of a negative predictive value of HER2 amplifications for anti-EGFRs efficacy
(ORR, PFS, OS) [11,110,111].

The diagnostic method for HER2 testing in CRC was standardized by the Heracles diagnostic
criteria, with first-line immunohistochemistry (IHC) analysis followed, if appropriate, by FISH analysis
(fluorescence in situ hybridization). Positivity is defined by an IHC 3+ score or an IHC 2+ score
associated with FISH positivity [112].

Evidence is growing for the efficacy of anti-HER2 agents for patients with HER2-positive mCRC.
Combinations of trastuzumab plus lapatinib, trastuzumab with pertuzumab, and trastuzumab plus
tucatinib were tested in phase II studies (Heracles-A, MyPathway, and Mountaneer, respectively).
They showed promising response rates of 30 and 32, and a 55% and median PFS of 4.7, 2.9,
and 6.2 months, respectively [109,113,114]. Patients with HER2-positive and KRAS-mutated mCRC
were excluded from the Mountaneer and Heracles-A trials, but it is worthy to note that one
HER2-positive and KRAS-mutated mCRC patient experienced an objective response in the MyPathway
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study [109,113,114]. In contrast, the Heracles-B trial, with the association of pertuzumab and trastuzumab
emtansine, failed to reach its primary endpoint (ORR), even if the median PFS was 4.7 months [115].
Recent report of the DESTINY-CRC01 phase II trial has brought to light trastuzumab-deruxtecan as
a potential game changer. Fifty patients with chemoresistant HER2-positive mCRC were treated with
this antibody-drug conjugate (composed of an anti-HER2 antibody and topoisomerase I inhibitor).
The confirmed objective response rate was 45% (24/53). Even patients with prior anti-HER2 agents
derived benefit from this treatment, with an objective response rate of 43.8% (7/16 pts). Two deaths
from drug-related interstitial lung disease were reported.

Overall, anti-HER2 agents are highly seductive therapies for the HER2-positive population,
but data from randomized trials are lacking in rigorous evaluation of their added value. The only
ongoing randomized study is a phase II trial comparing trastuzumab and pertuzumab to irinotecan
and cetuximab, in patients with HER2-positive RAS/RAF WT mCRC (NCT03365882).

7. NTRK Gene Fusions and TRK Inhibitors

NTRK gene fusions recently emerged as a highly seductive therapeutic target for cancer patients.
TRK inhibitors (larotrectinib, entrectinib) demonstrated an impressive clinical activity in this population,
regardless of histological type. In single-arm studies, larotrectinib showed an objective response rate
of 75%, with a time of response superior to 6 months in 73% of cases, and entrectinib, an ORR of
57%, with a time of response superior to 6 months in 68% of cases [116,117]. These results led to
accelerated approvals by the FDA for the treatment of refractory solid tumors with the NTRK gene
fusion, whatever the tumor type.

Strategies for NTRK fusion screening are based on immunohistochemistry fluorescence in
situ hybridization, RT-PCR (reverse transcription polymerase chain reaction) and next-generation
sequencing, depending on the probability of NTRK fusion [118,119]. NTRK fusions are rare in colorectal
cancers, with an incidence of 0.23–0.97% (see Figure 1) [48,120–123]. It is, therefore, necessary to select
the population to be screened.

Characteristics of NTRK fusion-positive CRC patients are female, right-sided primary tumor
location, RAS/RAF WT status, and MSI phenotype [121]. Intriguingly, the MSI phenotype was
consistently reported in association with NTRK fusions. More precisely, these genetic alterations
seemed to occur in the context of BRAF WT tumors with hypermethylation of the MLH1 gene
promoter [124]. The incidence of NTRK fusions was estimated at approximately 42% in this molecularly
selected population [48]. There is currently no data about the efficacy of NTRK inhibitors or immune
checkpoint inhibitors in this specific biological entity.

8. Conclusions

Substantial advances were made in the individualization of therapeutic strategies for mCRC
patients over the last 10 years. Responders to anti-EGFR therapies can be specifically selected with
an enlarged panel of biomarker, and the therapeutic strategies can be optimized with the longitudinal
follow-up of ctDNA. Patients with BRAFV600E mCRC, who were long left behind, now have effective
therapeutic options. Beyond highly seductive but quite rare targets, such as HER2 amplification and
NTRK fusions, the most striking revolution for targeted therapies in CRC patients comes from ICIs
that were a breakthrough for patients with MSI/dMMR tumors. Patients’ outcomes were dramatically
improved, and this enforced clinicians and researchers to conceptualize CRC as at least 2 distinct
diseases—the MSI/dMMR tumors, and the others (Table 2). Importantly, the development of ICIs
is associated with methodological issues in relation with the pseudoprogression phenomenon and
long-term survivals. This observation highlights the necessity to develop new study designs and to
anticipate such issues in pre-planned statistical analyses.
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Table 2. Molecular subtypes of colorectal cancer and targeted treatment options.

Molecular Subtypes Targeted Therapies

MSI, whatever the RAS/RAF mutational status Immune checkpoint inhibitor(s)

RAS/RAF wild-type Anti-EGRF mAbs

BRAFV600E mutated Encorafenib + cetuximab +/− binimetinib

RAS mutated No current targeted therapy, ongoing trials with
new-generation KRAS inhibitors

HER2 amplified/mutated
Anti-HER2 mAbs/inhibitors (trastuzumab,

pertuzumab, lapatinib), anti-HER2 antibody-drug
conjugate (trastuzuab deruxtecan)

NTRK fusion-positive TRK inhibitor (Larotrectinib, entrectinib)

This evolution brings to light the international CMS classification, that clustered CRC into 4 distinct
consensus molecular subtypes (CMS): CMS1 (MSI Immune), hypermutated, microsatellite unstable,
BRAFV600E mutated, with strong immune activation; CMS2 (Canonical), epithelial, chromosomally
unstable, with marked WNT and MYC signaling activation; CMS3 (Metabolic), epithelial, with evident
metabolic dysregulation; and CMS4 (Mesenchymal), prominent TGF-β activation, stromal invasion,
and angiogenesis. The CMS classification might help identify new pathways to target, such as the
TGF-β pathway or others. Although it is currently used in research investigation, the role of CMS
classification for therapeutic strategies remains to be defined, and its feasibility in routine practice to
be demonstrated.

To conclude, translational research seems more necessary than ever to understand the biological
specificities of these various types of CRC, the innate and acquired mechanisms of resistance to targeted
therapies, to bring progress to all patients.
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