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We introduce a Bayesian neural network model that can accu-
rately predict not only if, but also when a compact planetary
system with three or more planets will go unstable. Our model,
trained directly from short N-body time series of raw orbital ele-
ments, is more than two orders of magnitude more accurate at
predicting instability times than analytical estimators, while also
reducing the bias of existing machine learning algorithms by
nearly a factor of three. Despite being trained on compact res-
onant and near-resonant three-planet configurations, the model
demonstrates robust generalization to both nonresonant and
higher multiplicity configurations, in the latter case outperform-
ing models fit to that specific set of integrations. The model com-
putes instability estimates up to 105 times faster than a numerical
integrator, and unlike previous efforts provides confidence inter-
vals on its predictions. Our inference model is publicly available
in the SPOCK (https://github.com/dtamayo/spock) package, with
training code open sourced (https://github.com/MilesCranmer/
bnn chaos model).

deep learning | planetary dynamics | Bayesian analysis | chaos

The final growth of terrestrial bodies in current theories of
planet formation occurs in a phase of giant impacts (1). Dur-

ing this stage, the number of planets slowly declines as bodies
collide and merge (2, 3). Close planetary encounters and the
wide dynamic range exhibited by the times between consecu-
tive collisions computationally limit current numerical efforts
to model this process. Two theoretical roadblocks impede the
development of a more efficient iterative map for modeling
planet formation. First, one must predict a distribution of insta-
bility times from a given initial orbital configuration. Second, one
must predict a distribution of postcollision orbital architectures
(e.g., ref. 4) subject to mass, energy, and angular momentum con-
straints. Toward this end, we focus on the long-standing former
question of instability time prediction.

In the compact dynamical configurations that characterize
the planet formation process, the simpler two-planet case is
well understood analytically. In this limit, instabilities are driven
by the interactions between nearby mean-motion resonances
(MMRs), that is, integer commensurabilities between the orbital
periods of the planets like the 3:2 MMR between Pluto and Nep-
tune (5–8). While the general higher-multiplicity case is not yet
understood, two important results guide our analysis and pro-
vide an important test for any model. First, when planets are
initialized on circular orbits, chaos is driven by the overlap of
three-body MMRs between trios of adjacent planets (9), and
theoretical estimates of the timescale required for the orbits to
reach orbit-crossing configurations accurately match numerical
integrations (10). As we show below, such analytical estimates
perform poorly in the generic eccentric case where the effects
of two-body MMRs are dominant (10, 11). However, analytical
and empirical studies agree that, while the dynamical behavior

changes strongly from the two- to three-planet case (3, 12–18),
three-planet systems are the simplest prototype for predictions
at higher multiplicities in compact systems (10, 11).

We recently presented a machine learning model, dubbed
the Stability of Planetary Orbital Configurations Klassifier, or
SPOCK, trained to classify the stability of compact planetary
systems over timescales of 109 orbits (11). This represented
a long-term effort to exploit the substantial but incomplete
current analytical understanding (5, 6, 8, 19, 20) to engineer
summary metrics that captured these systems’ chaotic dynam-
ics; these features were then used by the machine learning
model to classify whether the input configuration would be stable
over 109 orbits.

While simple binary stability classification is effective for con-
straining physical and orbital parameters consistent with long-
term stability (21), other applications like modeling terrestrial
planet formation require the prediction of continuous instability
times. Additionally, several fields in which it is challenging to find
effective handpicked features—such as computer vision, speech
recognition, and text translation—have been revolutionized by
neural networks in the last decade (notable early breakthroughs
include refs. 22–24). Rather than relying on domain expert input,
these flexible models learn data-driven features that can often
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significantly outperform human-engineered approaches. A key
theme with deep learning models is that their structure resem-
bles the hand-designed algorithm, but with added flexibility
parametrized by neural networks (for discussion, see ref. 25). For
example, modern computer vision models consist of learned con-
volutional filters which take the place of hand-designed filters in
classic algorithms (26).

Pursuing a deep learning approach, we present a neural net-
work that, trained only on short time series of the orbits in
compact planetary systems, not only improves on long-term pre-
dictions of previous models based on engineered features (11,
27) but also significantly reduces the model bias and improves
generalization beyond the training set. We design our model
as a Bayesian neural network (BNN), which naturally incorpo-
rates confidence intervals into its instability time predictions,
accounting for model uncertainty as well as the intrinsic uncer-
tainty due to the chaotic dynamics. Finally, unlike previous
machine learning models based on decision trees (11, 27), our
model is differentiable. That is, we can extract from the model
estimates of the derivatives of the predicted instability times
with respect to the parameters defining the orbital configura-
tion in question. Such gradient information can significantly
speed up parameter estimation using Hamiltonian Monte Carlo
techniques (28).

Model
Terminology. In the interest of making this work accessible to
readers from both the machine learning and natural science com-
munities, here we give brief explanations for some terms used in
machine learning research.

In machine learning, “regression” is a generic name for the
problem of predicting a continuous variable from some input
data. Iteratively optimizing the parameters of such a model is
referred to as “training.” Modern machine learning often uses
“neural networks”—which are universal function approximators
that can be trained by gradient descent—for solving such regres-
sion problems on high-dimensional data. “Stochastic gradient
descent” is when one uses only a fraction of data to estimate
the gradient for each optimization step, and is an efficient strat-
egy used to train neural networks. This gradient is taken of some
“loss function” that one wishes to minimize—such as the mean-
square error or the negative-log likelihood of the predictions
with respect to some “targets.” Stochastic gradient descent is
controlled by a “step size” parameter as well as the “batch size”—
which controls how large a fraction of data are used to estimate
the gradient. Parameters such as these optimization settings, as
well as model specifications, are often referred to as “hyperpa-
rameters” to contextualize them relative to the “neural network
parameters,” which are the actual parameters being optimized
during training.

The “architecture” of a neural network refers to a specifica-
tion of its layout and how each parameter is used. The most
common type of architecture is a “multilayer perceptron”—or
MLP—which is the core module that many deep neural networks
are composed of. Internally, a neural network consists of “layers”
of “learned features”—numbers that represent nonlinear combi-
nations of the input data. Each layer of an MLP transforms an
input vector by computing the product of a matrix of parameters
with that vector, adding a vector of parameters, and then apply-
ing some nonlinear element-wise operation such as converting
negative numbers to zero.

To protect against a potential scenario where a model
simply memorizes the data, one partitions the data into
“train/validation/test” subsets—the train part to be used for
gradient descent, the validation part to be used for initial
testing in order to tune hyperparameters, and the test part
for evaluating the final performance of a model on unseen
data.

Dataset Generation. We focus on the regime leading to typical
compact multiplanet systems observed to date, with mass ratios
with the central star ranging from 10−7 (roughly the ratio of the
Moon-mass embryos thought to initially characterize the giant
impact phase, relative to the Sun) to 10−4 (roughly Neptune’s
mass relative to the Sun). As detailed in Materials and Methods,
we place planets on nearly coplanar orbits, with adjacent plan-
ets spaced within 30 mutual Hill radii of one another (e.g., ref.
29).∗ Orbital eccentricities in observed systems are often poorly
constrained, so we consider the range from initially circular to
orbit-crossing values.

A central challenge is that the phase space is punctuated by
narrow MMRs where instability times cannot only drop by orders
of magnitude (30) but also can be stabilized inside small islands
for particular combinations of masses, eccentricities, pericenter
orientations, and orbital phase (31). In order to effectively sam-
ple these narrow regions where the dynamical behavior changes
most strongly within our 21-dimensional phase space (a mass and
six orbital elements for each planet), we train our model on the
set of 113,543 publicly available, compact three-planet configu-
rations in and near strong resonances, from ref. 11. In particular,
this “resonant” dataset initializes one pair of planets in or near a
strong MMR using analytical MMR models (20), while the third
planet’s orbital parameters are chosen randomly. In Results, we
test the model’s generalization to nonresonant systems.

Each initial condition was integrated for 109 orbits of the
innermost planet using the WHFast (fast Wisdom–Holman)
integrator (32) in the REBOUND N-body package (33). If, at
any point, two planets came within a distance of one another
given by the sum of their Hill radii, the simulation was stopped,
and the instability time was recorded. Because gravity is scale
invariant, the instability time tinst is most usefully nondimen-
sionalized by the innermost orbital period Porb. Given the
large dynamic range in timescales over which instabilities can
occur, we define the dimensionless log instability time T ≡
log10(tinst/Porb). Configurations with instability times longer than
109 orbits (T > 9) were labeled as stable, and integration was
stopped.

Network Architecture. To predict systems’ instability times, we
perform a short numerical integration of the first 104 orbits,
and use this time series to make long-term predictions. Each of
the three planets’ three-dimensional (3D) positions and veloc-
ities correspond to six standard orbital elements (see Materials
and Methods for details), which we record at nt =100 equally
spaced outputs across the short integration. In addition, we pass
the three constant mass ratios for each planet relative to the star,
as well as the time value, for a combined input matrix of real
values X ∈R3+(19×nt ) for a given configuration.

Because the dynamics of compact multiplanet systems are
chaotic, instability times for a given initial orbital configuration
are effectively nondeterministic. Nevertheless, numerical exper-
iments (34, 35) have shown that instability times for unstable,
compact multiplanetary systems settle to well-defined, approx-
imately log-normal distributions. Thus, rather than predicting a
single instability time for a given orbital configuration, our model
maps from an input initial orbital configuration to a predicted
log-normal distribution of instability times, that is, a Gaussian
distribution of T with mean µ and variance σ2. This gives the
network the flexibility both to model the fundamental uncer-
tainties imposed by the chaotic dynamics and to incorporate
model uncertainty into its predictions by assigning larger widths
to configurations it is less sure about.

*The mutual Hill radius RH is a relevant length scale within which the gravity of the
planets dominates that of the star, RH ≈ a1(µ1 +µ2)1/3, where a1 is the inner planet’s
semimajor axis, and µ1 and µ2 are each planet’s mass ratio relative to the star.
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In our initial efforts, we experimented with various combi-
nations of convolutional neural networks (see reviews by refs.
36–38), long short-term memory networks (39), 1D scattering
transforms (40), regular MLPs (see ref. 25), and Gaussian pro-
cesses (41). All of these models underperformed or tended to
overfit the data.

The fundamental challenge for making such predictions is
the sharp transitions in dynamical behavior at MMRs, where
instability times can change by several orders of magnitude (30)
over subpercent changes in planetary orbital periods, that is, in
the original space of orbital elements. We found substantially
improved performance by structurally splitting the problem into
three components: 1) Find a transformation from the sharply
punctuated space of orbital elements to new variables. 2) Calcu-
late statistical summaries of the time series in these transformed
variables. 3) Use these summary features to predict a log-normal
distribution over instability times for the input orbital configura-
tion, parametrized by mean µ and variance σ2. This is illustrated
in Fig. 1.

We model steps 1 and 3 with neural networks f1 and f2,
respectively. In step 2, we choose to use a well-motivated but
nonstandard aggregation operation, and calculate both the mean
and variance of each learned feature over time (deep neural
networks traditionally use one of either sum, mean, or max
for their internal aggregation). This structure was motivated
by the hand-engineered approach of ref. 11, whose features
are means and variances of theoretically motivated instabil-
ity metrics. In this case, we give the machine learning model
additional flexibility to learn its own instability metrics. This
design process is analogous to how the invention of convo-
lutional neural networks was motivated by creating similar
structures to hand-engineered algorithms which convolve filters
over an image.

Likelihood. Our model is parametrized by m =7,583 neural
network parameters θ≡ (θ1,θ2), θ∈Rm (θ1 for f1 with 4,140
parameters, and θ2 for f2 with 3,443 parameters). Defining the
training set D as the collection of input orbital configurations and
their associated N-body instability times, we seek the most likely
set of model parameters given the data; that is, we maximize
P(θ|D), which is, in turn, proportional to P(D |θ)P(θ).

Our model predicts a log-normal distribution of instability
times for any input orbital configuration. For a given set of net-
work parameters θ, the likelihood P(D |θ) is then simply the
product of the probabilities that each training set example’s
output Ti is drawn from the associated Gaussian N (µi ,σ

2
i ) pre-

dicted by the model. As discussed above, this choice is motivated
by the numerical result that the distribution in T is normal, for
different configurations with a wide range of mean instability
times (35).

Note that we have 4<T ≤ 9 as a constraint for unstable sim-
ulations: T < 4 simulations are not included in the training set,
and T > 9 integrations were terminated at T =9 and have an
unknown T . Thus, we build a truncated normal distribution with
a cutoff at T =4, and with the cumulative probability of the
Gaussian above T =9 being counted toward a classification of
stability. A mathematical derivation of this likelihood is given in
Materials and Methods.
P(θ) is a prior on the neural network’s parameters. The per-

parameter prior here is unimportant: what matters is the prior
induced on the output of the model, and we use an uninformative
Gaussian prior on parameters to induce an uninformative prior
on the output. See ref. 42 for a detailed discussion of priors in
Bayesian deep learning.

Bayesian Neural Network Implementation. By having our model
predict a distribution of instability times with a finite width,
we account for intrinsic uncertainty (sometimes referred to

as “aleatoric” uncertainty). However, we also wish to include
extrapolation uncertainty (or “epistemic” uncertainty) for sys-
tems that differ from those found in the training set. To do this,
we marginalize over potential model parameters, with what is
referred to as a BNN. This is a neural network whose parameters
are distributions rather than point values; the network is trained
with Bayesian inference to estimate a posterior over the model’s
parameters. To compute the prediction of such a network, one
marginalizes over this parameter posterior, which naturally folds
in extrapolation uncertainty.

This concept is familiar in traditional statistical inference,
where one can marginalize out the internal nuisance param-
eters of a model using Markov chain Monte Carlo (MCMC)
techniques. The fact that neural networks typically have millions
of parameters renders MCMC computationally prohibitive, and
various practical simplifications are adopted for implementing a
BNN. The most common strategy is Monte Carlo dropout (43,
44) which treats the neural network’s parameters as indepen-
dent Bernoulli random variables and has been used in several
astronomical applications (45–48). A selection of other tech-
niques includes Bayes by Backprop (49), Bayesian Layers (50),
variants of normalizing flows (e.g., ref. 51), Bayes by Hyper-
net (52, 53), and many other strategies. One recently proposed
strategy, named “MultiSWAG” (54, 55), learns a distribution
over the posterior of parameters that best fit the training set,
without a diagonal covariance assumption, and is much closer
to standard MCMC inference. We experimented with a selec-
tion of common techniques—Monte Carlo dropout, Bayes by
Backprop, and MultiSWAG—and found that “MultiSWAG”
produced the best accuracy and uncertainty estimations on the
validation dataset.

To move beyond a single best-fit set of parameters θ, SWAG,
or “stochastic weight averaging Gaussian” (54, 56), instead fits
a Gaussian to a mode of the posterior over θ (equivalently,
one could say “a minima of the optimization surface”), with a
low-rank approximation to the off-diagonal component of the
covariance matrix. This was extended in ref. 55 to MultiSWAG,
which repeats this process for several modes of the weight poste-
rior, to help fill out the highly degenerate parameter space. This
technique is summarized below.

1) Train f1 and f2 simultaneously via stochastic gradient descent
until the parameters settle into a minimum of the weight
posterior.

2) Increase the step size and continue training. This causes the
optimizer to take a random walk in parameter space near
the minima, which is assumed to look like a high-dimensional
Gaussian.

3) Accumulate the average parameters along this random walk
as well as each parameter’s variance, and a low-rank approx-
imation of the off-diagonal covariance matrix. The definition
of this matrix is detailed in ref. 55; it attempts to approxi-
mate the overall shape (i.e., the principal components) of the
region around the minima.

4) The average parameters not only provide better generaliza-
tion performance (stochastic weight averaging or SWA), but
we have additionally fit a Gaussian to a mode of the param-
eter posterior. We can thus sample parameters from this
Gaussian to marginalize over parameters. This is SWAG (54).

5) The next step is to repeat this entire process from a different
random initialization of the parameters. This will find another
mode of the parameter posterior.

6) Fit ∼30 different modes. We can then sample parame-
ters from different modes in the parameter posterior, which
gives us a more rigorous uncertainty estimate. This is
MultiSWAG (55).

Using stochastic gradient descent on a neural network’s
parameters is related to MCMC sampling the parameter
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Fig. 1. Schematic of our model. The model numerically integrates 10,000 orbits for a compact three-planet system (top) and records orbital elements at 100
times. Neural network f1 creates learned summary features from these elements at each time. Neural network f2 takes the average and variance of these
features as input and estimates a distribution over possible instability times.
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posterior (57, 58), so this aforementioned process allows one
to learn a Bayesian posterior over the parameters of a neural
network. We call this learned distribution over the parameters
PMultiSWAG(θ).

Once we have learned PMultiSWAG(θ), we can draw from it—by
picking a random mode, and sampling a Gaussian according to
the learned covariance and mean—to sample a set of network
parameters θ. Given some input data and a draw of the model’s
parameters, the model then predicts a log-normal distribution of
instability times with mean µ and variance σ2 for the given input
orbital configuration, from which we can sample a log instabil-
ity time T. We can write a forward model for this prediction as
follows:

Sample model parameters. (θ1,θ2)∼PMultiSWAG(θ), [1]

Compute learned features. yt = f1(xt ;θ1)
for each xt ≡X: ,t ,

[2]

Aggregate learned features. z∼ (Et [yt ],Vart [yt ]), [3]

Predict time distribution. (µ,σ2)= f2(z;θ2), [4]

Sample instability time. Tinstability =10T

for T ∼N (µ,σ2),
[5]

where t is a time step from 1 to 100. Here, we have labeled
yt as the learned transformed variables for a single time step
of the system (brown cells in Fig. 1), and z as the average and
variance of these transformed variables over time. To account
for statistical errors due to our finite number of time series
samples, we sample the z from normal distributions with frequen-
tist estimates of the variance in the sample mean and variance:
Vart [yt ]/nt and 2Vart [yt ]2/(nt − 1), respectively. A Bayesian
graphical model for this is shown in Materials and Methods.
Repeatedly sampling in this way—drawing a set of parame-
ters, computing a prediction, and sampling a time—provides
a predicted distribution of T given the input orbital configu-
ration, marginalized over the posterior distribution of network
parameters θ.

We split our data into 60/20/20% train/validation/test, train
our model on 60% of our ≈100,000 training examples of reso-
nant and near-resonant systems, and validate it on half of the
remaining data to tune the hyperparameters. Hyperparameters
for our model are given in Materials and Methods, and we also
release the code to train and evaluate our model.

With this trained model, we then explore its performance on
the remaining 20% holdout data from the resonant dataset, as
well as other datasets described below.

Results
Resonant Test Dataset. For a given orbital configuration, our
probabilistic model produces one sample of T . If a given sam-
ple is above T =9, we treat the sample as a “stable” prediction.
Since we are unable to make specific time predictions above the
maximum integration time in our training dataset of T =9, we
resample from a user-defined prior P(T |T ≥ 9) for each occur-
rence. For the purposes of this study, we assume a simple analytic
form for this prior, although follow-up work on this prior is
ongoing (see Materials and Methods).

For all results, we sample 10,000 predicted values of the pos-
terior over T per planetary system. We compare our predictions
against several alternatives which are explained below. Since the
models we compare against can only produce point estimates,
while our model predicts a distribution, we take the median of
our model’s predicted posterior over T . This is used for plot-
ting points, as well as for computing root-mean-square prediction
errors.

We first compute the N-body versus predicted (median) T
value over the holdout test dataset of ≈20,000 examples not

seen during training, which can be seen in Fig. 2, Bottom Middle.
We reiterate that the N-body instability times measured for the
various orbital configurations in our training set are not “true”
instability times but rather represent single draws from the dif-
ferent planetary systems’ respective instability time distributions,
established by their chaotic dynamics. To estimate a theoretical
limit (Fig. 2, Bottom Right), we use the results from ref. 35, who
find that the T values measured by N-body integrations (x axis
of Fig. 2) should be approximately normally distributed around
the mean instability time predicted by an ideal model. We use
a random SD drawn from the values measured empirically for
compact systems by ref. 35, which they find are sharply peaked
around ≈0.43 dex, independent of whether or not the system is
near MMRs, and valid across a wide range of mean instability
times. We plot this representative intrinsic width of 0.43 dex as
dotted lines in Fig. 2 for comparison.

While we defer a detailed comparison to previous work to the
following section, we measure an RMS error (RMSE) of 1.02
dex for our model on the holdout test set. We note that, while
the RMSE is an intuitive metric for comparing models, it does
not provide a full picture for a model that is trained on a dif-
ferent loss function to predict both µ and σ2. A model that can
predict its own σ2 will sacrifice worse µ accuracy in challenging
regions of parameter space to better predict it on more eas-
ily predictable configurations. For comparison, if we weight the
RMSE by the predicted signal-to-noise ratio (SNR), µ2/σ2, the
model achieves 0.87 dex, within a factor of ≈2 of the theoreti-
cal limit. These uncertainties provide confidence estimates in the
predicted values, and can indicate to a user when to invest in a
computationally costly direct integration. We apply transparency
to our predictions in Fig. 2 according to the model-predicted
SNR, highlighting that the poorest predictions were typically
deemed uncertain by the model.

We also quantitatively test whether the model-predicted
uncertainties σ accurately capture the spread of N-body times
around the predicted mean values µ. For each test configura-
tion, we predict µ, subtract it from its respective T measured by
N-body integration, and divide by the predicted σ. If this distribu-
tion approximates a Gaussian distribution of zero mean and unit
variance, the model’s uncertainty estimates are accurate. We find
that a Kolmogorov−Smirnov test cannot confidently distinguish
our predictions from this ideal Gaussian (P value of 0.056), and
we plot the two distributions in Fig. 3.

Finally, we note that not all of the input orbital elements to the
model are independent. For example, only the ratios of semima-
jor axes are dynamically relevant, which is two rather than three
variables. In addition, the rotational invariance of this problem
implies that only differences between the ascending node lon-
gitudes, and not their individual values, are physically relevant.
We can use this rotational invariance as a test case: If we pass
our trained model the default SPOCK test configuration, and
repeat with an example rotated by π about the z axis, we find
that a two-sample Kolmogorov−Smirnov test cannot confidently
distinguish between the distributions of 1,000 samples each (P
value of 0.30). The model has therefore seemed to learn an
approximate rotational invariance in the problem directly from
the training set.

Comparison to Previous Work. Guided by the dynamical intuition
that short-timescale instabilities are driven by the interaction
of MMRs (5, 8, 11), we chose to train our model on systems
with particular period ratios and orbital elements in the nar-
row ranges near such resonances where the dynamical behavior
changes sharply (30). It is therefore important to test how well
such a model generalizes to a more uniform coverage of param-
eter space, given that most observed orbital architectures are
not in MMRs (possibly because such configurations typically
have short lifetimes and have been eliminated). Additionally,
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Fig. 2. Density plots showing the predicted versus true instability times for various models on the random dataset. All predictions outside of T ∈ [4, 9]

are moved to the edge of the range. For Bottom Left and Bottom Middle, which show the predictions of our model, transparency shows relative model-
predicted SNR. The theoretical limit, using the numerical experiments of ref. 35, is given in Bottom Right. The 0.43 dex RMSE average from this is used
to give the dotted contours in all plots. Top Left shows the predictions of ref. 30, Top Middle shows the predictions of ref. 10, and Top Right shows the
predictions of ref. 11.

previous work has typically ignored the sharp variations near
MMRs to fit overall trends in instability times (30), so a test on
resonant systems would not provide a fair comparison.

For this generalization test and comparison, we use the “ran-
dom” dataset of ref. 11, 25,000 three-planet systems with the
same mass ratio and inclination distributions as above, and
eccentricities drawn log uniformly from≈ 10−3 to orbit crossing.
Note that we do not train our model on this dataset; we only use
it for testing. Rather than drawing near-integer period ratios as
in our resonant training set, the spacing between adjacent plan-
ets is drawn uniformly between [3.5, 30] mutual Hill radii (see
ref. 11).

We find that our model exhibits only a minor loss in perfor-
mance (1.20 vs. 1.02 dex RMSE) generalizing to this uniform
distribution of orbital configurations (Table 1). This supports the
assertion that instabilities in compact systems within109 orbits are
dominantly driven by the MMRs we focused on in our training
sample (11). To compare our results to the extensive set of past
efforts, we divide previous approaches into three broad groups.

First, many authors have run N-body integrations along low-
dimensional cuts through the parameter space of compact orbital
configurations, and fit simple functional forms to the resulting
trends in instability times. For example, several studies have
highlighted the steep dependence on interplanetary separation,
while fixing orbits to be coplanar and initially circular, and plan-
ets to be equal mass and equally separated from one another

(12, 14, 16, 17, 30). We compare the performance of the fit from
the study in ref. 30, using five equally spaced Earth-mass planets
(mass ratio≈ 3× 10−6) on our random test set in Fig. 2, Top Left,
with a resulting RMSE of 2.41 (we also test our model on the sim-
ulations used in ref. 30). Follow-up studies have incorporated the
effect of finite inclinations and eccentricities (13, 15, 59, 60), but
they consider equal initial eccentricities, planetary masses, etc.,
in order to fit simple models. We conclude that, while such con-
trolled experiments yield insight into the underlying dynamics (9,
15, 61), instability times depend sensitively on masses and several
orbital parameters, rendering empirical fits to low-dimensional
cuts in the parameter space of limited applicability.

Second, previous authors have developed analytical instability
time estimates from first principles. These have been most suc-
cessful in the limit of initially circular orbits, where three-body
MMRs have been identified as the dominant driver of chaos (9).
Recent work (10) has extended this theory to provide accurate
instability time estimates. We will compare the predictions of our
model to this limit of initially circular orbits, in the next section.
Here we simply emphasize the point by ref. 10 that such predic-
tions perform poorly at finite eccentricities (Fig. 2, Top Middle),
likely due to the dominant effects of stronger two-body MMRs.
The fact that the analytic model predicts the vast majority of
systems to be stable implies that most of our test configura-
tions would be stable on circular orbits, but that finite orbital
eccentricities strongly modulate instability times.
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Fig. 3. A histogram of our model’s error distribution—the difference
between predicted and true instability time, divided by the model’s pre-
dicted σ—compared with a histogram of samples of a Gaussian. This plot
demonstrates that, were our model to predict some µ,σ, one would expect
68% of the true instability time values to fall within µ± 1σ, as expected for
a true Gaussian distribution.

The final approach is to make predictions across the high-
dimensional space of orbital configurations using machine learn-
ing (11, 27). We consider two variants of ref. 11 adapted
for regression. The first, labeled “Tamayo et al. (2020)” in
Fig. 2, is to simply use model identical to that of ref. 11
but map the probability estimates of stability past 109 orbits
through an inverse cumulative distribution of a log-normal with
an optimized constant SD. For the second, labeled “Modified
Tamayo+20,” the model is an XGBoost (62) regression model
(rather than classification) retrained on the same features as
used in ref. 11.

We find that our model achieves similar performance to the
Modified Tamayo+20 variant (Fig. 2 , Top Right and Table 1),
although the latter exhibits significant bias. We quantify this bias
for each model in the range T ∈ (4, 5) and T ∈ (8, 9). As is
evident in Table 1 as well as Fig. 2, the model introduced in
this work exhibits significantly reduced bias compared to other
models. Including SNR weighting further reduces bias. Bias is a
measure of the generalizability of a model to out-of-distribution
data (see chapter 7 of ref. 63), and so is an important metric
for understanding how these predictive models will extrapolate
to new data. Our model achieves predictions that are more
than two orders of magnitude more accurate than the analytic
models in each case, for example, 102.41/1.09≈ 162× when com-
paring our SNR-weighted model with ref. 30 on the random
dataset.

Finally, we can make a comparison to the original classifica-
tion model of ref. 11 by using our regression model as a form
of classifier. We count the fraction of samples above T =9
as the probability a given system is stable, and measure the
performance of the classifier with AUC (area under curve)
for the receiver operating characteristic curve—a classification
metric with 1 indicating a perfect model and 0.5 indicating ran-
dom guesses) for a range of threshold probabilities for stability
(Table 1).

Five-Planet Generalization with Comparison. As a second general-
ization test of our model, we compare its performance on the
limiting case considered by ref. 30. This case of five equally
spaced, Earth-mass planets on initially circular and coplanar
orbits differs significantly from our training set of resonant and
near-resonant, eccentric, and inclined configurations of three
planets with unequal masses. This dataset contains 17,500 sim-
ulations numerically integrated for 1010 orbits (30). This gen-
eralization to a limiting set of higher-multiplicity configurations
provides a stringent test of whether the model has learned fea-
tures of the dynamics or whether it is naively interpolating across
the distribution of orbital configurations present in our training
dataset.

To extend our three-planet predictions to higher multiplicity
systems, we perform the same short integration for all planets,
but pass time series for each adjacent trio of planets to the model
separately. The model samples a single instability time for each
adjacent trio, and the minimum across this set is adopted as the
instability time for the system, as an estimate of the time for the
first trio to go unstable. This procedure is then repeated, and
we record the median and CIs of the resultant distribution in
T . Such a reduction of compact multiplanet systems to sets of
adjacent trios has been proposed on theoretical (9, 10) as well as
empirical (11) grounds. This is motivated by the fact that the per-
turbative effects of planets on one another fall off exponentially
with separation (9, 10), so nonadjacent interactions can largely
be ignored.

The predictions can be seen in Fig. 4 and are remarkably
accurate, despite our model never seeing a system with five
planets during training. We overplot the analytical result of
ref. 10, in magenta, developed from first principles for such
cases with initially circular orbits, including a manual correction
for five-planet systems. Our model captures the same overall
trend, but additionally identifies the various dips, which cor-
respond to locations of different MMRs (30). We emphasize
that our model was trained on the general eccentric case where
the magenta model of ref. 10 does not apply (Fig. 2), yet the
generalization to this limiting case is excellent. In addition to
matching the overall trend of ref. 10, our model captures the
additional instability time modulations at MMRs, as can be seen

Table 1. Statistical summaries of each estimator applied to a
holdout test portion of the resonant dataset, and to all of the
random dataset

Bias* Bias for
Model RMSE Classif. accur. for T ∈ (4, 5) T ∈ (8, 9)

Resonant
Obertas et al. (2017) (30) 2.12 0.628 1.04 −1.71
Petit et al. (2020) (10) 3.22 0.530 3.99 0.54
Tamayo et al. (2020) (27) 1.48 0.946 2.07 −0.62
Modified† Tamayo+20 0.99 0.946 0.65 −0.60
Ours 1.02 0.952 0.29 −0.38
Ours, SNR-weighted 0.87 0.971 0.18 −0.25
Theoretical limit 0.43 0.992 0.05 −0.04

Random
Obertas et al. (2017) (30) 2.41 0.721 2.15 −0.93
Petit et al. (2020) (10) 3.09 0.517 4.17 0.50
Tamayo et al. (2020) (27) 1.24 0.949 1.16 −0.59
Modified† Tamayo+20 1.14 0.945 0.79 −0.70
Ours 1.20 0.939 0.40 −0.51
Ours, SNR-weighted 1.09 0.959 0.23 −0.49
Theoretical limit 0.44 0.989 0.06 −0.04

(dex) (AUC) (dex) (dex)

See Theoretical Limit section of Materials for details. Classif. accur. refers
to the classification accuracy. See Comparison to Previous Work for details.
∗Average difference between predicted minus true T in given range.
†Modified and retrained for regression.
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Fig. 4. The median instability time predictions of our model for the five-planet systems used in ref. 30. These systems have fixed interplanetary separation
between adjacent orbits, which is labeled on the x axis. Error bars fill out the 68% CI. The predictions from refs. 10 and 11 are overplotted. Residuals are
shown in Materials and Methods.

more clearly in the residuals in Fig. 5. Additionally, our model
generalizes much better than the predictions of the modified
regression model based on ref. 11 based on manually engineered
features (gold in Fig. 4).

Interpretation. In industry, machine learning is used to make pre-
dictions as accurate as possible, even at the expense of a more
interpretable model. However, in physics, we are fundamentally
interested in understanding problems from first principles.

Obtaining such an explicit interpretation of our model will be
difficult. However, as a first step, we consider the feature impor-
tances of our model: What orbital elements is it using to make
predictions, and does this align with expectations? To do this
feature analysis, we find the “saliency map” of the model (25),
which we compute as the variance of the gradient of the pre-
dicted µ value with respect to the input orbital elements. This
gives us a multidimensional array over feature, simulation, time
step, and model, representing how much the predicted µ value
will change should that feature be infinitesimally increased. We
compute the variance of the gradients over time and each sim-
ulation, and then average these variances over sampled network
parameters θ. This gives us a rough estimate for the importance
of each feature, which we visualize in Fig. 6.

To compare these importances to other work (11), we argue
empirically that the short-timescale instabilities we probe here
in compact systems are driven specifically by the interactions
between MMRs. A classical result of celestial mechanics is that,
in the absence of such MMRs, the long-term dynamics keeps the
semimajor axes fixed. Variations in the semimajor axes during
the short integrations thus act as a proxy for the importance of
nearby MMRs (27), and we see that, indeed, the semimajor axes
exhibit the highest feature importance in our model Fig. 6. Note
that a1 is normalized as (a1(t)/a1(0)) (Materials and Methods),
so the feature importance signifies that deviations in a1 from the
initial value of one are evidently important to the model. The fact
that the model ascribes comparable feature importance to any
given orbital element for each of the three planets also suggests
a physically reasonable model.

We note that there is a small but nonzero significance of the
instantaneous feature for time. This can be interpreted as being
important because the model takes the first 104 orbits as input,
and can predict instability for the system as low as 104.1. Thus,
the orbital parameters given at 104 orbits may be more impor-
tant than the orbital parameters at 100 orbits for predicting such
unstable systems, and thus the time feature is used. The time fea-
ture would be less important for a system that goes unstable near
109 orbits, as the relative importance of the system’s parameters
at 104 orbits is comparable to that at 100 orbit.

Because we chose to structure our model to take means and
variances of the times series of the learned features, it may be
possible to extract explicit interpretations of our model via sym-
bolic regression. Given that our approach is structurally similar
to that of a graph neural network (64), the frameworks of refs.
65–67 would be particularly applicable. This would be done by

finding analytic forms for f1, representing each of the trans-
formed variables, and then finding an analytic form for f2, to
compute the instability time given the transformed variables.
This type of explicit analysis of the model will be considered
in future work. This technique is not immediately applicable,
as it requires a specific regularization on the training which is
incompatible with MultiSWAG.

Conclusion
We have described a probabilistic machine learning model—a
BNN—that can accurately predict a distribution over possible
instability times for a given compact multiplanet exoplanet sys-
tem. Our model is trained on the raw orbital parameters of a
multiplanet system over a short integration, and learns its own
instability metrics. This is contrasted by previous machine learn-
ing approaches which have given their models hand-designed
instability metrics based on specialized domain knowledge.

Our model is more than two orders of magnitude more
accurate at predicting instability times than analytical estima-
tors, while also reducing the bias of existing learned models by
nearly a factor of 3. We also demonstrate that our model gen-
eralizes robustly to five-planet configurations effectively drawn
from a 1D cut through the broad parameter space used to
train the model. This improves on the estimates of analytic and
other learned models, despite our model only being trained on
compact three-planet systems.

Our model’s computational speedup over N-body integrations
by a factor of up to 105 enables a broad range of applica-
tions, such as using stability constraints to rule out unphysical
configurations and constrain orbital parameters (21), and to
develop efficient terrestrial planet formation models. Toward
this end, our model will be made publicly available through
the SPOCK package, with training code also available in a
separate git repository.†

Materials and Methods
Parameters. A planetary orbit can be described with six coordinates at any
given time. We choose to use eccentricity (e), semimajor axis (a, normalized
to the initial innermost planet’s value: i.e., a1(t)/a1(0), a2(t)/a1(0), . . .), incli-
nation (i), longitude of the ascending node (Ω), longitude of pericenter ($),
and true longitude (θ). We also pass the mass of each planet normalized to
the star’s mass to each call of f1 in Eq. 2. For each of the angular coordinates
excluding inclination, we split into two values—one for the sine and one for
the cosine of the value—before passing to the first neural network.

Likelihoods. Here we give a mathematical derivation of the likelihood used
to train our model. Our goal is to estimate the distribution P(T|X), for time
series data X ∈R3+19nt . We construct a probabilistic model defined by Eqs.
1–5, with parameters θ∈Rm, where m = 7,583 is the total number of param-
eters, which takes a time series for three planets, X, and produces a normal
probability distribution over T , parametrized by two scalars: (µθ(X),σ2

θ(X)).

†SPOCK package is available at https://github.com/dtamayo/spock. Training code is
available at https://github.com/MilesCranmer/bnn chaos model.
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Fig. 5. Residuals for predictions of instability time on the five-planet
dataset in Fig. 4, using data from ref. 30.

µθ is the center of the instability time, and σθ is the SD in that estimate. The
distribution over T parametrized by the model is equal to

P(T|X, θ) =


A(µθ (X),σ2

θ (X))
√

2πσθ (X)
exp

(
− (T−µθ (X))2

2σθ (X)2

)
, T < 9

1
2

(
1 + erf

(
µθ (X)−9√

2σθ (X)

))
P(T|T ≥ 9), T ≥ 9.

[6]

This distribution is motivated by two things. First, as in ref. 35, exoplanet
instability times usually follow a normal distribution in logarithmic instabil-
ity time, regardless of how large this time is. Therefore, we predict a normal
distribution in T for times under T < 9. Second, due to computational costs,
we only simulate systems up to 109 orbits; hence we use a model that is

independent of P(T|T ≥ 9). We calculate the cumulative probability of the
normal distribution falling T ≥ 9 to calculate the probability of the value
being stable. Here, A is a normalization function from the fact that we cut
off the probability at T = 4. Thus,

A(µθ(X),σ2
θ(X)) =

2

1 + erf

(
µθ (X)−4√

2σ2
θ

(X)

). [7]

This term, from our prior that T > 4, helps remove bias from our model, as
can be seen in Fig. 2. Without this term in the model, we would be artificially
punishing predictions at low T values.

Assuming we produce a point-wise dataset D = {(Ti , Xi)}i=1:N via numer-
ical integration, where Ti ≡ 9 indicates that the system is stable beyond 109

orbits, the log-likelihood for this model is equal to

log P(D|θ)∝
∑

i



− (Ti−µθ (Xi ))
2

2σθ (Xi )
2 − log(σθ(Xi))

− log

(
1 + erf

(
µθ (Xi )−4√

2σ2
θ

(Xi )

))
, Ti < 9

log

(
1 + erf

(
µθ (Xi )−9√

2σ2
θ

(Xi )

))
, Ti ≡ 9,

[8]

assuming a fixed prior P(T|T ≥ 9). Note how this decouples the loss for the
stable values Ti ≥ 9 from the prior P(T|T ≥ 9), meaning the choice of prior
will have no effect on our model, and can be chosen by a user after training.
Examples of this are plotted in Fig. 7. Now, we also marginalize the model
parameters θ, to incorporate epistemic uncertainty, and account for model
biases due to the random seed used in initializing and training the model.
We proceed as follows:

P(T|X, D)∝
∫

P(T , θ|X, D)dθ [9]

∝
∫

P(T|X, D, θ)P(θ|X, D)dθ [10]

∝
∫

P(T|X, θ)P(θ|D)dθ. [11]

We first maximize the likelihood of the model, to find P(θ|D). We factor the
joint probability using Fig. 8, and proceed as follows:

P(θ, D)∝ P(θ)
∏

i

∫
P(Xi)P(Ti|µi ,σ

2
i ) [12]

Fig. 6. Feature importances in the model, calculated as the root-mean-
square of the gradients of the model’s output with respect to the input
features, and normalized.
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Fig. 7. Example likelihoods for various choices of µ,σ2 corresponding to Eq. 6. For configurations stable past 109 orbits, we visualize some example priors
that one might select for inference, although we note that the choice of this prior does not affect the training of our model.

× P(µi ,σ
2
i |θ, Xi)dµidσ

2
i [13]

Using P(θ|D)∝
P(θ, D)

P(D)
[14]

⇒ P(θ|D)∝ P(θ)
∏

i

∫
P(Ti|µi ,σ

2
i )P(µi ,σ

2
i |θ, Xi)dµidσ

2
i , [15]

where P(Ti|µi ,σ
2
i ) is given by Eq. 6 as the log-likelihood for our model, and

P(µi ,σ
2
i |θ, Xi)dµidσ

2
i is our forward model given Eqs. 2–5. Finally, we can

write down the loss of our model, our function to minimize, as the negative
logarithm of Eq. 15, as follows:

Loss(θ) =− log(P(θ))−
∑

i

E(µi ,σ
2
i )≈f(Xi ;θ) log(P(Ti|µi ,σ

2
i )), [16]

where f(Xi ; θ) is the combined model Eqs. 2–5 for a given θ, and E is used
to refer to the fact that z is sampled in Eq. 3, so we average the loss over
samples. We set P(θ) equal to a zero-centered uninformative Gaussian prior
over the parameters. If this were a neural density estimator instead of a full

Fig. 8. Bayesian graphical model representing our inference scheme for the instability time with BNNs, which goes from time series created via short-term
integration ({xij}j=[1:nt ]) to a prediction of a (logarithmic) instability time (Ti) for each simulation i. The f1 and f2 are neural networks parametrized by
θ≡ (θ1, θ2). A distribution over θ is learned according to the likelihood P(θ)

∏
i P(Ti|{xij}j ; θ). The model is given in Eqs. 1–5. Notation follows that of ref.

68. Vectors are bolded, and matrices are capitalized.
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Fig. 9. A differentiable torch implementation of log(1 + erf(x)) which uses
an analytic approximation for x<−1.

BNN, we would minimize this for a single value of θ. Alternatively, we can
sample θ≈ P(θ|D) with a BNN algorithm. We use the MultiSWAG algorithm
to do this (55), as described in Bayesian Neural Network Implementation,
and aim to estimate the true parameter posterior P(θ|D) with our learned
distribution PMultiSWAG(θ).

Training. We have nt = 100 uniformly spaced samples of our integration
over 10, 000 initial orbits (the unit orbit is the initial period of the inner-
most planet). During training, we randomly select between 5 and 100
time steps, with replacement, to feed to the model. This is a type of
data augmentation that improves generalization of the model. Since we
are working with a varying number of orbit samples, we also sample
the averages and variances from Gaussians over their frequentist distribu-
tions: µ±Vart[yt]/nt for the mean, and σ2± 2Vart[yt]

2/(nt − 1) for the
variance, where nt is the number of samples, and Vart is the sample
variance. This will naturally allow the model to grow increasingly cer-
tain if a longer time series is given as input, since the averages and
variances of the transformed coordinates are less subject to small-sample
uncertainty.

Hyperparameters. Here we give a technical description of our neural
network hyperparameters with terms used in machine learning literature.
For our final model, we set both f1 and f2 to be MLPs with rectified linear
unit (ReLU) activations: one hidden layer and 40 hidden nodes each (i.e., a
matrix multiplication, a ReLU, a matrix multiplication, a ReLU, and another
matrix multiplication). The number of calculated transformed features
from f1 is 20, meaning f2 takes 40 features as input. We take 500,000
stochastic gradient descent optimization steps with random batches of
simulations with a batch size of 2,000 with a cosine-annealed step size
(69, 70) from 5× 10−4 down to 5× 10−8. This is followed by 50,000
additional steps at a fixed step size (presumably within a mode of the
posterior) of 2.5× 10−4, to record points of a Gaussian mode on the
weight posterior. Gradient clipping on the L2 norm of the gradients is
used, with a clipping value of 0.1. A small amount of noise is added to
the input features and summary statistics to encourage the model to only
use features that are useful: A Kullback−Leibler divergence loss term
is added to the loss function on this noise, with a multiplier of 10−5

on the input and 10−3 on the summary. This noise is not added during
evaluation, only during training. We choose five as the minimum number
of time steps to pass to the model. We rescale the data to have a zero
mean and unit variance for each feature (i.e., we normalize with a mean
and variance calculated over the entire training set and time series). All
of these parameters were found with the hyperopt package with a 20%
validation set, with a smaller number of training steps and accelerated
step size schedule.‡ Finally, we train an ensemble of 30 independent

models, which represents 30 modes of the weight posterior. Each stored
model contains the mean parameters, the mean square of the parameters,
and a matrix of 30 (K = 30) recorded deviations from the mean parame-
ters, which represent the off-diagonal covariance. In total, this results in
30× 32× 7,583 = 7,279,680 saved parameters for describing the full Mul-
tiSWAG distribution. For a complete technical description of these details,
our full training code is available at https://github.com/MilesCranmer/bnn
chaos model.

Approximating the Cumulative Distribution of a Gaussian. Due to precision
issues of 32-bit floating point numbers, our autodifferentiation software,
torch (71), is incapable of accurately calculating log(1 + erf(x)) and its gra-
dients as x decreases below −1. Because we heavily rely on this function
in our log-likelihood for training our model, and need to pass gradients
through it, we needed to approximate it for large negative x values. Other-
wise, we found that the gradients in our model would often approach very
large values, and training would fail. We approximate this function with an
analytic continuation via symbolic regression using PySR (Python Symbolic
Regression) (67). We generate values of this function in high-precision code,
and then fit analytical forms with PySR. We find that the function is very
accurately approximated over x∈ [−5,−1] by

log(1 + erf(x))≈ 0.64325 + 0.48566x− 0.95535x2

+ 0.0020008x3
+ 0.64328 exp(x),

and this function has equivalent asymptotic properties. We therefore use
this formula in place of log(1 + erf(x)) in our learning code for x<−1. The
torch code is given in Fig. 9, and can be used to replace any appearance of
log(1 + erf(x)) in code.

Theoretical Limit. In ref. 35, the authors measure the distribution of insta-
bility times for various orbital configurations. Taking an initial orbital
configuration, the authors perturb the system by machine precision, and
measure the instability time, and repeat. For each system, the authors then
measure the mean instability time, µ (in log-space), as well as the SD, σ (in
log-space, modeled as a log-normal). What this means is that we can define
a “theoretical limit” to the accuracy with which we can predict the insta-
bility time, and this accuracy is bounded by σ, for we cannot predict the
instability time for a given system better than within one σ SD on average.
For the purposes of this paper, we simulate an optimal estimator by taking
a particular instability time, and then making a random prediction for its
instability time within one σ of the actual instability time. Ref. 35 found
that σ, while it is different for different configurations, does not correlate
to µ, so, for the numerical value of σ, we simply randomly select numerical
σ values from those released for ref. 35. On average, these SDs are 0.43 dex.

Data Availability. Simulation/numerical integration output data have been
deposited in GitHub (https://github.com/MilesCranmer/bnn chaos model).
Our inference model is publicly available in the SPOCK (https://github.com/
dtamayo/spock) package. Data are currently publicly available on Zenodo
(https://zenodo.org/record/5501473) (72). This work made use of several
Python software packages: numpy (73), scipy (74), sklearn (75), jupyter
(76), matplotlib (77), pandas (78), torch (71), pytorch-lightning (79), and
tensorflow (80).
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