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Abstract 

Alcohol affects multiple neurotransmitter systems, notably the GABAergic system and has been recognised for a long 
time as particularly damaging during critical stages of brain development. Nevertheless, data from the literature are 
most often derived from animal or in vitro models. In order to study the production, migration and cortical density 
disturbances of GABAergic interneurons upon prenatal alcohol exposure, we performed immunohistochemical 
studies by means of the proliferation marker Ki67, GABA and calretinin antibodies in the frontal cortical plate of 17 
foetal and infant brains antenatally exposed to alcohol, aged 15 weeks’ gestation to 22 postnatal months and in the 
ganglionic eminences and the subventricular zone of the dorsal telencephalon until their regression, i.e., 34 weeks’ 
gestation. Results were compared with those obtained in 17 control brains aged 14 weeks of gestation to 35 postna-
tal months. We also focused on interneuron vascular migration along the cortical microvessels by confocal micros-
copy with double immunolabellings using Glut1, GABA and calretinin. Semi-quantitative and quantitative analyses 
of GABAergic and calretininergic interneuron density allowed us to identify an insufficient and delayed production of 
GABAergic interneurons in the ganglionic eminences during the two first trimesters of the pregnancy and a delayed 
incorporation into the laminar structures of the frontal cortex. Moreover, a mispositioning of GABAergic and cal-
retininergic interneurons persisted throughout the foetal life, these cells being located in the deep layers instead of 
the superficial layers II and III. Moreover, vascular migration of calretininergic interneurons within the cortical plate 
was impaired, as reflected by low numbers of interneurons observed close to the cortical perforating vessel walls that 
may in part explain their abnormal intracortical distribution. Our results are globally concordant with those previously 
obtained in mouse models, in which alcohol has been shown to induce an interneuronopathy by affecting interneu-
ron density and positioning within the cortical plate, and which could account for the neurological disabilities 
observed in children with foetal alcohol disorder spectrum.
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Introduction
The mammalian neocortex contains two major classes of 
neurons, projection and local circuit neurons: projection 
neurons which contain the excitatory neurotransmitter 
glutamate, and local circuit neurons which are mainly 

inhibitory and contain the neurotransmitter GABA 
(γ-aminobutyric acid). GABAergic interneurons (INs) 
which represent between 25 and 30% of cortical neu-
rons [26, 66] derive from progenitor cells located in the 
ventricular (VZ) and subventricular zones (SVZ) of the 
ventral telencephalon including median, lateral and cau-
dal ganglionic eminences (MGE, LGE and CGE), as well 
as from the preoptic, preoptic-hypothalamic and septal 
areas. In humans, their origin has been a matter of debate 
for a long time, and over the last 20 years some authors 
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have reported that contrary to rodents, a proportion of 
INs in humans could arise from the dorsal telencepha-
lon [24, 32, 44, 69]. But it is now well admitted that the 
majority of INs in primates including humans originate 
in the ganglionic eminences (GE) [2, 21, 36]. GABAergic 
IN specification within the GE is linked to the expression 
of transcription factors encoded by a set of regulatory 
genes such as Dlx1 (Distal less homeobox gene), Dlx2, 
Ascl1 (Achaete-scute family bHLH transcription factor 
1) formerly known as Mash1, Gsx1 and Gsx2 (Genetic-
Screened Homeobox  1 and 2) [34, 61]. The emergence 
of morphological and functional IN diversity is related 
to the spatial and temporal specification of progenitor 
cells according to additional transcriptional programs 
that are either intrinsically encoded or activated by 
interactions with the local microenvironment [33]. Two 
lineages of neocortical GABAergic INs exist. The first 
expresses Dlx1/2 transcription factors, and represents 
65% of neocortical GABAergic neurons, originating from 
Ascl1 expressing progenitors. The second lineage, which 
expresses Dlx1/2 but not Ascl1, forms around 35% of 
GABAergic INs [3, 45]. In rodents, Dlx1/2, Nkx2.1, Lhx6, 
Lhx7 and ARX participate in the control of GABAergic 
IN production and migration [16].

GABAergic INs arising from the MGE and CGE 
migrate following tangential migratory routes paral-
lel to the brain surface, then through the marginal zone 
to enter the cortex at early stages, through the interme-
diate/subventricular zone and subplate at later stages, 
and finally migrate radially to their final position in the 
appropriate cortical layers. Migration has been shown to 
be regulated by motogenic factors [40], by non-classical 
microtubule associated proteins [5] and by either chem-
oattractive or repulsive molecules [37–39, 63]. During 
the migration process, INs progressively acquire their 
characteristic morphology as well as their molecular, 
biochemical and synaptic properties. IN incorporation 
into the laminar structures of the cortical plate has been 
shown to be controlled, at least partly, by pyramidal neu-
rons [68].

More than 20 different types of inhibitory INs have 
been described in the murine neocortex and hippocam-
pus [58] and are divided into several classes and sub-
classes according to their morphology, their potential 
transcriptional similarities and to selective marker 
expression. Three major classes are recognized depend-
ing on parvalbumin, somatostatin and serotonin recep-
tor 3a (Htr3a) expression [33]. INs expressing Htr3a 
comprise bipolar INs co-expressing calretinin (CR), as 
well as single bouquet cells, interstitial or multipolar 
neurons and basket cells which co-express cholecysti-
kinin, vasointestinal peptide, reelin, or neuropeptide Y 
[reviewed by 33].

The main functions of GABA-mediated neurotrans-
mission consist in synchronizing neuronal networks by 
modulating cortical output, controlling neuronal excit-
ability and information processing as well as neuronal 
plasticity [10]. In the developing rodent brain, this neu-
rotransmitter is excitatory which could be explained by 
a higher intracellular concentration in chloride ions at 
early developmental stages [9]. The switch from excita-
tory to inhibitory function occurs between the second 
and seventh postnatal day, equivalent to the 3rd trimes-
ter of gestation in humans [8]. In the perinatal human 
neocortex and hippocampus, this excitatory action 
could play an important role in controlling several pro-
cesses including cell proliferation in the germinative 
zones, post-mitotic neuroblast migration and cell differ-
entiation, and may transiently regulate neuronal growth 
and dendritic maturation before synaptogenesis [10, 35, 
67].

Aberrant development and function of GABAer-
gic systems in humans have been implicated in various 
pathologies such as XLAG-syndrome (MIM# 300004) 
[11], epilepsy linked to focal cortical dysgeneses [18] or 
prenatal white matter injury [51]. GABA disturbances 
have also been implicated in a number of autism spec-
trum disorders of known origin such as Fragile X and 
Rett syndromes [12] as well as in schizophrenia [46]. 
Recently, Smiley et  al. also identified a selective reduc-
tion in GABA INs using a murine model of Foetal Alco-
hol Spectrum disorder (FASD) [57]. In utero alcohol 
exposure has damaging effects on brain development 
and is known to be responsible for severe neurodevel-
opmental disabilities leading to long-term neurobe-
havioural deficits [4, 7]. The most severe end of the 
spectrum is Foetal Alcohol Syndrome (FAS) which is 
characterized by intra-uterine and postnatal growth 
retardation, typical craniofacial dysmorphism, cen-
tral nervous system (CNS) structural anomalies as well 
as behavioural and neurocognitive deficits [27, 50]. For 
these reasons, most studies have focused on neurons 
and glial cells to study the mechanisms involved in the 
deleterious effects of alcohol on brain development [28, 
64]. Other studies have reported that in utero alcohol 
exposure affects brain angiogenesis in particular corti-
cal microvessel organization in both mouse and human 
foetuses [17, 25, 29, 62]. It has also been reported that 
some nerve cell types, notably GABAergic INs require 
brain microvessels to properly migrate toward the corti-
cal plate [35, 65].

From these reports, it could be speculated that devel-
opmental abnormalities of GABAergic systems includ-
ing generation, migration and cortical distribution 
may account for neurocognitive and behavioural dis-
abilities as well as epilepsy observed in FASD children. 
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These events can be studied using immunohisto-
chemical techniques based on the fact that a substan-
tial proportion of GABAergic INs co-express calcium 
binding proteins  (CaBP), in particular CR which acts 
as a buffer for modulating intracellular calcium tran-
sients [14]. The recent advances in understanding the 
physiopathology of FASD led us to perform a detailed 
immunohistochemical study using GABA and CR anti-
bodies in the foetal and postnatal human forebrain 
of FASD and controls from 14 WG to three years of 
age. The goals of the present study were first to pro-
vide an ontogenetic study of GABAergic IN population 
and of its calretininergic subpopulation in the germi-
nal zones during normal development by comparison 
with subjects antenatally exposed to alcohol; second 
to study their density and repartition in the cortical 
plate and to compare the spatio-temporal distribution 
of GABAergic systems; third to search for possible IN 
positioning abnormalities and fourth whether this mis-
positioning could be due to their inability to migrate 
along the intracortical microvessels as vascular migra-
tion anomalies have previously been identified in 
FASD rodent models.

Patients and methods
Patients
The brains used in this study belong to the collec-
tion which has been declared to the French Ministry of 
Health (collection number DC-2015-2468, cession num-
ber AC-2015-2467, located in A. Laquerrière’s Pathology 
Laboratory, Rouen University hospital, France). For all 
selected cases, the parents gave their consent for neuro-
pathological studies of the foetuses or infants following 
autopsy performed in agreement with the local ethic 
committee and in accordance with the French law.

Seventeen foetal and postnatal age-matched control 
brains ranging from 14 WG to 35 postnatal months were 
selected for the present study, and whose main clini-
cal and morphological characteristics are presented in 
Table 1. In 7 out of the 17 cases, a medical termination of 
the pregnancy (TOP) was achieved for pathologies/mal-
formations other than cerebral. Two out of the 17 cases 
were in utero foetal death (IUFD) with no found cause 
and 6 out of the 17 cases were perpartum or immediate 
postpartum death with no found reason or with a cause 
other than cerebral. The two children aged 3 months and 
35 months died of prone position sleep and anaphylactic 

Table 1 Gestational age/postnatal age and cause of death of selected control cases

IUFD in utero fetal death, PN post-natal, TOP Medical termination of pregnancy, WG weeks’gestation

*According to the morphometric criteria of Guihard-Costa and Larroche [19]

Case number Term Cerebral maturation* TOP Cause of death

1 15 WG 14 WG Yes Atrioventricular canal

2 16WG 16WG Yes Isolated sacral myelomeningocele

3 22 WG 20 WG No IUFD

4 22 WG 22 WG Yes Obstructive uropathy

5 24 WG 24 WG No IUFD

6 26 WG 26 WG Yes Hereditary bilateral microphtalmia

7 28 WG 28 WG Yes Severe distal arthrogryposis

8 30 WG 30 WG No Cord prolapse

9 32 WG 32 WG Yes Complex cardiac malformation

10 34 WG 34 WG Yes Suspected vermis hypoplasia
(Not confirmed)

11 35 WG 35 WG No Non immune fetal hydrops
Caesarean section

12 36 WG 36 WG No Bilateral renal agenesis
Fallot tetralogy
Immediate postpartum death

13 36 WG 36 WG No Dilated cardiomyopathy
Dead at day 2

14 37 WG 37 WG No Normal pregnancy
Death despite resuscitation
No autopsy and placental abnormalities

15 39 WG 39 WG No Perpartum in utero death
Placental membrane praevia vessel rupture

16 3 months PN 3 months PN No Prone position sleep

17 2 years and 11 months 3 years No Anaphylactic shock
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shock, respectively. In all cases, the brain was macro-
scopically and microscopically free of detectable abnor-
malities. Patients who had been suspected of central 
nervous system anomalies or of dying from neurological 
causes were systematically excluded.

Seventeen foetal and postnatal FASD brains ranging 
from 15 WG to 22 postnatal months were also included 
in this study. Detailed clinical and morphological charac-
teristics are presented in Table  2. Causes of death were 
IUFD in 6 cases, TOP for foetal malformations in 8 cases, 
post-natal early death in one case and sudden infant 
death syndrome in the two post-natal cases.

Methods
In each control and FASD patient, a complete autopsy 
had been performed with the written consent of the par-
ents and according to standardized protocols including 
X-rays, photographs, macroscopical and microscopical 
examination of all viscerae and brain [22]. Developmen-
tal age was evaluated by means of organ weights [20, 53], 
skeletal measurements and by the histological matura-
tional stages of the different viscera.

Neuropathological studies
Brain growth was evaluated according to the criteria of 
Guihard-Costa and Larroche [19]. Macroscopic evalu-
ation of brain maturation, in particular gyration, was 
performed according to the atlas of Feess-Higgins and 
Larroche [15]. After fixation in a zinc-10% formalin 
buffer solution for at least 1 month, several brain sections 
were obtained from frontal, temporal, parietal, cingu-
lar and occipital cortices including the calcarine fissure, 
as well as limbic structures, and basal ganglia including 
thalamus, striatum, pallidum and their related struc-
tures. Multiple seven micrometer paraffin embedded sec-
tions were stained using Haematoxylin–Eosin and Cresyl 
Violet, which made it possible to confirm the absence of 
cerebral lesions. The morphology of all different brain 
structures studied was consistent with the patients’ ages.

Immunohistochemistry
Immunohistochemical analyses of GABAergic systems 
were carried out on 6-micrometer sections obtained 
from paraffin-embedded, according to standardized 
protocols using antisera directed against GABA (Rab-
bit polyclonal, diluted 1/100; Thermofisher Scientific, 
F67403 Illkirch Cedex, france); CR (rabbit monoclonal, 
diluted 1/100; Life Technology Invitrogen, Villebon sur 
Yvette, France); Glut1 (Rabbit polyclonal, diluted 1/100; 
Dakopatts, Trappes, France) and Ki67 (mouse monoclo-
nal, diluted 1/100; Dakoppatts). Immunohistochemical 
procedures included a microwave pre-treatment protocol 
to aid antigen retrieval (pre-treatment CC1 kit, Ventana 

Medical Systems Inc, Tucson AZ). Incubations were per-
formed for 32 min at room temperature using the Ven-
tana Benchmark XT system. After incubation, slides 
were processed by means of the Ultraview Universal 
DAB detection kit (Ventana). Semi-quantitative analysis 
of GABA and CR INs in the germinal and intermediate 
zones as well as in the different layers of the frontal cor-
tex was evaluated as follows: 0: no cell labelled; +: very 
few cells labelled (less than 10% of cells); ++: some cells 
labelled (10-25%); +++: a relatively high proportion of 
cells labelled (25-50%) and ++++ : most of the cells of 
the structure are strongly labelled (> 50%).

Quantitative analysis of GABAergic cortical interneuron 
number and density
Quantitative analyses of GABA were carried out in the 
frontal cortical plate in 15 cases including 8 FASD aged 
26 WG to 3 post-natal months. Quantitative analyses of 
CR were performed in the same cortical area in 11 cases 
including 5 FASD aged 20, 24, 30, 33 and 37 WG. For 
measurements of GABA and/or CR positive cell density 
in the cortical plate, images were acquired and saved 
in TIFF format using a Leica DMI 6000B microscope. 
Images were subsequently opened in Mercator software 
and regions of interest (ROIs) were drawn. Afterwards, a 
counting frame was defined within the ROI and a thresh-
old was set in order to differentiate immunoreactive cells 
from the background. By a segmentation process, the 
computer calculated the number and the cumulated area 
of objects corresponding to immunoreactive cell somata 
within the ROI, yielding cell number and cell density per 
 104 µm2.

Confocal analyses of interneuron migration in the cortical 
plate
For confocal analyses, double immunolabellings were 
performed using GABA or CR and Glut1 antibodies in 
the frontal cortex at early stages from 14 to 20 WG, and 
at late stages from 33 to 37 WG. Fluorescent-conjugated 
antibodies Alexafluor-488 and -592 were obtained from 
Molecular Probes (Eurogene, Or, USA). After 3 gentle 
washes in a phosphate buffer solution, coverslips were 
mounted in DAPI-containing Vectashield (Vector labo-
ratories, Cambridgeshire, UK) and images were acquired 
with the Leica laser scanning confocal microscope TCS 
SP2 AOBS (Leica Microsystems, Wetzlar, Germany).

Statistical analyses
Statistical analyses were performed using the GraphPad 
Prism software. Chi square test was used to compare the 
intrinsic distribution of CR-positive cells in cortical plate 
between FASD and control brains at 24 and 30 WG.
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Results
FAS patients’ clinical and morphological characteristics
Among the 17 cases exposed to alcohol, 3 (18%) had intra 
uterine growth retardation (IUGR). All but 2 cases (88%) 
had cranio-facial dysmorphism which was characteristic 
of FAS in 7 of the cases (47%), associating an elongated 
and narrow forehead, short palpebral fissures, hypo- or 
hypertelorism and epicanthus, midface hypoplasia, a 
short nose with a broad nasal bridge and anteverted nos-
trils, indiscernible nasolabial folds, smooth and promi-
nent philtrum, thin vermillion border and micrognathia. 
Five cases (29%) had microcephaly (brain weight below 
the  3rd percentile). In 9 cases (53%) other CNS anomalies 
were identified: myelomeningocele with Chiari II malfor-
mation, arhinencephaly, migration abnormalities consist-
ing either in polymicrogyria or neuronal heterotopias and 
vermis hypoplasia. Clastic lesions consisted of massive 
cerebellar haemorrhage, cerebellar hemispheric necrosis, 
bilateral intraventricular haemorrhage, septal agenesis, 

diffuse astrogliosis and brain oedema. Five cases (29%) 
had associated visceral malformations: anterior coeloso-
mia, renal hydronephrosis, unilateral pelvic dilatation 
and tetralogy of Fallot. Amniotic fluid inhalation and iso-
lated pulmonary oedema were diagnosed in 2 cases.

In 10 cases, alcohol intake was self-reported by the 
mother (59%), consisting in daily chronic alcohol intake, 
associated with binge drinking in 3 cases. In the other 7 
cases (41%), maternal alcohol intake was clinically sus-
pected according to the criteria established by Riley 
et al. or reported by the family environment [50]. Twelve 
mothers (71%) had co-morbidities consisting of multi-
drug addiction or antiepileptic drugs or psychotic traits. 
Among the 7 cases in which alcohol intake was sus-
pected, 1 case had FAS craniofacial dysmorphism, IUGR 
and microcephaly with additional CNS anomalies; 1 case 
had FAS cranio-facial dysmorphism and microcephaly 
and 1 case had cranio-facial dysmorphism resembling 
the FAS dysmorphism associated with IUGR. Among 

Fig. 1 GABA and Ki67 immunohistochemistry in the brains of FASD and controls at early developmental stages and at mid-gestation. Similar GABA 
interneuron density in cortical plate of FASD and controls at 14-16 WG which contains bipolar INs migrating along the perforating microvessels as 
indicated by arrows (a, b) [OM × 200], contrasting with the low number of GABA interneurons in the VZ/SVZ (c, d) [OM x200], and in the GE in FASD 
compared to control brains (e, f) [OM x100)]. At 20 WG, GABA interneurons were scarce in the cortical plate of FASD compared to control (g, h) [OM 
x 200], in the VZ/SVZ (i, j) [OM x 200] and in the GE (k, l) [OM x 200]. Low proliferative activity revealed by Ki67 immunohistochemistry in the GE of 
the FASD brains aged 20 and 22 WG compared to control brains (m-r) [OM x 100]. CP: cortical plate; CTRL: control cases; GE: ganglionic eminence; 
FASD: foetal alcohol spectrum disorder; OM: original magnification; SVZ: cortical subventricular zone
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these 7 cases, 2 had CNS anomalies with FAS crani-
ofacial dysmorphism; 1 of which had craniofacial dys-
morphism resembling the FAS (maternal alcohol intake 
reported by close relatives). One case had FAS craniofacial 

dysmorphism, microcephaly and CNS anomalies and 1 
case had microcephaly with CNS anomalies and crani-
ofacial dysmorphism reminiscent of FAS, although not 
characteristic.

Fig. 2 Schematic representation of GABA and CR containing interneurons in the GE, VZ/SVZ and in the cortical plate of FASD and control 
brains during foetal and post-natal life. (a) Evolution of GABA interneuron density in the GE and VZ/SVZ obtained from semi-quantitative 
immunohistochemical evaluation. The vertical dotted line indicates the stage from which no significant differences between FASD and controls 
were observed (26 WG). Between 20 and 26 WG, an intense generation of GABA-positive cells was observed in control brains. (b) Evolution of CR 
interneuron density in the GE and VZ/SVZ obtained from semi-quantitative immunohistochemical evaluation. The vertical dotted line indicates 
the stage at which no significant differences between FASD and controls were observed (24 WG). Between 20 and 24 WG, an intense generation 
of CR-positive cells was observed in control brains and after 24 WG, two smaller peaks of production were observed in FASD brains indicating a 
production delay of two months. (c) Evolution of cortical density in GABA interneurons. Before 26 WG, cortical interneuron density was lower in 
FASD, from 26 WG to birth, no major differences were observed between FASD and controls. After birth, cortical density was slightly increased in 
FASD. (d) Evolution of cortical density in CR interneurons. Before birth, the density of CR interneurons was constantly lower in FASD cortices with a 
reverse pattern after birth, indicating a delayed settling of CR interneurons in the cortex of FASD
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Fig. 3 Calretinin immunohistochemistry in cortical plate of FASD and control brains at 24 WG. Random cortical distribution of CR interneurons in 
FASD brains with a predominance in deeper layers (asterisks) (a, b) compared to control cortical plate in which CR cells were more abundant in 
layer III (asterisk) (c). Quantitative analysis of cortical distribution of CR interneurons in each layer showing a predominance in layer III in normal brain 
(black arrow) and in deeper layers in FASD brains (red arrows) (d), associated with a lower global density in FASD brain compared to normal brain (e). 
Intrinsic distributions of CR-positive cells were compared in cortical layers I-VI from the control fetus and the FASD cases. Inserts within Fig. 3a, b ad c 
illustrate the bipolar morphology of CR interneurons at an original magnification of 400. Chi square analysis indicated that the cortical distributions 
significantly differed between the control case and both FASD cases (f ). Scale bar = 0,18 mm
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Semi-quantitative and quantitative analyses of GABA, 
Calretinin and Ki67 immunohistochemistry
GABA immunohistochemistry
During the early foetal period (14-16 WG), cortical 
GABAergic IN density was only slightly diminished 
in FASD in comparison with control cortical plates 
through which they were migrating along the perfo-
rating cortical microvessels from the transient subpial 
granular cell layer (SGL) (Fig. 1a, b). However, GABA-
immunoreactive INs were drastically reduced in the 
cortical VZ/SVZ (Fig.  1c, d) and the GE of FASD 
(Fig. 1e, f ), reflecting a delayed migration toward the 
cortical SVZ from the GE where they appeared to be 
insufficiently generated. At mid-gestation (20, 22 and 
24 WG), a developmental stage in which there is nor-
mally a large production of cortical interneurons, very 
few GABA-immunoreactive INs were observed, dis-
persed in the cortical plate (Fig. 1g, h), in the cortical 
SVZ (Fig.  1i, j), as well as in the GE (Fig.  1k, l), thus 
confirming our observations at earlier stages in FASD 
brains. Moreover, similar abnormalities were noted in 
the 3 FASD brains aged 22 WG, and in the 2 FASD 
brains aged 24 WG. The low density of GABAergic 
INs was correlated with very low Ki67 proliferation 
indices in the GE in comparison with control brains 
(Fig.  1m–r), confirming a defect in the generation of 
neurons at these stages. As projection neuron produc-
tion in the cortical VZ/SVZ ceases from 26 WG and 
there is no more enrichment in glutamatergic neu-
rons in the cortex, GABAergic IN density tended to 
be similar to that observed in control brains, without 
any overt increase in the GE up to 34 WG, a devel-
opmental stage when GE physiologically regress. But 
some cells remained immunolabelled in the GE and 
the cortical SVZ, likely corresponding to IN interme-
diate progenitors.

Semi-quantitative analyses concerning the develop-
mental patterns of GABA immunoreactivities in the GE, 
cortical VZ/SVZ and frontal cortical plate of FASD and 
controls are detailed in Additional file 1 and summarized 
in Fig.  2. Detailed results obtained from quantitative 
analyses are presented in Additional file 2.

Calretinin immunohistochemistry
In both FASD and control layer I, Cajal Retzius cells 
were positive for CR antisera, along with the superfi-
cial tangential fibre network. This immunoreactivity 
was observed throughout foetal life and decreased from 
38 WG, with a loss of positivity at 3 post-natal months. 
Additional small rounded neurons located in the molec-
ular layer corresponding to pioneer neurons were also 
observed 14 WG onwards. In the intermediate zone, dis-
persed migrating CR-positive INs were observed at all 
developmental stages until birth and just below the cor-
tical plate, dispersed CR-positive cells corresponding to 
subplate interneurons were noted until birth.

In the cortical plate, CR-positive INs were observed in 
all layers from 14 WG and between 14 and 16 WG, and 
no obvious differences were observed between FASD 
and controls in the GE, cortical VZ/SVZ and cortical 
plate. But whereas a significant production in the GE 
and migration of CR INs in the cortical VZ/SVZ was 
observed from 18 WG in controls, they were less numer-
ous in the cortical plate (Fig. 3a–c), VZ/SVZ and GE of 
FASD brains at 20, 22 WG and 24 WG. Quantitative 
analysis of CR INs performed on two FASD foetal brains 
at 24 WG confirmed that CR-positive cell density was 
lower in the cortical plate. It also revealed misposition-
ing of these cells which were haphazardly located within 
the different layers and predominated in the deepest lay-
ers instead of being mainly located in the upper layers of 
the cortical plate (Fig.  3d, e). A Chi square comparison 
of the intrinsic distribution of CR-positive cells in corti-
cal plate showed that the two 24 WG FASD brains signifi-
cantly differed  (Chi2 = 22.35 and 20.27, df 4, p < 0.0005***) 
from the control brain (Fig.  3f ). These results were fur-
ther confirmed at 30 WG, i.e., lower global cell density in 
the cortical plate, still predominating in the deep layers 
of the cortical plate in case of FASD (Fig.  4a–e), with a 
significant difference between FASD and control (Fig. 4c, 
 Chi2 = 21.25, df 4, p < 0.0005***). Besides, from 26 WG 
the production of CR INs also followed that of GABA in 
the germinal zones except for two small peaks of produc-
tion observed at 26 and 30 WG in the GE and VZ/SVZ of 
FASD brains (Fig. 4f–i). Similar anomalies were identified 

Fig. 4 Calretinin immunohistochemistry in the brains of FASD and control at 30 WG. Quantitative analysis of cortical distribution of CR interneurons 
in each layer showing a predominance in superficial layers in particular layer I in normal brain whereas they were still present in the deeper layers 
in FASD brain (red arrows) (a), associated with a lower global density in FASD brain compared to normal brain (b). Statistical analysis using Chi 
square again confirmed that the cortical distributions significantly differed between the control and the FASD cases (c). Cortical distribution of 
CR interneurons which were still present in the deeper layers in FASD brain (asterisk) (d) compared to control cortical plate in which CR cells were 
located in superficial layers, in particular layer I (asterisk) (e). CR interneurons were more abundant respectively in GE (f, g) and SVZ (h, i) of the FASD 
brain compared to control [OM x 20]. Scale bar = 0,18 mm. Inserts within Fig. 4d and e illustrate the bipolar morphology of CR interneurons at an 
original magnification of 400. CP: cortical plate; CTRL: control cases; GE: ganglionic eminence; FASD: foetal alcohol spectrum disorder; OM: original 
magnification; SVZ: cortical subventricular zone

(See figure on next page.)
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in the cortical plate of the FASD brain at 37 WG com-
pared to 5 control brains aged 35–39 WG. In the 2 FASD 
post-natal cases, CR INs were still misplaced in the deep-
est cortical layers and appeared more numerous than in 
the cortex of age-matched controls (Fig. 5). Since differ-
ences between FASD and control post-natal brains were 
obvious, quantitative and statistical analyses were not 
performed in these cases.

As for GABA, semi-quantitative analyses are detailed 
in Additional file  3 and summarized in Fig.  2. Detailed 
results obtained from quantitative analyses are presented 
in Additional file 4.

Confocal analyses of vascular interneuron migration 
in the cortical plate
Close to the pia, we also observed CR-positive neurons 
on the surface of the cerebral hemispheres, which corre-
spond to the migration of GABAergic INs from the GE 
to the olfactory bulb via the rostral migratory stream, 
then to the marginal zone to form the SGL also named 
Brun layer. About 50% of these cells, which are known 
to migrate into the underlying cortex, were calretinin-
immunoreactive and were observed both in FASD and 
control brains until 26 WG [41]. Before mid-gestation, no 
migratory abnormalities of calretininergic INs along the 
perforating microvessels of the cortical plate were identi-
fied. But at later stages, in particular between 33 and 37 
WG, vascular migration was affected in the cortical plate 
of FASD foetuses, in which the majority of CR-immu-
noreactive INs remained at a distance from the vessels, 
contrary to controls, where CR-positive INs were found 
in close contact with the vessels in all layers (Fig. 6 and 
Additional file 5). When counting on one field from the 
confocal images including all cortical layers at 34 WG, 
at a magnification of 400, evident differences concern-
ing the connection between INs and vessels were noted. 
In the foetus exposed to alcohol, a total of 16 INs were 
located at a distance of the vessel walls and only 2 were in 
contact with them, conversely to the control in which 18 
INs were in close contact with the vessel walls. Moreover, 
as previously reported [25], the physiological predomi-
nant radial organization of the vasculature was markedly 
altered.

Discussion
This study allows to confirm that GABA and CR 
interneurons are generated early during the foetal period 
with an intense interneuron generation within the GE 
from 18 WG followed by a progressive extinction by 30 
WG, consistent with previous studies [59, 69]. Interest-
ingly, the CaBP marker CR displayed a dynamic expres-
sion, as it reached a peak between 20 and 38 WG and 
decreased afterwards, suggesting that transient expres-
sion of CR-positive neurons could exert precise func-
tions during specific developmental events, in particular 
during neuronal migration [60]. The main hallmarks of 
FASD interneuronopathy consisted in a delayed gen-
eration of GABA INs expressing calretinin which started 
from 24 WG instead of 18 WG and resulted in an inad-
equate number of INs, i.e., insufficient in the cortical 
plate until birth, in excess after birth, as well as in a fail-
ure to integrate themselves at their appropriate location 
within the different layers according to an inside-out pat-
tern. These anomalies in cell density were always associ-
ated with a mispositioning of calretinin INs located in 
the deepest layers in FASD whereas they were mainly 
located in the superficial layers in controls, as previously 
described [48]. It has been postulated that in humans, 
the location of CR INs in the upper cortical layers (II/III) 
might play a role in cortical circuit formation necessary 
for higher brain functions, notably abstract thinking and 
language [48] which could partly explain the neurocog-
nitive and behavioural deficits observed in FADS. Inter-
estingly, recent studies demonstrated that in a mouse 
model of monointoxication, PAE affected the expression 
of some genes involved in intraneocortical connectivity 
establishment, notably Rzrβ, Cad8 and Id2 the promoter 
of which being hypomethylated concomitantly to global 
DNA hypomethylation that further emphasizes the role 
of alcohol in altering epigenetic programs [1].

To our knowledge, no study concerning the effects 
of alcohol during human or rodent brain development 
has focused on GE. Nevertheless, studies on the effects 
of alcohol on VZ/SVZ of the dorsal telencephalon in a 
murine model of cultured radial glial cells and in murine 
embryonic cerebral cortices revealed that in utero etha-
nol exposure impairs cell proliferation and results in a 

(See figure on next page.)
Fig. 5 Calretinin immunohistochemistry in the cortex of FASD and control brains after birth. CR cells were more abundant in superficial and 
especially in deeper cortical layers of FASD brains at 3 months and 2 years (a and b, e and f) in comparison with control brains (c and d, g and 
h). Scale bar = 0,22 mm. Inserts within Fig. 5 illustrate the bipolar morphology of CR interneurons and their neuritic extensions at an original 
magnification of 400



Page 13 of 18Marguet et al. acta neuropathol commun           (2020) 8:208  



Page 14 of 18Marguet et al. acta neuropathol commun           (2020) 8:208 

Fig. 6 Confocal analysis with calretinin and GLUT1 immunolabellings at 33-34 WG. CR-immunoreactive interneurons, labeled in red, remaining at 
a distance from the vessels, labeled in green (double-headed arrows) in FASD brain (a, c, e, g) contrary to control, where CR-positive interneurons 
were found in close contact with the vessels (arrows) in all cortical layers (b, d, f, h). Scale bar = 5 μm
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decreased production of neurons and astrocytes [52]. 
Telencephalic cultures obtained from ethanol-treated 
rats displayed a reduction of actively dividing radial glia 
progenitors, and neurosphere formation assay showed a 
reduced number of multipotent progenitor cells in cul-
tures isolated from ethanol-treated rats. More recently, 
using in  vivo and in  vitro mouse models, it has been 
demonstrated that alcohol hinders basal progenitor pro-
liferation in the SVZ by interfering with the cell cycle 
at G1-S transition from early development [49]. From 
these observations, it might be suggested that a similar 
mechanism occurs in the GE, which could explain defec-
tive/delayed production of GABAergic INs during foetal 
life and even microcephaly due to alcohol-induced tera-
togenic effects on germinative zones. Brain growth fail-
ure which is the most frequent brain structural anomaly 
could also be related to alcohol-induced neuroapoptosis 
which was first reported 20  years ago by Ikonomidou 
et  al. who showed that the proapoptotic effects of alco-
hol mediated by both extrinsic and intrinsic pathways 
were mimicked by NMDA blockers and  GABAa receptor 
modulators and peaked at P7 in rats, which corresponds 
to 34-38 WG in humans [23]. Since then, it has been 
shown that nearly all types of neurons including INs are 
affected by this process.

Several studies have suggested that in rodents and 
monkeys, the defects in the number of GABA cortical IN 
and in their positioning in the cortex of FADS patients 
resulted from impaired migration but data remain con-
tradictory and this could be partly due to the plethora 
of alcohol exposure schedules and animal models used. 
Upon alcohol exposure, fewer GABA INs and more par-
ticularly in layers II and III have been reported in the 
somato-sensory cortex of guinea pigs and monkeys [6, 
42] suggesting that late born interneurons are susceptible 
to alcohol exposure. Conversely, other studies reported 
an increased density of GABA INs in mouse prefron-
tal cortex, which was attributed to enhanced tangential 
migration [13, 56]. It is recognized that tangential migra-
tion is largely controlled by GABA signaling and that a 
reduction in ambient GABA results in improper migra-
tion of GABA INs which express  GABAa,  GABAb and 
 GABAc receptors and are a target of alcohol [55]. On 
the other hand, alcohol has been shown to potentiate 
GABA-mediated signaling by increasing GABA release 
and  GABAa receptor activity with subsequent prema-
ture migration. According to Skorput et al., INs of layer V 
are particularly sensitive to alcohol which could explain 
increased migration to this layer [56]. Otherwise, IN 
migration depends on neurotrophic factor activity which 
regulates the tangential migration mode, such as BDNF, 
GDNF and HGF which play a crucial role in the disper-
sion and appropriate location of INs arising from the GE 

in the dorsal telencephalon [47]. Basic fibroblast growth 
factor stimulates the generation and differentiation of CR 
INs, and its effects are enhanced by retinoic acid which 
plays an essential role in stem cell differentiation and 
development and is a major target of alcohol [43, 54].

Migration and positioning of GABAergic INs in the 
cortex is also controlled by cortical microvessels [65] 
and it has previously been demonstrated that corti-
cal angiogenesis in foetal human brains is impaired by 
antenatal alcohol exposure [25, 29]. In the present study, 
we observed that a significant proportion of GABAe-
rgic/CR INs were located at a distance from cortical 
vessels from the beginning of the third trimester of ges-
tation which could also explain IN mispositioning in 
FASD brains. Recently, Léger et al. reported that during 
normal neurodevelopment, glutamate stimulates activ-
ity of the endothelial proteases MMP-9 and t-PA along 
the pial and radial cortical microvessels. They showed 
that t-PA invalidation and in  vivo administration of a 
MMP inhibitor resulted in a mispositioning of GABA 
INs which were missing in the superficial cortical layers 
supporting the fact that glutamate, via its t-PA-depend-
ent endothelial NMDA receptor, controls vessel-associ-
ated migration of GABA INs by regulating endothelial 
protease activity [30]. Furthermore, these authors pro-
vided for the first time mechanistic and functional 
evidence that upon in utero exposure, alcohol impairs 
glutamate-regulated activity of pial microvessels and IN 
positioning by altering metalloproteinase activity. From 
these results, it could be suggested that alcohol-induced 
endothelial dysfunction may contribute to ectopic corti-
cal GABAergic IN positioning observed in the present 
FASD cases [31].

Conclusion
This study provides further evidence that alcohol affects 
the GABAergic system in humans from early foetal life 
by impacting on critical stages of brain development and 
thus inducing an interneuronopathy. Semi-quantitative 
and quantitative analyses of GABAergic and calretininer-
gic interneuron density allowed us to identify an insuffi-
cient and delayed production of GABAergic interneurons 
in the ganglionic eminences during the two first trimes-
ters of the pregnancy, a delayed incorporation into the 
laminar structures of the frontal cortical plate and a mis-
positioning of GABAergic and calretininergic interneu-
rons which persisted throughout the foetal life. Moreover, 
vascular migration of calretininergic interneurons within 
the cortical plate appeared abnormal, as reflected by low 
numbers of interneurons observed close to the corti-
cal perforating vessel walls that may in part explain their 
abnormal intracortical distribution. Our results are glob-
ally concordant with those previously obtained in mouse 
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and in vitro models, in which alcohol has been shown to 
induce an interneuronopathy by affecting interneuron 
density and positioning within the cortical plate, and 
which could account for the cognitive and behavioral dis-
abilities as well as epilepsy observed in children with foe-
tal alcohol disorder spectrum.
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