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Background: Lung adenocarcinoma (LUAD) is the most common histological type of lung cancer with 
poor overall prognosis. Early identification of high-risk patients and individualized treatment can help extend 
the survival time of patients. This study aimed to construct and validate a prognostic prediction least absolute 
shrinkage and selection operator (LASSO) model for stemness-related genes in LUAD.
Methods: Firstly, LUAD RNA-sequencing data and clinical data were downloaded from The Cancer 
Genome Atlas (TCGA) database. The tumor stemness index based on mRNA expression (mRNAsi) was 
calculated, and the relationship between mRNAsi and the survival prognosis as well as clinical features of 
LUAD patients was analyzed. Then, the weighted gene co-expression network analysis (WGCNA) method 
was used to screen for gene modules highly correlated with mRNAsi, and functional annotation [Gene 
Ontology (GO) analysis] and pathway enrichment analysis [Kyoto Encyclopedia of Genes and Genomes 
(KEGG) analysis] were performed for the selected stemness-related gene module. Furthermore, prognosis-
associated genes were determined from the stemness-related genes through univariate Cox analysis, and a 
prognostic model was constructed using LASSO analysis. Finally, a series of validations including survival 
curve analysis, receiver operating characteristic (ROC) curve analysis, and risk analysis were conducted for 
the prognostic model, and nomogram based on the risk model and various clinicopathological features were 
constructed.
Results: LUAD patients with high mRNAsi had a higher mortality rate than those with low mRNAsi. GO 
analysis showed that stemness-related genes were mainly involved in mRNA processing and extracellular 
matrix organization, while KEGG analysis revealed their involvement in cell cycle and PI3K-Akt signaling 
pathways. A prognostic model based on 12 stemness-related genes was constructed using LASSO regression. 
Validation of the prognostic model demonstrated its good accuracy in predicting the prognosis of LUAD 
patients.
Conclusions: mRNAsi plays an important role in the occurrence and development of LUAD. This study 
successfully constructed a prognostic prediction LASSO model for stemness-related genes in LUAD, which 
can serve as a novel prognostic indicator for LUAD and may be an effective complement to the current 
Tumor Node Metastasis (TNM) clinical staging of LUAD.
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Introduction

Background

As one of the leading causes of cancer-related deaths 
worldwide, lung cancer maintains high incidence and 
mortality rates globally. Approximately 2.2 million cases are 
diagnosed with lung cancer each year, and the number of 
deaths related to lung cancer reaches nearly 1.8 million (1).  
Non-small cell lung carcinoma (NSCLC) accounts for about 
85% of all lung cancer cases, with lung adenocarcinoma 
(LUAD) being the most common histological subtype, 
representing approximately 50% of all NSCLC cases (2). 
Despite the possibility of surgical treatment for early-
stage LUAD patients, there is still a risk of postoperative 
recurrence. Additionally, many patients are diagnosed at 
advanced stages, and thus missing the opportunity for surgery. 
The overall 5-year survival rate for LUAD patients is only 
26.4% (3). Early identification of high-risk lung cancer 
patients and providing personalized treatment can significantly 
reduce adverse prognosis. Currently, Tumor Node Metastasis 
(TNM) staging is still used in clinical practice to predict the 
prognosis of LUAD patients. With the emergence of targeted 
therapies, immunotherapy, and the continuous development 
of bioinformatics, there is an urgent clinical need for multiple 
biomarkers to predict patient prognosis.

Rationale and knowledge gap

The theory of cancer stem cells (CSCs) provides new 
insights into the diagnosis and treatment of tumors. The 
study (4) has confirmed that CSCs possess significant 
characteristics such as self-renewal and multi-lineage 
differentiation, which can lead to tumor metastasis, drug 
resistance, and recurrence. Targeting stemness-related 
signaling pathways (such as Hedgehog, Notch, Wnt, and 
TGF-β inhibitors), stemness surface markers (such as 
CD44 and CD133 inhibitors), and stemness metabolism 
(such as Bcl2 inhibitors) have been shown in phase I–III 
clinical trials to effectively reverse tumor stemness, inhibit 
malignant progression, and increase treatment sensitivity (5).  
Identifying the degree of stemness in lung cancer can 
effectively distinguish patients with poor prognosis and 
provide timely individualized comprehensive treatment to 
improve patient outcomes. In order to better describe the 
characteristics of CSCs, the concept of “stemness indices” 
has been introduced. This index model was established by 
Malta et al. (6) using machine learning algorithms based on 
a dataset of progenitor cells. This method allows for the 
calculation of mRNA-based stemness index (mRNAsi) for 
samples in The Cancer Genome Atlas (TCGA) database 
through RNA-sequencing analysis, enabling the evaluation 
of their stem cell properties. Due to the substantial 
heterogeneity among individual tumors, a single biomarker 
often lacks sufficient sensitivity and specificity to accurately 
predict patient prognosis. Therefore, integrating multiple 
biomarkers into the same model significantly improves its 
predictive value for tumor prognosis.

Weighted gene co-expression network analysis 
(WGCNA) (7) is a commonly used bioinformatics analysis 
method that can be used to describe the correlation patterns 
between high-throughput sequencing samples and their 
expressed genes. It helps discover highly correlated gene 
clusters, identify characteristics of gene modules and key 
genes within those modules, and establish relationships 
between gene modules and external sample features. The 
least absolute shrinkage and selection operator (LASSO) (8) 
is a regression analysis method that allows for simultaneous 
variable selection and regularization, aiming to improve the 
predictive accuracy and interpretability of statistical models. 
This algorithm has been widely applied in Cox proportional 
hazards regression models for survival analysis of high-
dimensional data.

Highlight box

Key findings
• A prognostic model based on 12 stemness-related genes (ACTB, 

PDGFB, MAGEH1, CPS1, KCTD9, FOLR1, SLC29A1, ENY2, 
INTS7, FUT1, SNN, TLE1) was established. This model can be 
used to predict the prognosis of lung adenocarcinoma (LUAD) 
patients.

What is known and what is new? 
• Cancer stem cells possess significant characteristics such as self-

renewal and multi-lineage differentiation, which can lead to LUAD 
metastasis, drug resistance, and recurrence.

• We established a stemness-related genes prognostic model to 
promote the development of precision medicine in LUAD.

What is the implication, and what should change now? 
• The prognostic model could be used as a useful tool for clinicians 

to judge the prognosis of patients and develop new therapeutic 
targets for LUAD.

• Future diagnosis and treatment will further focus on stemness 
perspectives.
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Objective

Therefore, in this study, based on the calculation of the 
stemness index (mRNAsi) using TCGA LUAD dataset, 
WGCNA analysis was applied to identify stemness-related 
genes. Furthermore, LASSO regression analysis was 
performed based on the prognostic information of LUAD 
to construct a risk prognostic model consisting of 12 genes 
for predicting the prognosis of LUAD. To facilitate clinical 
application, a nomogram based on this risk prognostic 
model was established, which can accurately and effectively 
identify high-risk LUAD patients with poor prognosis at 
an early stage, bringing clinical benefits to the patients. 
Additionally, using this risk model, the differences in 
immune response between the high- and low-risk groups 
were further explored, providing guidance for clinical 
immunotherapy. We present this study in accordance with 
the TRIPOD reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-23-1847/rc). 

Methods

Data download and preprocessing

LUAD RNA-sequencing data and clinical data were 
downloaded from the TCGA database (http://portal.gdc.
cancer.gov/). Cases with missing overall survival (OS) values 
or OS <30 days were excluded to improve the accuracy of 
the prognostic model. Finally, information on 428 cases with 
gene expression values and survival time was obtained. The 
external validation dataset, GSE68465, was obtained from 
the Gene Expression Omnibus (GEO) database (http://
www.ncbi.nlm.nih.gov/geo). GSE68465 consisted of 442 
LUAD patient samples and complete OS and transcriptome 
data were retrieved from the Affymetrix GPL6947 platform 
(Illumina HumanHT-12 v.3.0 Expression BeadChips). Data 
for mRNAsi calculation specific to LUAD were downloaded 
and processed from https://bioinformaticsfmrp.github.io/
PanCanStem Web. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013).

Correlation between mRNAsi and survival prognosis and 
clinical features

mRNAsi based on mRNA expression is a quantitative 
representation of the stem cell characteristics of a sample, 
ranging from 0 to 1. The tumor samples were divided into 
high mRNAsi and low mRNAsi groups based on the median 
mRNAsi value. Survival analysis comparing the differences 

between the groups was conducted using the “survival” and 
“survminer” packages in R (9). The visualization analysis 
of clinical feature correlations was performed using the 
“beeswarm” package in R, and the differences in mRNAsi 
values among the groups were analyzed using the Kruskal-
Wallis test.

WGCNA network construction for screening  
stemness-related genes

The gene co-expression network was constructed using the 
“WGCNA” R package to analyze and identify gene modules 
closely related to mRNAsi. The expression data in the 
samples were subjected to sample clustering analysis using 
the “hclust” function, and outlier samples were removed. 
Then, the “pickSoftThreshold” function was used to select 
the soft threshold. Further analysis of the modules was 
performed to calculate the differences between modules and 
construct a module dendrogram. The minimum number of 
genes in each module was set to 50, and a threshold of 0.25 
for the cutting height was chosen to merge modules with 
high similarity. Correlation analysis was conducted between 
various enriched gene modules and mRNAsi. Stemness-
related genes were further selected from the gene module 
with the highest correlation coefficient with mRNAsi.

Enrichment analysis of stemness-related genes using Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG)

To explore the potential biological roles of differentially 
expressed stemness-related genes, the “clusterProfiler” 
package was used to perform GO and KEGG pathway 
enrichment analysis (10). Pathways and functions with 
q-value <0.05 were considered as enriched pathways 
and functions associated with stemness-related genes. 
Additionally, a circular plot was generated to visually 
display the stemness-related genes involved in significantly 
enriched pathways and GO functions.

Establishment of multi-genes LASSO regression model

The above-mentioned stemness-related genes were used 
to construct a prognostic model. The “survival” package 
was used to perform univariate Cox regression analysis, and 
genes with a significance level of P<0.05 were considered 
as prognostic-related genes. LASSO regression analysis, 
as a common machine learning method, can effectively 

https://tcr.amegroups.com/article/view/10.21037/tcr-23-1847/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-23-1847/rc
http://portal.gdc.cancer.gov/
http://portal.gdc.cancer.gov/
http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
https://bioinformaticsfmrp.github.io/PanCanStem
https://bioinformaticsfmrp.github.io/PanCanStem
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handle multicollinearity issues and is often used for variable 
selection and prognostic model construction. The R 
package “glmnet” was utilized for LASSO Cox regression 
analysis (11), further screening prognostic genes, and 
constructing the prognostic model in the discovery cohort. 
The computational formula used in this analysis is as 
follows: risk score = ∑ coef(nk=1 gene k) * expr(gene k).

Here, coef(gene k) represents the abbreviated form of the 
gene coefficient associated with survival, and expr(gene k)  
denotes the expression level of the gene. Patients were 
classified into high-risk and low-risk groups based on the 
median risk score.

Validation of prognostic models

Using the external validation cohort GSE68465, the 
“survival” R package was utilized to compare the survival 
differences between high-risk and low-risk groups through 
Kaplan-Meier survival curves. The receiver operating 
characteristic (ROC) curve provides the magnitude of 
sensitivity and specificity, with specificity and sensitivity 
plotted on the x-axis and y-axis, respectively. The area under 
the curve (AUC) represents the accuracy of the prediction, 
with a larger AUC indicating higher predictive accuracy. 
The “survivalROC” package was used to generate ROC 
curves to evaluate the accuracy of the model in predicting 
survival.

In the TCGA LUAD discovery cohort, the cohort 
was randomly divided into an experimental group and a 
validation group. ROC curves were plotted on the entire 
discovery cohort to evaluate the accuracy of the model. 
Furthermore, Kaplan-Meier survival curves, as well as 
gene expression heatmaps and risk curves between high-risk 
and low-risk groups, were separately plotted on the whole 
discovery cohort, experimental group, and validation group. 
This evaluation aimed to assess the expression of prognostic-
associated genes in the high-risk and low-risk groups within 
the model and further validate the differences in patient 
survival between the high-risk and low-risk groups.

The TCGA LUAD discovery cohort was subjected to 
univariable Cox regression analysis and multivariable Cox 
regression analysis using the “survival” R package. This 
analysis aimed to investigate whether the risk score and 
clinical features are independent factors in the analysis.

Construction of the nomogram

Using the “regplot” and “rms” R packages, a nomogram was 

constructed to predict the 1-, 3-, and 5-year survival rates 
of LUAD patients. The risk score and tumor stage were 
included in constructing the nomogram. Additionally, a 
calibration curve was built based on the Hosmer-Lemeshow 
test to evaluate the effectiveness of this nomogram.

Evaluation of immune phenotypes in high-risk and  
low-risk groups

Immune cell content, immune cell infiltration, and 
expression of immune checkpoint genes are all relevant 
indicators of tumor immunity and play an important role 
in the effectiveness of immunotherapy. We compared the 
differences in these immune-related indicators between 
high-risk and low-risk groups to assess the relationship 
between the prognostic model and tumor immunity. Single 
Sample Gene Set Enrichment Analysis (ssGSEA) (12) was 
used to evaluate the level of immune cell infiltration. We 
examined the expression of 22 immune checkpoint genes in 
different risk groups and identified significantly differentially 
expressed checkpoints. Data from Tumor Immune 
Dysfunction and Exclusion (TIDE) were used to predict 
patients’ potential response to immunotherapy (13). Tumor 
mutational burden (TMB) represents the total number 
of detected errors in somatic gene coding, including base 
substitutions, gene insertions or deletions, per million bases. 
TMB is used as an indicator to assess the frequency of gene 
mutations (14).

Statistical analysis

All statistical tests were performed using R4.1.3, including 
the two-sample Mann-Whitney test for continuous data, 
Fisher’s exact test or Chi-square test for categorical data, 
log-rank test for Kaplan-Meier curves, Hosmer-Lemeshow 
test for nomogram and Cox proportional hazards regression 
for estimating hazard ratios (HRs) and 95% confidence 
intervals (CIs). Correlation coefficients between different 
genes were estimated via Pearson correlation analysis. 
All statistical P values were two-sided, and P<0.05 was 
considered statistically significant.

Results

mRNAsi is significantly associated with LUAD

The Kaplan-Meier survival curve results showed that 
although not statistically significant (P=0.23), the overall 
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mortality rate was higher in the high mRNAsi group 
compared to the low mRNAsi group (Figure 1A). This study 
also demonstrated a statistically significant difference of 
mRNAsi among genders (P=0.00016), with males showing 
higher mRNAsi levels (Figure 1B). Clinically, a later tumor 
stage indicates a poorer prognosis. This study revealed that 
late-stage patients had higher mRNAsi levels compared 
to early-stage patients, and the difference was statistically 
significant (P=0.041, P=0.034) (Figure 1C).

Selection of stemness-related genes

Sample clustering analysis using WGCNA was performed, 
and outlier samples with a height greater than 50,000 were 
removed. Further analysis of the modules resulted in the 
construction of a co-expression gene module dendrogram 
(Figure 2A). Based on the obtained mRNAsi index for 
TCGA LUAD, the correlation between each gene module 
and mRNAsi was analyzed. The results showed that the 
turquoise gene module had the highest positive correlation 

(correlation coefficient =0.65, P<0.001), and the green gene 
module had the highest negative correlation (correlation 
coefficient =−0.57, P<0.001) (Figure 2B).

Enrichment analysis of stemness-related genes using GO 
and KEGG

The stemness-related genes with the highest positive and 
negative correlation coefficients obtained from WGCNA 
analysis were subjected to GO and KEGG enrichment 
analysis to identify relevant biological functions and 
signaling pathways. The results of the GO analysis showed 
that positively correlated stemness-related genes were 
mainly enriched in mRNA processing, chromosomal 
regions, and RNA catalytic activity, while negatively 
correlated stemness-related genes were primarily enriched 
in extracellular matrix organization and extracellular matrix 
structural constituent (Figure 3A,3B). The results of the 
KEGG analysis revealed that positively correlated stemness-
related genes were mainly enriched in the cell cycle 

Figure 1 The correlation between mRNAsi and survival prognosis and clinical characteristics. (A) Survival curves of patients in high and 
low mRNAsi groups. (B) The correlation between mRNAsi and gender. (C) The correlation between mRNAsi and tumor stage. mRNAsi, 
mRNA-based stemness index.

1.00

0.75

0.50

0.25

0.00

S
ur

vi
va

l p
ro

ba
bi

lit
y

0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20

P=0.23

Time, years
248 185 114  71  41   29   21  16   10 7    5    5    5    5    3    3    3    3    3    2    0
251 206 102  60  36   24   17  11    7 5    4    1    1    1    0    0    0    0    0    0    0

0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20

High
Low

m
R

N
A

si
mRNAsi High Low

0.6

0.4

0.2

0.0

Female Male
Gender

1.00

0.75

0.50

0.25

0.00

Stage I
Stage

m
R

N
A

si

m
R

N
A

si

Stage II Stage III Stage IV

P=0.32
P=0.21

P=0.74
P=0.034

P=0.041
P=0.11

A

B C
P=0.00016



Zhang et al. A model for stemness-related genes in LUAD1356

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(3):1351-1366 | https://dx.doi.org/10.21037/tcr-23-1847

signaling pathway, while negatively correlated stemness-
related genes were primarily enriched in the PI3K-Akt 
signaling pathway (Figure 3C,3D).

Construction of LASSO model for predicting the prognosis 
of LUAD stemness-related genes

Univariable Cox regression analysis was performed on 
the aforementioned stemness-related genes, and those 
with P<0.05 were further analyzed and included in the 
construction of the LASSO regression model. The R 
package “glmnet” returned a series of LASSO risk models, 
where each curve represents a gene, and the genes with non-
zero coefficients at different log λ values form a LASSO 
risk model at that specific log λ value. Further analysis was 
conducted to select the optimal risk model (Figure 4). Based 
on the genes and regression coefficients obtained from 
LASSO Cox regression analysis, our prognostic model was 
constructed.

The calculation formula for the risk prognostic model is 
as follows: risk score =11.30019 × Exp (ACTB) + 2.160222 × 
Exp (PDGFB) + (−1.77683) × Exp (MAGEH1) + 1.02370 × 
Exp (CPS1) + 1.54319 × Exp (KCTD9) + (−1.14144) × Exp 
(FOLR1) + (−3.64535) × Exp (SLC29A1) + 4.11178 × Exp 
(ENY2) + 1.74603 × Exp (INTS7) + (−1.39269) × Exp (FUT1) 
+ (−3.52131) × Exp (SNN)+ 1.54206 × Exp (TLE1). Each 
LUAD patient can calculate the risk score, which represents 
the prognostic score related to mRNAsi, based on the sum 
of the expression levels of each gene in the model multiplied 
by their respective regression coefficients.

Validation of the LASSO risk model

A series of analyses were conducted in the entire discovery 
cohort and external validation cohort GSE68465 in LUAD. 
Kaplan-Meier survival curves revealed that patients with 
a lower risk score based on stemness-related genes had 
longer survival times in the discovery cohort (P<0.001) 
(Figure 5A), the randomly divided experimental group 
within the discovery cohort (P<0.001) (Figure 5B), the 
randomly divided validation group within the discovery 
cohort (P<0.001) (Figure 5C), and the external validation 
cohort (P=0.009) (Figure 5D). In the discovery cohort, 
the results of univariable Cox regression analysis (Figure 
5E) demonstrated that the risk score (HR =1.029, 95% 
CI: 1.020–1.038, P<0.001) was a significant risk factor for 
survival. The results of multivariable Cox regression analysis 
(Figure 5F) showed that the risk score (HR =1.031, 95% CI: 
1.022–1.040, P<0.001) remained a significant risk factor for 
survival, consistent with the results of the univariate Cox 
regression analysis. Furthermore, the impact of the risk 
score of stemness-related genes on survival was independent 
of age, gender, and tumor stage, making it an independent 
predictor of survival.

Subsequently, we plotted ROC curves for 1-, 3-, and 
5-year predictions to assess the accuracy of the model. In 
the discovery cohort, the AUC values for the ROC curves at 
1-, 3-, and 5-year were 0.782, 0.781, and 0.708, respectively 
(Figure 5G). In the external validation cohort, the AUC 
values for the ROC curves at 1-, 3-, and 5-year were 0.601, 
0.623, and 0.603, respectively (Figure 5H).

Furthermore, we conducted a series of risk analyses for 

1.0

0.8

0.6

0.4

0.2

H
ei

gh
t

Gene dendrogram and module colors

Dynamic 
tree cut

MEsalmon 
MEpurple 

MEmidnightblue 
MEtan 

MEgrey60 
MElightcyan 

MEbrown 
MEgreenyellow 

MEblue 
MEmagenta 
MEturquoise 

MEblack 
MEcyan 

MEyellow 
MEgreen 

MEpink 
MEred 

MEgrey

Module-trait relationships

1

0.5

0

−0.5

−1

0.37 
(P=7e–14)

−0.083 
(P=0.1)

0.15 
(P=0.003)

0.13 
(P=0.01)

0.26 
(P=3e−07)

0.15 
(P=0.004)

0.26 
(P=2e−07)

0.012 
(P=0.8)

0.024 
(P=0.6)

0.03 
(P=2e−09)

0.65 
(P=9e−47)

−0.52 
(P=5e−28)

−0.0039 
(P=0.9)

−0.3 
(P=3e−09)

−0.57 
(P=5e−34)

−0.36 
(P=8e−13)

−0.42 
(P=6e−18)

12  
(P=0.02)

mRNAsi

A B

Figure 2 Selection of stemness-related genes. (A) Co-expression gene module clustering dendrogram. (B) Correlation between gene 
modules and mRNAsi. mRNAsi, mRNA-based stemness index. 



Translational Cancer Research, Vol 13, No 3 March 2024 1357

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(3):1351-1366 | https://dx.doi.org/10.21037/tcr-23-1847

mRNA processing 

Ribonucleoprotein complex biogenesis 

Chromosome segregation 

RNA splicing 

Nuclear chromosome segregation 

DNA replication 

Sister chromatid segregation 

DNA-templated DNA replication

Chromosomal region 

Spindle 

Condensed chromosome 

Chromosome, centromeric region 

Spliceosomal complex 

Nuclear chromosome 

Condensed chromosome, centromeric region 

Kinetochore

Catalytic activity, acting on RNA 

ATP hydrolysis activity 

Catalytic activity, acting on DNA 

Histone binding 

Helicase activity 

Single-stranded DNA binding 

ATP-dependent activity, acting on DNA 

DNA helicase activity

0.02            0.04            0.06
GeneRatio

B
P

C
C

M
F

Count

50

100

150

200

q value
7.023037e−16 

5.267278e−16 

3.511518e−16 

1.755759e−16 

1.108465e−51

B
P

Extracellular matrix organization 

Extracellular structure organization 

External encapsulating structure organization 

Cell-substrate adhesion 

Ossification

Response to transforming, 
growth factor beta

Cellular response to transforming 
growth factor beta stimulus

Collagen fibril organization

C
C

Collagen-containing extracellular matrix 

Focal adhesion 

Cell-substrate junction 

Endoplasmic reticulum lumen 

Contractile fiber 

Myofibril 

Collagen trimer 

Basement membrane

Extracellular matrix structural constituent 

Glycosaminoglycan binding 

Sulfur compound binding 

Integrin binding 

Heparin binding 

Growth factor binding 

Collagen binding

0.025     0.050     0.075     0.100     0.125
GeneRatio

M
F

Extracellular matrix structural 
constituent conferring tensile strength

Count

25

50

75

100

125

q value

3e−13 

2e−13 

1e−13

Amyotrophic lateral sclerosis 

Cell cycle 

Nucleocytoplasmic transport 

Ubiquitin mediated proteolysis 

Spinocerebellar ataxia 

mRNA surveillance pathway 

Base excision repair 

DNA replication 

Proteasome 

Homologous recombination

0.02          0.04          0.06
GeneRatio

Count

30

60

90

120

q value

2e−09 

1e−09

Focal adhesion 

PI3K-Akt signaling pathway 

Proteoglycans in cancer 

ECM-receptor interaction 

Vascular smooth muscle contraction 

Dilated cardiomyopathy 

Protein digestion and absorption 

Hypertrophic cardiomyopathy 

Malaria

0.02          0.04          0.06
GeneRatio

Count

20

30

40

50

q value

4e−07 

3e−07

2e−07

1e−07

AGE-RAGE signaling pathway in 
diabetic complications

A B

C D

Figure 3 Enrichment analysis results of positively and negatively correlated stemness genes. (A) GO enrichment analysis of positively 
correlated stemness genes. (B) GO enrichment analysis of negatively correlated stemness genes. (C) KEGG enrichment analysis of positively 
correlated stemness genes. (D) KEGG enrichment analysis of negatively correlated stemness genes. BP, biological process; CC, cellular 
component; MF, molecular function; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.



Zhang et al. A model for stemness-related genes in LUAD1358

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(3):1351-1366 | https://dx.doi.org/10.21037/tcr-23-1847

the prognostic model in the entire TCGA LUAD discovery 
cohort, as well as the randomly divided experimental and 
validation groups. We observed that the high-risk group 
had higher expression levels of ACTB, PDGFB, CPS1, 
CTD9, ENY2, INTS7, and TLE1, while the low-risk 
group had higher expression levels of MAGEH1, FOLR1, 
SLC29A1, FUT1, and SNN (Figure 6A). Patients were 
ranked according to their risk scores based on stemness-
related genes risk (Figure 6B), and it was observed that the 
high-risk group had fewer surviving patients compared to 
the low-risk group (Figure 6C).

The risk analysis results conducted on the two subsets 
randomly divided within the discovery cohort were 
consistent with the results of the entire TCGA LUAD 
discovery cohort. The risk analysis also indicated that the 
high-risk group in both subsets had higher expression levels 
of ACTB, PDGFB, CPS1, CTD9, ENY2, INTS7, and TLE1, 
while the low-risk group had higher expression levels of 
MAGEH1, FOLR1, SLC29A1, FUT1, and SNN (Figure 
7A,7B). Patients were ranked according to their risk scores 
based on mRNAsi-related gene risk (Figure 7C,7D), and it 
was observed that the high-risk group had fewer surviving 
patients compared to the low-risk group (Figure 7E,7F).

Establishment and evaluation of nomogram

For the convenience of clinical application, based on the 
LASSO risk model, various clinical pathological features 
(gender, T stage, N stage) were integrated to construct 
a nomogram (Figure 8A). The total score was obtained 

by summing up each score in the model, and it was used 
to predict the 1-, 3-, and 5-year survival probabilities 
of patients. The calibration curves for 1, 3, and 5 years 
demonstrated high concordance between predicted 
survival and actual survival in the nomogram (Figure 8B). 
The nomogram constructed based on the prognostic 
model accurately predicts the OS of LUAD patients, 
further indicating that the prognostic model exhibits good 
predictive performance.

Tumor microenvironment characteristics and treatment 
response in high-risk and low-risk groups

Tumor stemness is associated with tumor invasion and 
metastasis. Invasion and metastasis are closely related 
to the extracellular matrix, which plays a crucial role in 
determining the anti-tumor immune response in solid 
tumors. Therefore, we further investigated the differences in 
immune aspects between the high-risk and low-risk groups. 
The results of ssGSEA showed significant differences in the 
infiltration of 15 immune cell subtypes between the high-
risk and low-risk groups. In the low-risk group, the tumor 
infiltration of activated B cells, eosinophils, immature 
B cells, immature dendritic cells, mast cells, monocytes, 
plasma cell-like dendritic cells, T follicular helper cells, and 
Th17 cells was higher compared to the high-risk group. On 
the other hand, the high-risk group had a higher proportion 
of activated CD4 T cells, CD56 natural killer cells, γδ T 
cells, natural killer T cells, neutrophils, and Th2 cells than 
the low-risk group (Figure 9A). Furthermore, we analyzed 
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status of patients arranged according to risk scores in the discovery cohort.

the relationship between the high-risk and low-risk groups 
and the expression of immune checkpoint genes. The 
expression of TNFRSF9, CD200, NRP1, CD276, TNFSF4, 
CD274, TNFSF9, and PDCD1LG2 was higher in the high-
risk group, while the expression of CD40LG, HHLA2, 
CD48, TNFSF18, ADORA2A, ATCN1, CD27, TNFRSF14, 
CD200R1, LGALS9, CD28, TNFSF15, BTLA, and IDO2 
was higher in the low-risk group (Figure 9B). TIDE uses 
a set of gene expression markers to evaluate the functional 
impairment of tumor-infiltrating cytotoxic T lymphocytes 
(CTLs) and the inhibitory factors of the immune response 
to CTLs. Higher TIDE scores indicate poorer response to 
immune checkpoint blockade (ICB). The high-risk group 
had higher TIDE scores compared to the low-risk group 
(Figure 9C). TMB serves as a biomarker for predicting the 
response to immunotherapy (15). Higher TMB indicates a 
higher frequency of gene mutations. The high-risk group 
had a higher TMB level than the low-risk group (Figure 9D).

Discussion

Key findings and explanations of findings

CSCs are the source of malignant tumor proliferation 
and recurrence and have become a hot research topic in 
the field of oncology in recent years. CSCs are closely 

associated with various malignant phenotypes such as tumor 
cell proliferation, invasion, metastasis, and drug resistance 
(16,17). In order to effectively assess the degree of tumor 
stemness, Malta et al. (6) proposed the mRNAsi in 2018. 
Therefore, biomarkers related to stemness identified 
through mRNAsi analysis hold great prognostic potential. 
In this study, we first calculated the mRNAsi data for 
LUAD provided by Malta et al. and validated the differential 
expression of mRNAsi in LUAD samples from the TCGA 
database. We found that mRNAsi values were positively 
correlated with distant metastasis and tumor histological 
grade. Survival curve analysis showed a significant decrease 
in OS rate in the high mRNAsi group compared to the 
low mRNAsi group. These results are consistent with the 
characteristics of CSCs and in line with expected outcomes. 
We then constructed a WGCNA network based on the 
relationship between genes and mRNAsi in LUAD samples 
from TCGA. From the WGCNA analysis, we identified 
the turquoise and green gene modules with the highest 
correlation with mRNAsi. Subsequently, we performed 
univariate Cox regression analysis on the differentially 
expressed genes identified through the WGCNA analysis to 
obtain prognostic-related stemness-associated genes. Using 
LASSO regression analysis, we constructed a prognostic 
model based on the expression of these stemness-associated 
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Figure 7 Risk analysis of the prognosis model in two subsets of the discovery cohort. (A) The heatmap displays the expression of 12 
prognostic genes between high-risk and low-risk groups in subset 1 of the discovery cohort. (B) The heatmap displays the expression of 12 
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genes. The model included 12 stemness-associated genes 
(ACTB, PDGFB, MAGEH1, CPS1, KCTD9, FLOR1, 
SLC29A1, ENY2, INTS7, FUT1, SNN, TLE1). Among 
these 12 genes, ACTB, PDGFB, CPS1, KCTD9, ENY2, 
INTS7, and TLE1 were positively correlated with stemness 
and acted as oncogenes, with their high expression being 
a risk factor for patient survival. The remaining five genes 
showed a negative correlation with stemness and their high 
expression was associated with longer OS in LUAD patients, 
indicating their potential tumor suppressor role in LUAD.

Strengths and limitations

This study identified 12 stemness-related genes that are 

associated with prognosis and used them to construct 
a prognostic model. This prognostic model effectively 
predicts the prognosis of LUAD patients in a clinical 
setting and may serve as a valuable supplement to the 
current clinical TNM staging system. Undeniably, our 
study has some limitations. Firstly, our LUAD samples 
were retrospectively collected from public databases. 
Secondly, certain important clinical pathological indicators 
such as pleural invasion, intravascular tumor emboli, and 
imaging features were unavailable in the TCGA dataset. 
Additionally, this study did not consider the systemic 
therapies (adjuvant or first-line treatment) received by 
patients. These may reduce the prognostic predictive value 
of the integrated risk model. Lastly, we have not conducted 
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mechanistic studies on the role of prognostically related 
stemness-associated genes in LUAD.

Comparison with similar researches

The ACTB gene encodes β-actin, which is considered an 
endogenous housekeeping gene and widely used as a reference 
gene for quantifying expression levels in tumors (18). However, 
increasing evidence suggests that ACTB is upregulated in 
melanoma (19), renal cancer (20), lung cancer (21), and other 
types of tumors. Abnormal expression and polymerization 
of ACTB, along with the resulting changes in cellular 
cytoskeleton, are associated with cancer invasion and 
metastasis. The dysregulation of ACTB may be involved 
in the development and malignancy of lung cancer, and its 
upregulation could serve as a marker for tumor occurrence 
in lung cancer cells (22,23). PDGFB is a platelet-derived 
growth factor located on chromosome 22 and is normally 
expressed at relatively low levels. PDGFB is highly expressed 
in NSCLC tissue (24). Its expression is correlated with 
tumor cell growth, metastasis, and invasion. High expression 
of PDGFB and platelet-derived growth factor receptor 
(PDGFR) in tumor cells is an independent prognostic risk 
indicator for disease-specific survival in NSCLC patients (25).  
In tumor angiogenesis, there are complex interactions 
between endothelial cells, stromal cells, and tumor cells. 
Platelet-derived growth factors (PDGFs) and their 
receptors (PDGFRs) play crucial roles in these interactions 
and are important targets for novel anti-angiogenic therapy. 
The CPS1 gene encodes carbamoyl-phosphate synthetase 
1, which is not only a key catalyst in the urea cycle but also 
plays a role in cancer progression. The study has shown 
that CPS1 is downregulated in hepatocellular carcinoma 
(HCC), and its low expression predicts poor prognosis for 
patients (26). CPS1 has also been identified as a biomarker 
for colorectal cancer progression (27). Upregulation of 
CPS1 expression in LUAD is generally associated with poor 
prognosis and lower OS rates. Research (28) has shown that 
knocking out CPS1 in LADC cells depletes metabolites in 
the nucleotide synthesis pathway, inhibiting cell proliferation 
and showing synergistic effects with drugs that block DNA 
synthesis pathways. Furthermore, LUAD is a common type 
of lung cancer associated with overexpression and activating 
mutations of EGFR, which has been targeted for the 
treatment of LUAD patients. The experimental study (29)  
has shown that when EGFR is inhibited, LUAD cells 
become more dependent on the urea cycle, particularly 
CPS1. Inhibition of both CPS1 and EGFR suppresses cell 

cycle progression and cell proliferation. CPS1 is likely to 
be a promising therapeutic target for LUAD in the future. 
The gene KCTD9 encodes a protein containing a potassium 
channel tetramerization domain, sharing a conserved BTB 
domain at the N-terminal (30). Most KCTD proteins 
interact with Cullin3-dependent E3 ubiquitin ligase 
through the BTB domain and are closely associated with 
protein ubiquitination (31). The study suggests that KCTD 
family genes are involved in the regulation of tumor 
development (32). KCTD9 is one of the members of the 
KCTD protein family (33). Zhang et al.’s research (34) 
confirms that natural killer cells containing silenced KCTD9 
exhibit weakened tumor cytotoxicity in vitro. KCTD9 
influences human innate immune cells, leading to tumor 
progression. Studies have indicated a significant correlation 
between high expression of KCTD9 and advanced lung 
cancer, lymph node metastasis, TP53 mutation, and poor 
prognosis. ENY2, along with USP22 and ATXN7L3, is 
a component of the deubiquitinating module in SAGA 
complexes. These three molecules are essential co-factors 
for transcriptional activity, and an imbalance in their 
activity will promote tumor growth (35). Xie’s research data 
indicates that upregulation of ENY2 expression can promote 
invasion and lung metastasis of triple-negative breast 
cancer cells both in vitro and in vivo (36). INT is one of the 
major components of ribonucleic acid (RNA) polymerase 
II mediated transcription machinery, and is involved in 
regulating most dependent genes (37). Studies have shown 
that certain INT subunits may be associated with human 
cancer. INTS7 has been demonstrated to be significantly 
overexpressed in various human cancers, including breast 
cancer, cholangiocarcinoma, and HCC (38). Li’s team 
found that the expression of INTS7 in LUAD tissues 
was significantly higher than in adjacent normal tissues. 
Additionally, Kaplan-Meier survival analysis indicated that 
LUAD patients with high levels of INTS7 expression had a 
poorer prognosis. It was also discovered that INTS7 could 
enhance the migration and invasion of LUAD cells, induce 
cell proliferation, and weaken apoptotic ability (39). TLE1 
is a member of the Groucho/TLE family of transcriptional 
co-repressors that regulate the transcriptional activity of a 
wide range of genes (40). Yao’s team discovered that TLE1 
is significantly upregulated in A549 LUAD cells, and it 
promotes epithelial-mesenchymal transition (EMT) by 
inhibiting E-cadherin, leading to tumor migration and 
invasion (41).

MAGEH1 belongs to the non-cancer/testis subgroup of 
the melanoma-associated antigen (MAGE) superfamily (42). 
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A study on MAGH1 in HCC revealed that the expression of 
MAGEH1 is negatively correlated with HCC cell migration, 
proliferation, and invasion. Furthermore, patients with 
high expression of MAGEH1 have higher survival rates 
and lower recurrence rates after radical resection (43). The 
SLC29A1 gene encodes the human equilibrative nucleoside 
transporter 1 (hENT1). The nucleoside transporters play 
an important role in modulating the physiological activity 
of nucleosides and in the transport of many therapeutic 
nucleoside drugs used as cancer treatment. Research has 
confirmed that NSCLC patients with low expression of 
hENT1 are unresponsive to chemotherapy drugs containing 
gemcitabine, which leads to a higher likelihood of disease 
progression (44). The FUT1 gene encodes fucosyltransferase 
1. Laminin N-glycosylation plays a crucial role in the 
process of cellular adhesion and migration, and abnormal 
laminin glycosylation has been observed in various types 
of cancers, which is associated with tumor development 
and metastatic ability (45). Previous study (46) has shown 
that patients with high expression of FUT1 have a poorer 
prognosis in colon adenocarcinoma. However, the situation 
is opposite in lung cancer. The study has shown that FUT1 
is downregulated in NSCLC patients and is associated 
with poor prognosis. These results suggest that targeting 
laminin glycosylation may be a promising strategy for 
developing novel NSCLC treatments (47). However, there 
have been relatively few studies on the FLOR1 and SNN 
genes in cancer, and their mechanisms and functions are 
still being investigated. Nevertheless, they may be involved 
in regulating and modulating various biological activities.

Implications and actions needed

The prognostic model developed in this study can serve as 
a supplement to the TNM (48) staging system. Physicians 
can use this prognostic risk model to provide personalized 
predictions for LUAD patients and develop appropriate 
treatment plans for maximizing clinical benefits. On this 
basis, prospective cohort studies are needed to validate 
the prognostic genes and prognostic model we obtained. 
Further cellular and animal experiments are required to 
elucidate the mechanisms of action of these stemness-
related genes in tumorigenesis.

Conclusions

In conclusion, this study identified 12 stemness-related 
genes that are associated with prognosis and used them 

to construct a prognostic model. This prognostic model 
effectively predicts the prognosis of LUAD patients in a 
clinical setting and may serve as a valuable supplement to 
the current clinical TNM staging system. Physicians can 
use this prognostic risk model to provide personalized 
predictions for LUAD patients and develop appropriate 
treatment plans for maximizing clinical benefits.
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