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ABSTRACT Soil types heavily influence ecological dynamics. It remains controver-
sial to what extent soil types shape microbial responses to land management
changes, largely due to lack of in-depth comparison across various soil types. Here,
we collected samples from three major zonal soil types spanning from cold temper-
ate to subtropical climate zones. We examined bacterial and fungal community
structures, as well as microbial functional genes. Different soil types had distinct mi-
crobial biomass levels and community compositions. Five years of maize cropping
(growing corn or maize) changed the bacterial community composition of the Ultisol
soil type and the fungal composition of the Mollisol soil type but had little effect on
the microbial composition of the Inceptisol soil type. Meanwhile, 5 years of fertil-
ization resulted in soil acidification. Microbial compositions of the Mollisol and
Ultisol, but not the Inceptisol, were changed and correlated (P � 0.05) with soil
pH. These results demonstrated the critical role of soil type in determining mi-
crobial responses to land management changes. We also found that soil nitrifica-
tion potentials correlated with the total abundance of nitrifiers and that soil het-
erotrophic respiration correlated with the total abundance of carbon degradation
genes, suggesting that changes in microbial community structure had altered
ecosystem processes.

IMPORTANCE Microbial communities are essential drivers of soil functional pro-
cesses such as nitrification and heterotrophic respiration. Although there is initial ev-
idence revealing the importance of soil type in shaping microbial communities,
there has been no in-depth, comprehensive survey to robustly establish it as a ma-
jor determinant of microbial community composition, functional gene structure, or
ecosystem functioning. We examined bacterial and fungal community structures us-
ing Illumina sequencing, microbial functional genes using GeoChip, microbial bio-
mass using phospholipid fatty acid analysis, as well as functional processes of soil ni-
trification potential and CO2 efflux. We demonstrated the critical role of soil type in
determining microbial responses to land use changes at the continental level. Our
findings underscore the inherent difficulty in generalizing ecosystem responses
across landscapes and suggest that assessments of community feedback must take
soil types into consideration.
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Soils are heterogeneous, with distinctive characteristics in relation to various parent
materials and influences from past and present climatic conditions (1). Soil taxon-

omy classifies soils at six levels, i.e., orders, suborders, great groups, subgroups, families,
and series (2, 3). The formation of zonal soils is classified primarily by climate, whereas
intrazonal and azonal soils are classified by local factors such as parent material (4, 5).
Black (Mollisol), Chao (Inceptisol), and red (Ultisol) soils are three main zonal soil types
in East and Southeast Asia. Of these three types, Mollisols are mainly distributed in the
northeastern region of China belonging to cold temperate zones, which is character-
ized by high fertility and agricultural productivity (6). Inceptisols are distributed in warm
temperate zones, such as South Korea and the Yellow River basin of China (7, 8). Ultisols
are the most widespread soils of Southeast Asia in the middle subtropical zone,
accounting for 51% of the region (8).

A number of studies have analyzed microbial community compositions in Mollisols,
Inceptisols, and Ultisols (9–11). However, most of these studies used low-resolution
techniques, such as denaturing gradient gel electrophoresis (DGGE) and clone
library analyses (10, 12), or focused on a few microbial functional groups, such as
methanogens, nitrifiers, denitrifiers, and straw decomposers (9, 11). For several
studies to examine the effect of soil type on bacterial diversity, ammonia-oxidizing
bacteria and archaea, rhizosphere bacteria, and fungi (13–16), a prevailing obser-
vation was that soil type was a principal driver in shaping microbial community
composition.

Plant crops substantially affects soil microbial communities, owing to direct and
indirect influences, such as organic matter inputs and root exudates (17). Seven years
of maize cropping (growing maize or corn) increased organic carbon and total nitrogen
content in the Inceptisol soil type, as well as microbial biomass of Actinobacteria,
Bacteriodetes, Acidobacteria, and Alphaproteobacteria (18). A laboratory experiment with
maize litter amendment to three different soils (Agrudalf, Hapludalf, and Xerochrept)
revealed consistent increases in bacterial diversity (19). However, another laboratory
incubation experiment showed that plant cropping caused disparate effects on micro-
bial community diversity and composition across soil types (sand, sandy loam, and clay)
(20). To date, it remains unclear whether microbes respond similarly to plant cropping
across soil types under in situ field conditions.

The effect of nitrogen, phosphate, and potassium (NPK) fertilization on microbial
communities has been well documented (21–24). A recent nitrogen and phosphorus
addition experiment under laboratory conditions showed consistent microbial re-
sponses to nutrient input across global grassland soils (25). In contrast, in situ obser-
vations were more variable, as no significant change in microbial community compo-
sition was detected in a 55-year NPK fertilization experiment (23), but microbial
community composition was altered by 16-year, 22-year, and 150-year NPK fertilization
treatments (21, 22, 26). Similarly, a 20-year experiment revealed significant effects of
manure and nitrogen fertilizers on bacterial community abundance and composition
(24). It is still unclear whether the inconsistent findings are caused by differences in soil
types, fertilization regimes, cropped plants, abundance of life history strategists, or
analytical techniques used to assess the microbial communities.

To address the aforementioned uncertainty, here we report a parallel, holistic survey
of microbial communities in Mollisol, Inceptisol, and Ultisol soils using integrated,
high-throughput molecular technologies. We aim to address the following questions. (i)
Does maize cropping impose consistent effects on microbial communities and soil
processes across zonal soil types? (ii) Does NPK fertilization impose consistent effects on
microbial communities and soil processes across zonal soil types? Our results demon-
strated that microbial community compositions substantially differed in all three zonal
soil types studied. Also, maize cropping and fertilization were inconsistent in their
effects on microbial communities, which could be attributed to variations in microbial
life history strategies and/or environmental selection.
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RESULTS

Environmental variables. Zonal soil types were distinct in environmental variables
and functional processes (see Table S1 in the supplemental material). Notably, soil
organic matter (SOM) in the Mollisol soil type was more than 4 times higher than those
in the Inceptisol and Ultisol soil types. The total nitrogen (TN) and the nitrate (NO3-N)
contents in the Mollisol were twice as large as those in the Inceptisol and Ultisol. The
ammonium (NH4-N) content in the Ultisol was 1.8 mg/kg, about twofold higher than
those in the Mollisol and Inceptisol. Nitrification potential and CO2 efflux in the Ultisol
were substantially lower than those in the Mollisol and Inceptisol (Table S1).

Most environmental variables were changed by maize cropping, but soil pH, NH4-N,
and NO3-N remained unchanged in any soil type (see Table S1 in the supplemental
material). Nitrogen, phosphorus, and potassium (NPK) fertilization significantly de-
creased cation exchange capacity (CEC) in all three soil types. It also decreased soil pH
by 0.4 in the Mollisol and Inceptisol and by 0.1 in the Ultisol. In addition, SOM, available
phosphorus (AP), NH4-N, and NO3-N were significantly increased in the Mollisol.

Soil microbial communities. Total, bacterial, and fungal biomass of the soil

microbial communities in the Mollisol were at least twice as large as those in the other
two soil types (see Table S1 in the supplemental material). Maize cropping increased
bacterial and fungal biomass in the Inceptisol but did not affect bacterial or fungal
biomass in the Mollisol or Ultisol. NPK fertilization decreased bacterial biomass by
20.4% and fungal biomass by 42.6% in the Mollisol and increased total biomass by
72.3% in the Ultisol.

Both detrended correspondence analysis (DCA) and hierarchical clustering analysis
showed that microbial communities were clustered based on soil types (see Fig. S1 in
the supplemental material). However, maize cropping changed only bacterial commu-
nity composition in the Ultisol and fungal community composition and functional gene
structure in the Mollisol. NPK fertilization changed bacterial community composition in
the Mollisol and Ultisol and fungal community composition and functional composition
in the Mollisol.

The multiple regression tree (MRT) analyses showed that bacterial, fungal, and
functional compositions were primarily influenced by soil types (see Fig. S2 in the
supplemental material), suggesting that maize cropping and NPK fertilization had
relatively minor influences on microbial communities. Further analyses showed that the
contributions of soil types to the total variations in microbial communities were higher
(67.6% for bacteria and 16.8% for fungi) than those of maize cropping (6.8% for bacteria
and 15.3% for fungi) and NPK fertilization (5.9% for bacteria and 11.2% for fungi).

Phylogenetic information from sequencing data can be used to calculate the
�-nearest taxon index (�NTI) (see Materials and Methods for details). A |�NTI| of �2
indicates an insignificant deviation between observed and expected phylogenetic
turnover and hence the dominance of stochastic processes (27), while a |�NTI| of �2
indicates the dominance of deterministic processes (28). We found that �NTIs were
smaller than �2 in all three soil types, suggesting the dominance of deterministic
processes in shaping microbial communities (Fig. 1). Maize cropping did not change
�NTI in any soil type. However, NPK fertilization significantly increased �NTIs in the
Mollisol but not the other two soils, suggesting that the effect of NPK fertilization on
phylogenetic turnover was disparate in those three soil types.

Specific taxon groups. Different microbial taxa were found in the soil types. At the

phylum level, Verrucomicrobia amounted to 22.8% of taxa in the Mollisol, which was
5.6- and 1.9-fold greater than their abundance in the Inceptisol and Ultisol (see Fig. S3A
in the supplemental material). At the genus level, none of the top 10 abundant genera
in each soil type was shared by all three soil types (Fig. S3B and S3C). For example,
Spartobacteria was the most abundant bacterial genus in the Mollisol (19.9%) and
Ultisol (10.8%) but accounted for only 1.1% of total abundance in the Inceptisol.
Subgroup 6 (Gp6) and Gp4 of Acidobacteria accounted for more than 5.0% of the total
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abundance in the Mollisol and Inceptisol, while they were only 0.6% and 0.3% in the
Ultisol, respectively.

Maize cropping had little effect on bacterial or fungal phyla in the Mollisol and
Inceptisol (see Fig. S4A and S4B in the supplemental material), while Alphaproteobac-
teria, Betaproteobacteria, Gammaproteobacteria, Gemmatimonadetes, and Nitrospira
were increased in the Ultisol (Fig. S4A). At the genus level, no bacterial or fungal genera
in all three soil types showed consistent responses to maize cropping except Acido-
bacteria Gp7, which increased by more than 18.0% in all three soil types (Table S2).

No consistent effect of NPK fertilization on bacterial or fungal community compo-
sition was observed in all three soil types (see Fig. S4C and S4D in the supplemental
material). At the phylum level, the only exception was Acidobacteria, which marginally
(P � 0.070) decreased (Fig. S4C). At the genus level, only two bacterial genera
(Acidobacteria Gp4 and Acidobacteria Gp6) decreased and one fungal genus (Fusarium)
increased across all three soil types (Table S2). Five detected genera were related to
nitrification (nitrifier), in which Nitrospira was the most abundant one and Nitrosospira
was marginally (P � 0.100) increased by NPK fertilization in all three soil types (Fig. 2A).

Carbon and nitrogen cycling genes. A total of 26,493 distinct genes associated
with carbon and nitrogen cycling were detected by GeoChip analyses. The levels of
nitrogenase-encoding genes (nifH) and ammonia monooxygenase-encoding genes
(amoA) were lower in the Inceptisol soil type than in the Mollisol and Ultisol soil types
(see Fig. S5A in the supplemental material). In contrast, the levels of genes involved in
the denitrification processes, such as the narG gene encoding a nitrate reduction

FIG 1 Boxplots of �NTI distribution in the Mollisol (A), Inceptisol (B), and Ultisol (C) soil types. Each boxplot
shows the median value (thick black line), first quartile (bottom of the box), third quartile (top of the box), and
range of the data that were no more than 1.5 times height of the boxes (error bars). Moderate outliers (circles)
and extreme outlier (asterisk) are also shown. Significance was determined by one-way ANOVA followed by the
LSD test. Boxes with the same letter were not statistically significantly different (P > 0.05). Boxes of within
groups represent pairwise comparisons between any two samples within a treatment. Boxes for Nm-N, Cm-C,
and Sm-S represent pairwise comparisons between maize cropping samples (m suffix) and bare fallow samples
(no suffix) for samples from sites N, C, and S. Boxes of Nf-Nm, Cf-Cm, and Sf-Sm represent pairwise comparisons
between NPK fertilization samples (f suffix) and maize cropping samples (m suffix) from the three sites.
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enzyme and the nosZ gene encoding a nitrous oxide reduction enzyme, were higher in
the Inceptisol.

Maize cropping and NPK fertilization caused distinct changes in the levels of carbon
and nitrogen cycling genes among all three soil types (see Fig. S5B in the supplemental
material). The levels of almost all genes involved in denitrification were decreased by
maize cropping in the Inceptisol (Fig. S5B). In contrast, the levels of NifH and amoA
genes were increased in the Mollisol and Inceptisol and decreased in the Ultisol. The
levels of the norB (encoding nitric oxide reductase) and hao (encoding hydroxylamine
oxidoreductase) genes were also increased by NPK fertilization in the Ultisol, but not in
the other two soil types.

Linkages between microbial community composition and environmental
variables. To examine environmental factors in shaping bacterial and fungal commu-
nity composition, we performed Mantel tests with microbial communities and envi-
ronmental variables in three bare fallow soils (see Table S3 in the supplemental
material). Bacterial community composition was significantly correlated with soil pH,
soil bulk density (BD), soil porosity (Sp), total phosphorus (TP), total potassium (TK),
NH4-N, annual average temperature, annual rainfall, and relative humidity. Similarly, a
significant (P � 0.035) model of canonical correspondence analysis (CCA) also showed
that NH4-N, BD, TK and annual rainfall correlated with bacterial community composition
(Fig. S6A). Fungal community composition correlated with soil pH, TK, NH4-N, and
annual rainfall, as revealed by Mantel tests (Table S3) and CCA (Fig. S6B).

Mantel tests were also carried out to identify major environmental variables that
explain changes in microbial community composition by maize cropping and NPK
fertilization. Soil pH, CEC, TP, and the seed weight of maize were correlated with
bacterial communities (r � 0.34; P � 0.052) in the Mollisol, while only seed weight
correlated with bacterial communities (r � 0.31; P � 0.049) in the Inceptisol (Table 1).
Eight variables (soil pH, CEC, TP, electrical conductivity [EC], AP, NO3-N, seed weight,
and aboveground biomass of maize) correlated (r � 0.50; P � 0.012) with bacterial
communities in the Ultisol.

FIG 2 Abundances of nitrifiers and their relationships with nitrification potentials. (A) Distribution of nitrifier
abundances. The N, C, and S abbreviations refer to sample sites, and the suffix of “m” and “f” indicate maize
cropping and NPK fertilization, respectively. (B) Pearson correlation between the total abundance of nitrifiers
and nitrification potential. (C) Pearson correlation between the relative abundance of Nitrospira and nitrifica-
tion potential. (D) Pearson correlation between gene abundance derived from Nitrospira in GeoChip and
nitrification potential. The nitrification potential shown in panels B to D is shown per kilogram of weight (dry
weight [DW]). Correlation r and P were determined by Pearson correlation and TDIST tests, respectively.
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Only BD (r � 0.32; P � 0.049) and Sp (r � 0.32;P � 0.031) correlated with fungal
communities in the Mollisol, while only NO3-N (r � 0.43; P � 0.037) correlated with
fungal communities in the Inceptisol. No linkages between environmental variables and
fungal communities were observed in the Ultisol. We found a positive correlation
between BD and the abundance of strictly anaerobic bacteria Clostridium (r � 0.56;
P � 0.002) (see Fig. S7A in the supplemental material). In addition, �NTI correlated with
CEC (r � �0.43; P � 0.009) and AP (r � 0.48; P � 0.003) in the Mollisol (Fig. S7B and
S7C) and with NH4-N (r � �0.47; P � 0.004) in the Ultisol (Fig. S7D).

Linkages between microbial communities and soil functional processes.
We found that the total abundance of nitrifiers and the subgroup of Nitrospira (29)
strongly and positively (r � 0.81; P � 0.001) correlated with nitrification potentials
(Fig. 2B and C). Furthermore, there was a positive correlation (r � 0.35; P � 0.070)
between genes derived from Nitrospira and nitrification potentials (Fig. 2D), suggesting
that sequencing and GeoChip data were largely consistent.

Soil heterotrophic respiration is an ecological consequence of microbial activities.
Accordingly, we detected a modest, positive correlation (r � 0.61; P � 0.070) between
the abundance of carbon cycling genes and CO2 efflux in bare fallow soils (Fig. 3A), but
not in soils with a maize crop or fertilized soils (r � �0.38; P � 0.309) (Fig. 3B and C),
which was consistent with our recent study (30).

DISCUSSION

In this study, we carried out Illumina MiSeq sequencing and GeoChip experiments to
analyze microbial community compositions and functional potentials in three major
soil types and their responses to maize cropping and NPK fertilization. We found that
microbial communities substantially differed in soil types (see Fig. S1 in the supple-
mental material). Furthermore, microbial community responses to maize cropping or
NPK fertilization varied by soil type (Fig. S4).

The importance of soil type as the main factor in shaping microbial community
composition has been well documented (13, 16), with findings that Verrucomicrobia
was the most abundant bacterial phylum and Fusarium was the most abundant fungal
genus in a Mollisol of northeastern China and that Penicillium and Aspergillus were

TABLE 1 Correlations between environmental variables and microbial and fungal communitiesa

Environmental
variableb

Correlationc between the environmental variable and the following community:

Bacterial Fungal

N site C site S site N site C site S site

r P r P r P r P r P r P

pH 0.34 0.052 �0.16 0.680 0.40 0.024 �0.01 0.481 �0.16 0.662 0.17 0.232
SOM 0.17 0.155 0.17 0.246 0.36 0.058 0.27 0.083 0.60 0.078 0.07 0.352
WHC �0.18 0.882 0.13 0.333 0.20 0.125 0.23 0.094 0.74 0.102 �0.05 0.617
BD �0.14 0.835 0.00 0.489 0.15 0.159 0.32 0.049 0.56 0.106 �0.06 0.627
Sp �0.14 0.807 �0.06 0.598 0.15 0.188 0.32 0.031 0.42 0.130 �0.12 0.679
EC 0.03 0.439 0.24 0.136 0.76 0.001 0.05 0.382 0.14 0.234 0.20 0.161
CEC 0.67 0.005 �0.03 0.460 0.75 0.001 �0.07 0.651 �0.03 0.435 0.19 0.194
TN �0.21 0.854 0.11 0.334 �0.36 0.978 0.29 0.058 0.34 0.177 �0.19 0.65
TP 0.36 0.039 �0.21 0.749 0.44 0.037 �0.04 0.525 �0.13 0.591 �0.15 0.657
TK �0.11 0.719 �0.09 0.614 0.24 0.142 �0.15 0.783 �0.01 0.316 0.10 0.336
AP �0.03 0.521 �0.16 0.776 0.50 0.012 0.18 0.179 �0.12 0.628 �0.10 0.613
AK 0.23 0.136 0.29 0.068 �0.26 0.937 0.27 0.076 0.10 0.214 �0.20 0.76
NH4-N 0.14 0.203 �0.19 0.728 0.09 0.324 �0.13 0.708 �0.18 0.671 0.23 0.156
NO3-N �0.01 0.500 0.22 0.122 0.72 0.001 �0.26 0.874 0.43 0.037 0.15 0.248
Seed wt 0.49 0.010 0.31 0.049 0.70 0.003 0.02 0.368 0.24 0.078 0.08 0.33
Aboveground

biomass
0.20 0.126 0.20 0.092 0.69 0.002 0.17 0.174 0.15 0.162 0.08 0.331

aThe correlations between environmental variables and the bacterial or fungal community were determined by the Mantel test. Each site has bare fallow samples,
maize cropping samples, and NPK fertilization samples. The N, C, and S sites have Mollisol, Inceptisol, and Ultisol soil types, respectively.

bAbbreviations: SOM, soil organic matter; WHC, water holding capacity; BD, soil bulk density; Sp, soil porosity; EC, electrical conductivity; CEC, cation exchange capacity;
TN, total nitrogen; TP, total phosphorus; TK, total potassium; AP, available phosphorus; AK, available potassium; seed wt, seed weight.

cCorrelations that are significant (P � 0.050) are indicated by boldface type.
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among the most prevalent fungal genera in an Ultisol (12, 31). Our results provided
supporting evidence for these findings (26). In addition, we found that the Curvularia
fungus, which is commonly found in warm environments (32), was also abundant in the
Ultisol. The substantial differences in climate and soil environments of all soil types
might give rise to very different microbial community compositions with no overlap
among the top 10 abundant genera for each soil type (see Fig. S1 and Fig. S3 in the
supplemental material).

Five years of maize cropping and NPK fertilization altered microbial community
compositions (see Fig. S1 in the supplemental material). Interestingly, we observed few
similar changes in DNA abundance among all three soil types. There were several
potential alternative explanations.

Bacteria fall into two main life history strategies, copiotrophs or oligotrophs (33),
similar to the r-selected or K-selected strategies in plants and animals. In general,
r-strategists grow faster and turn over more rapidly, while K-strategists propagate in
longer time intervals and acclimate more rapidly (34). Nutrient stimuli could affect
populations in ways that shift dominance to organisms with advantageous life history
strategies. Nitrogen fertilization could cause a shift in life history strategy, which
stimulates copiotrophic microbes but not oligotrophic microbes (35, 36). For example,
it was noted that Proteobacteria, Bacteroidetes, and Actinobacteria, three copiotrophic
groups, increased in abundance by long-term nitrogen addition in a grassland and in
an agricultural field (36), while the fungal Chytridiomycota, of which most genera were
oligotrophic groups (37), showed little response to nitrogen amendments (38). Exog-
enous nitrogen input accelerated labile carbon decomposition but inhibited recalci-
trant carbon decomposition, which was mediated by copiotrophic and oligtrophic
microbes, respectively (35). NPK fertilization consistently resulted in an increase in the
abundance of taxon groups dominated by copiotrophic bacteria, such as Proteobacteria
and Actinobacteria, in the Mollisol in our study, and a decrease in abundance of
generally oligotrophic microbes, such as the bacterial taxa Acidobacteria and Verruco-
microbia (see Fig. S4C in the supplemental material) and fungal taxa of Chytridiomycota
and Zygomycota (Fig. S4D). In addition, copiotrophic classes of Beta- and Gammapro-
teobacteria were also increased by fertilization in the Mollisol, while an oligotrophic
Verrucomicrobia genus Spartobacteria was decreased in the Mollisol and Ultisol.

FIG 3 Pearson correlations between CO2 efflux and total carbon cycling gene abundance in bare
fallow soil (A), soil where maize was grown (B), and (C) NPK-fertilized soil. Correlation r and P were
determined by Pearson correlation and TDIST tests, respectively.
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As fast-growing microbes are less efficient at substrate use than slow-growing ones,
the average microbial biomass of fast-growing bacteria, such as Alpha- and Gamma-
proteobacteria, tends to be smaller (33), Therefore, a shift from oligotrophs to copi-
otrophs effectively reduces total microbial biomass. We consistently found that NPK
fertilization decreased bacterial and fungal biomass in the Mollisol (see Table S1 in the
supplemental material). In addition, our sequencing results differed from a recent study
that microbial communities across global-scale grasslands revealed consistent re-
sponses to N and P fertilization (25). A close examination showed that soil samples in
the study of Leff et al. (25) had a narrow pH range (mostly between 5.1 and 6.7) and
only slight soil acidification by fertilization, which resulted in no correlation between
soil pH and any of the major bacterial taxa. In contrast, soil pH spanned a large range
from 4.9 to 8.1 in our study (Table S1). Many studies have attributed the effect of
inorganic nitrogen fertilization on soil microbes to soil acidification (18, 39). For
example, addition of ammonium sulfate led to soil acidification and an almost 10-fold
decrease of a dominant bacterial phylum in an Inceptisol (18). In this study, NPK
fertilization decreased the soil pH by 0.4 and 0.1 unit in the Mollisol and Ultisol,
respectively, which was consistent with previous studies showing that nitrogen fertil-
ization led to soil acidification (24, 40). Thus, soil pH might be the main factor causing
shifts in the microbial communities in these two soil types, which was confirmed by the
Mantel tests showing positive correlations between bacterial communities and soil pH
(r � 0.34; P � 0.050) (Table 1). In contrast, when soil pH decreased from 8.1 to 7.7 in
the Inceptisol (Table S1), no significant correlation between soil pH and bacterial
community (r � 0.16; P � 0.68) was detected (Table 1), verifying that a shift to neutral
pH was inconsequential for most bacteria (41, 42). In addition, fungal communities were
less sensitive to soil pH than bacterial communities, owing to their wider growth
tolerances to pH range (43, 44). Accordingly, no significant correlation between pH and
fungal communities was detected in any soil type (Table 1).

Soil physical variables are important in shaping microbial community composition
but are often underestimated by microbiologists owing to lack of physical variable
measurements (45). Since low BD or high Sp increases soil aeration (46), anaerobic
microbes are generally inhibited, which explained our observation of a positive corre-
lation (r � 0.56; P � 0.002) between obligate anaerobic Clostridium and BD (see Fig. S7A
in the supplemental material). The influence of BD and Sp on microbial community was
further verified by their correlations with fungal community in the Mollisol (Table 1). In
addition, a strong positive correlation (r � 0.76; P � 0.001) between bacterial compo-
sition in the Ultisol and EC, known to impose strong influence on microbial community
composition (47–49), was observed (Table 1).

In summary, we examined microbial community compositions and their responses
to maize cropping and NPK fertilization in three zonal soil types. Generally, soil type
overrode maize cropping or NPK fertilization as the main determinant of microbial
community compositions and soil variables. In addition, maize cropping or NPK fertil-
ization caused disparate changes in the composition of the microbial communities or
functional gene structures, which endorses the importance of taking soil type in
consideration when examining ecosystem responses to global changes.

MATERIALS AND METHODS
We conducted this study at three long-term experimental stations well maintained by the Chinese
Academy of Sciences. The study station located in Hailun, Heilongjiang Province, China (E126°38= and
N47°26=) (designated the N site) has a cold temperate monsoon climate, and the soil type is Mollisol. The
study station located in Fengqiu, Henan Province, China (E114°24= and N35°00=) (designated the C site)
has a warm temperate monsoon climate, and the soil type is Inceptisol. The study station located in
Yingtan, Jiangxi Province, China (E116°55= and N28°15=) (designated the S site) has a middle subtropical
monsoon climate, and the soil type is Ultisol.

The sites were established in October 2005 as plots that were 1.4 m by 1.2 m by 1.0 m. Maize or corn
was grown in triplicate plots every year since the spring of 2006, with subtypes of Haiyu 6 at the N site,
Zhengdan 958 at the C site, and Denghai 11 at the S site. Maize cropping, together with fertilizers of
CO(NH2)2, (NH4)2HPO4, and KCl at the level of 150 kg N, 75 kg P2O5 and 60 kg K2O per ha, was
administered to another triplicate plots. The P and K fertilizers and half of the amount of the N fertilizers
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were applied before maize cropping (growing maize). The other half of the N fertilizer was applied at the
maize bell stage. Bare fallow plots were used as a control for maize cropping and NPK fertilization.

We collected soil samples within 2 days after harvesting maize in August and September 2011. We
took 10 soil cores of 2-cm diameter at a depth of 0 to 15 cm from each plot and combined them. Soil
for geochemical analyses was kept on ice during transport and stored at 4°C in the laboratory. Soil for
DNA analyses was kept in liquid nitrogen during transport and stored at �80°C in the laboratory.
Samples were designated by the sites. The “m” suffix indicated maize cropping, and the “f” suffix
indicated NPK fertilization, while bare fallow samples had no suffix.

Environmental variable measurements. Details of environmental variable measurements were
described in our previous studies (30). In brief, we measured soil organic matter (SOM) content by heated
dichromate oxidation and titration with ferrous ammonium sulfate. We measured CO2 efflux once a week
in July and August to calculate average CO2 efflux. We measured microbial biomass by the phospholipid
fatty acid (PLFA) content using a modified Bligh-Dyer protocol as outlined in our previous studies (30, 65).
We determined soil nitrification potential by an incubation method in (NH4)2SO4 solution (50).

Illumina MiSeq sequencing. We extracted microbial genomic DNA using a freeze-grinding method
and purified it using 0.5% low-melting-point agarose gel electrophoresis (51). We used primers 515F (F
stands for forward) (5=-GTGCCAGCMGCCGCGGTAA-3=) and 806R (R stands for reverse) (5=-
GGACTACHVGGGTWTCTAAT-3=) with sample-specific bar codes and Illumina adapter sequences to target
the V4 hypervariable region of bacterial 16S rRNA genes and primers gITS7F (5=-GTGARTCATCGARTCTT
TG-3=) and ITS4R (5=-TCCTCCGCTTATTGATATGC-3=) to target the internal transcribed spacer II (ITS2)
region of fungal ribosome encoding genes (52). DNA for Illumina sequencing was amplified by two
rounds of PCR. A 25-�l PCR system containing 2.5 �l of 10� PCR buffer, 0.1 �l of high-fidelity AccuPrime
Taq DNA polymerase (Invitrogen, Carlsbad, CA), 1 �l of each primer (10 �M), and 5 or 15 �l of template
DNA was used in three technical replicates. To target the 16S rRNA genes, the first round of PCR was
carried out using primers without the bar codes by the following cycling conditions: (i) an initial
denaturation step of 1 min at 94°C; (ii) 10 cycles, with 1 cycle consisting of 20 s at 94°C, 25 s at 53°C, and
45 s at 68°C; (iii) a final extension step of 10 min at 68°C. PCR products from three replicates were
combined and purified using an Agencourt AMPure XP kit (Beckman Coulter, Brea, CA) following the
manufacturer’s instructions and eluted in 50-�l water. We used 15 �l of the purified PCR product as the
template for the second round of PCR amplification using bar-coded primers in three technical replicates
under the same cycling conditions as in the first round of PCR amplification and 20 cycles, rather than
10. We examined PCR products from the second round by electrophoresis with 1% agarose gel.
Amplification products of three technical replicates were then combined and quantified by PicoGreen
using a FLUOstar Optima microplate reader (BMG Labtech, Jena, Germany). We pooled PCR products
from different samples together in equal concentrations, purified the pooled sample using Qiagen gel
extraction kits (Qiagen Sciences, Germantown, MD) following the manufacturer’s instructions, and
requantified using PicoGreen. Finally, we ran the purified library on MiSeq after mixing with PhiX
(Illumina, San Diego, CA) at the Institute for Environmental Genomics of the University of Oklahoma (53).
The amplification steps for the fungal ITS were similar to those for the 16S rRNA gene except for changes
in the PCR conditions. The protocol consisted of initial denaturation of 3 min at 94°C, followed by 14
cycles for the first amplification round and 26 cycles for the second amplification round, with 1 cycle
consisting of 30 s at 94°C, 30 s at 55°C, and 30 s at 68°C, and terminated with an extension step of 7 min
at 68°C.

We processed raw data from Illumina sequencing of the 16S rRNA gene and fungal ITS on the Galaxy
pipeline (http://zhoulab5.rccc.ou.edu) as previously described (54). We discarded low-quality sequences
with nonassigned or mismatched bar codes, low-quality scores (�25), short sequence reads (�100 bp),
or more than one undetermined nucleotide (N). Combined sequences with forward and reverse reads
were trimmed to 245 to 260 bp for the 16S rRNA gene or to 250 to 350 bp for the fungal ITS. Sequences
were classified into operational taxonomic units (OTUs) with 97% similarity for the 16S rRNA gene and
97.5% similarity for the fungal ITS after excluding chimeric sequences by using the UCHIME method (55).
Singletons that were present only once across all samples were removed. Then we resampled the
sequence numbers as 10,947 for the 16S rRNA gene and 9,917 for the fungal ITS, which were the
minimum numbers of sequences across all samples. We assigned taxonomic information to sequences
by the RDP classifier (56) for the 16S rRNA gene, and by a training set provided by the UNITE group for
the fungal ITS (57). The confidence cutoff was set at 0.5. The relative abundance (RA) of sequences used

in this study was calculated as %RAij �
Sij

�J� 1
N Sij

� 100, where Sij was the sequence number of the jth

OTU in the ith sample.
GeoChip analysis. GeoChip 4.6 is a microbial functional gene array that allows for the simultaneous

assessment of more than 410 gene families essential to nutrient biogeochemical cycling and various
other environmentally significant microbial functions. GeoChip 4.6 experiments were conducted as
previously described (58, 59). In brief, purified DNA was labeled with the fluorescent nucleic acid dye Cy5
and then hybridized on GeoChip 4.6 slides. Slides were scanned with a scanner (MS 200 microarray
scanner; NimbleGen), and the signal intensity of each spot was quantified with ImaGene version 6.0
(BioDiscovery, El Segundo, CA).

Raw data from GeoChip 4.6 were processed by removing spots with signal-to-noise ratio [SNR �
(signal mean � background intensity)/background standard deviation] of �2.0 and singletons in
triplicates. Data were then logarithmically transformed and divided by the mean value of each slide,
which was referred to as gene abundance.
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Statistical analyses. We used detrended correspondence analysis (DCA) and hierarchical clustering
analysis to examine microbial community composition (60, 61). We used multiple regression tree (MRT)
analysis to compare the relative importance of different treatments (62). We used Mantel tests to
examine correlations of environmental variables with microbial community structures (63). We per-
formed canonical correspondence analysis (CCA) with forward selection of environmental variables using
variance inflation factors (VIF) of less than 20. We carried out these analyses with R software version
2.15.3 (R Development Core Team, R Foundation for Statistical Computing, Vienna, Austria), using vegan
(v. 2.0-10) package for DCA and using hierarchical clustering analysis, Mantel tests, and mvpart (v. 1.6-1)
package for MRT.

We used a null modeling approach to quantify bacterial phylogenetic turnover in each soil (64). The
observed and expected abundance weighted �-mean nearest taxon distances (�NMTD) across all
pairwise community comparisons within and between treatments were calculated as follows: �NMTD �
0.5 [�ik� 1

nk fikmin(Δikjm) � �im�1
nm fimmin(Δimjk)], where nk and nm were the number of OTUs in the commu-

nities k and m, respectively, fik was the abundance of OTU i in community k, and min(Δikjm) was the
minimal phylogenetic distance between OTU i in community k with all OTUs j in m. Then, we used the

�-nearest taxon index (�NTI) [�NTI � ��NMTDobs � �NMTDnull
�� / SD(�NMTDnull)], where �NMTDobs and

�NMTDnull were the observed and null values of �NMTD, respectively, and SD was the standard deviation
of the null �NMTD distribution] to quantify the direction of phylogenetic turnover. The �NTI was
calculated by picante (v. 1.6-2) package in R software with abundance weighted � TRUE and 999 times
randomization to generate the null model.

We calculated �-diversity by Shannon diversity index (H) as H � � �i�1
S pilnpi, where S was the

species number and pi was the frequency of species i. Statistical significance of differences was
determined by one-way analysis of variance (ANOVA) followed by the least significant difference (LSD)
test in SAS with 95% confidence (version 6.1) (SAS Inc., Cary, NC) or two-tailed, unpaired Student’s t tests
in Microsoft Excel. We conducted Pearson correlation or TDIST tests to determine the r or P value of linear
correlations between environmental variables and microbial communities in Microsoft Excel. We used
P � 0.05 to infer significant difference unless stated otherwise in the main text.

Accession numbers. Both MiSeq sequencing and GeoChip 4.0 data are available online (http://
www.ncbi.nlm.nih.gov/). GeoChip 4.0 data were deposited under accession number GSE77546, and
MiSeq sequencing data were deposited under accession number SRP069263.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at http://dx.doi.org/10.1128/
mSystems.00075-16.

Figure S1, TIF file, 2.8 MB.
Figure S2, TIF file, 0.7 MB.
Figure S3, TIF file, 2.1 MB.
Figure S4, TIF file, 2.4 MB.
Figure S5, TIF file, 1.7 MB.
Figure S6, TIF file, 0.3 MB.
Figure S7, TIF file, 0.8 MB.
Table S1, DOCX file, 0.02 MB.
Table S2, DOCX file, 0.02 MB.
Table S3, DOCX file, 0.02 MB.

ACKNOWLEDGMENTS
We thank staff at the Hailun, Fengqiu, and Yingtan Research Stations for sampling
assistance.

This research was supported by grants to Yunfeng Yang from the Strategic Priority
Research Program of the Chinese Academy of Sciences (XDB15010102), the Major
Science and Technology Program for Water Pollution Control and Treatment
(2013ZX07315-001-03), and the National Science Foundation of China (41471202), to Bo
Sun from the Chinese Academy of Sciences (XDB15030200 and KFJ-SW-STS-142) and
the National Science Foundation of China (41271258), and to Jizhong Zhou from the
National Science Foundation of China (41430856) and the Collaborative Innovation
Center for Regional Environmental Quality at Tsinghua University.

REFERENCES
1. Brevik EC, Calzolari C, Miller BA, Pereira P, Kabala C, Baumgarten A,

Jordán A. 2016. Soil mapping, classification, and pedologic modeling:
history and future directions. Geoderma 264:256 –274. http://dx.doi.org/
10.1016/j.geoderma.2015.05.017.

2. Soil Survey Staff. 2014. Keys to soil taxonomy, 12th ed. US Department
of Agriculture Natural Resources Conservation Service, Washington, DC.

3. IUSS Working Group WRB. 2014. World Reference Base for Soil Re-
sources 2014. International soil classification system for naming soils and

Zhao et al.

Volume 1 Issue 4 e00075-16 msystems.asm.org 10

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE77546
http://trace.ncbi.nlm.nih.gov/Traces/sra/?study=SRP069263
http://dx.doi.org/10.1128/mSystems.00075-16
http://dx.doi.org/10.1128/mSystems.00075-16
http://dx.doi.org/10.1016/j.geoderma.2015.05.017
http://dx.doi.org/10.1016/j.geoderma.2015.05.017
msystems.asm.org


creating legends for soil maps. Food and Agriculture Organization of the
United Nations, Rome, Italy.

4. Bockheim JG, Gennadiyev AN, Hartemink AE, Brevik EC. 2014. Soil-
forming factors and soil taxonomy. Geoderma 226-227:231–237. http://
dx.doi.org/10.1016/j.geoderma.2014.02.016.

5. Gray JM, Humphreys GS, Deckers JA. 2011. Distribution patterns of
World Reference Base soil groups relative to soil forming factors. Geo-
derma 160:373–383. http://dx.doi.org/10.1016/j.geoderma.2010.10.006.

6. Guo GL, Zhou QX. 2006. Evaluation of heavy metal contamination in
Phaeozem of northeast China. Environ Geochem Health 28:331–340.
http://dx.doi.org/10.1007/s10653-005-9002-4.

7. Ruidisch M, Arnhold S, Huwe B, Bogner C. 2013. Is ridge cultivation
sustainable? A case study from the Haean catchment, South Korea. Appl
Environ Soil Sci 2013:679467.

8. FAO-UNESCO. 1988. Soil map of the world, revised legend. World Soil
Resources Report 60. Food and Agriculture Organization of the United
Nations, Rome, Italy.

9. Yue J, Shi Y, Liang W, Wu J, Wang C, Huang G. 2005. Methane and
nitrous oxide emissions from rice field and related microorganism in
black soil, northeastern China. Nutr Cycl Agroecosyst 73:293–301. http://
dx.doi.org/10.1007/s10705-005-3815-5.

10. Wang G, Liu J, Qi X, Jin J, Wang Y, Liu X. 2008. Effects of fertilization
on bacterial community structure and function in a black soil of Dehui
region estimated by Biolog and PCR-DGGE methods. Acta Ecol Sin
28:220 –226. http://dx.doi.org/10.1016/S1872-2032(08)60023-2.

11. Sun B, Wang X, Wang F, Jiang Y, Zhang XX. 2013. Assessing the
relative effects of geographic location and soil type on microbial com-
munities associated with straw decomposition. Appl Environ Microbiol
79:3327–3335. http://dx.doi.org/10.1128/AEM.00083-13.

12. Li X, Zhang H, Wu M, Zhang Y, Zhang C. 2008. Effect of methamido-
phos on soil fungi community in microcosms by plate count, DGGE and
clone library analysis. J Environ Sci 20:619 – 625. http://dx.doi.org/
10.1016/S1001-0742(08)62103-8.

13. Girvan MS, Bullimore J, Pretty JN, Osborn AM, Ball AS. 2003. Soil type
is the primary determinant of the composition of the total and active
bacterial communities in arable soils. Appl Environ Microbiol 69:
1800 –1809. http://dx.doi.org/10.1128/AEM.69.3.1800-1809.2003.

14. Pereira e Silva MC, Poly F, Guillaumaud N, van Elsas JD, Salles JF.
2012. Fluctuations in ammonia oxidizing communities across agricul-
tural soils are driven by soil structure and pH. Front Microbiol 3:77.
http://dx.doi.org/10.3389/fmicb.2012.00077.

15. Barbosa Lima A, Cannavan FS, Navarrete AA, Teixeira WG, Kuramae
EE, Tsai SM. 2015. Amazonian dark earth and plant species from the
Amazon region contribute to shape rhizosphere bacterial communities.
Microb Ecol 69:855– 866. http://dx.doi.org/10.1007/s00248-014-0472-8.

16. Nallanchakravarthula S, Mahmood S, Alström S, Finlay RD. 2014.
Influence of soil type, cultivar and Verticillium dahliae on the structure of
the root and rhizosphere soil fungal microbiome of strawberry. PLoS
One 9:e111455. http://dx.doi.org/10.1371/journal.pone.0111455.

17. Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten
WH, Wall DH. 2004. Ecological linkages between aboveground and
belowground biota. Science 304:1629 –1633. http://dx.doi.org/10.1126/
science.1094875.

18. Wessén E, Hallin S, Philippot L. 2010. Differential responses of bacterial
and archaeal groups at high taxonomical ranks to soil management. Soil
B i o l B i o c h e m 4 2 : 1 7 5 9 – 1 7 6 5 . h t t p : / / d x . d o i . o r g / 1 0 . 1 0 1 6 /
j.soilbio.2010.06.013.

19. Sharma S, Rangger A, Lutzow MV, Insam H. 1998. Functional diversity
of soil bacterial communities increases after maize litter amendment. Eur
J Soil Biol 34:53– 60.

20. Marschner P, Yang CH, Lieberei R, Crowley DE. 2001. Soil and plant
specific effects on bacterial community composition in the rhizosphere.
Soil Biol Biochem 33:1437–1445. http://dx.doi.org/10.1016/S0038
-0717(01)00052-9.

21. Liang Y, Wu L, Clark IM, Xue K, Yang Y, Van Nostrand JD, Deng Y, He
Z, McGrath S, Storkey J, Hirsch PR, Sun B, Zhou J. 2015. Over 150
years of long-term fertilization alters spatial scaling of microbial biodi-
versity. mBio 6:e00240-15. http://dx.doi.org/10.1128/mBio.00240-15.

22. Su JQ, Ding LJ, Xue K, Yao HY, Quensen J, Bai SJ, Wei WX, Wu JS,
Zhou J, Tiedje JM, Zhu YG. 2015. Long-term balanced fertilization
increases the soil microbial functional diversity in a phosphorus-limited
paddy soil. Mol Ecol 24:136 –150. http://dx.doi.org/10.1111/mec.13010.

23. Williams A, Börjesson G, Hedlund K. 2013. The effects of 55 years of
different inorganic fertiliser regimes on soil properties and microbial

community composition. Soil Biol Biochem 67:41– 46. http://dx.doi.org/
10.1016/j.soilbio.2013.08.008.

24. Shen JP, Zhang LM, Guo JF, Ray JL, He JZ. 2010. Impact of long-term
fertilization practices on the abundance and composition of soil bacte-
rial communities in Northeast China. Appl Soil Ecol 46:119 –124. http://
dx.doi.org/10.1016/j.apsoil.2010.06.015.

25. Leff JW, Jones SE, Prober SM, Barberán A, Borer ET, Firn JL, Harpole
WS, Hobbie SE, Hofmockel KS, Knops JM, McCulley RL, La Pierre K,
Risch AC, Seabloom EW, Schütz M, Steenbock C, Stevens CJ, Fierer
N. 2015. Consistent responses of soil microbial communities to elevated
nutrient inputs in grasslands across the globe. Proc Natl Acad Sci U S A
112:10967–10972. http://dx.doi.org/10.1073/pnas.1508382112.

26. He J-Z, Zheng Y, Chen C-R, He Y-Q, Zhang L-M. 2008. Microbial
composition and diversity of an upland red soil under long-term fertil-
ization treatments as revealed by culture-dependent and culture-
independent approaches. J Soils Sediments 8:349 –358. http://
dx.doi.org/10.1007/s11368-008-0025-1.

27. Dini-Andreote F, Stegen JC, van Elsas JD, Salles JF. 2015. Disentan-
gling mechanisms that mediate the balance between stochastic and
deterministic processes in microbial succession. Proc Natl Acad Sci U S A
112:E1326 –E1332. http://dx.doi.org/10.1073/pnas.1414261112.

28. Goberna M, Navarro-Cano JA, Valiente-Banuet A, García C, Verdú M.
2014. Abiotic stress tolerance and competition-related traits underlie
phylogenetic clustering in soil bacterial communities. Ecol Lett 17:
1191–1201. http://dx.doi.org/10.1111/ele.12341.

29. Daims H, Nielsen JL, Nielsen PH, Schleifer KH, Wagner M. 2001. In
situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in
wastewater treatment plants. Appl Environ Microbiol 67:5273–5284.
http://dx.doi.org/10.1128/AEM.67.11.5273-5284.2001.

30. Zhao M, Xue K, Wang F, Liu S, Bai S, Sun B, Zhou J, Yang Y. 2014.
Microbial mediation of biogeochemical cycles revealed by simulation of
global changes with soil transplant and cropping. ISME J 8:2045–2055.
http://dx.doi.org/10.1038/ismej.2014.46.

31. Wang G-H, Jin J, Liu J-J, Chen X-L, Liu J-D, Liu X-B. 2009. Bacterial
community structure in a mollisol under long-term natural restoration,
cropping, and bare fallow history estimated by PCR-DGGE. Pedosphere
19:156 –165. http://dx.doi.org/10.1016/S1002-0160(09)60105-3.

32. Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM. 2002.
Thermotolerance generated by plant/fungal symbiosis. Science 298:
1581. http://dx.doi.org/10.1126/science.1072191.

33. Fierer N, Bradford MA, Jackson RB. 2007. Toward an ecological clas-
sification of soil bacteria. Ecology 88:1354 –1364. http://dx.doi.org/
10.1890/05-1839.

34. MacArthur RH, Wilson EO. 1967. The theory of island biogeography.
Princeton University Press, Princeton, NJ.

35. Craine JM, Morrow C, Fierer N. 2007. Microbial nitrogen limitation
increases decomposition. Ecology 88:2105–2113. http://dx.doi.org/
10.1890/06-1847.1.

36. Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R.
2012. Comparative metagenomic, phylogenetic and physiological anal-
yses of soil microbial communities across nitrogen gradients. ISME J
6:1007–1017. http://dx.doi.org/10.1038/ismej.2011.159.

37. Gleason FH, Schmidt SK, Marano AV. 2010. Can zoosporic true fungi
grow or survive in extreme or stressful environments? Extremophiles
14:417– 425. http://dx.doi.org/10.1007/s00792-010-0323-6.

38. Nemergut DR, Townsend AR, Sattin SR, Freeman KR, Fierer N, Neff
JC, Bowman WD, Schadt CW, Weintraub MN, Schmidt SK. 2008. The
effects of chronic nitrogen fertilization on alpine tundra soil microbial
communities: implications for carbon and nitrogen cycling. Environ
Microbiol 1 0 :3093–3105. http : / /dx .doi .org/10.1111/ j .1462
-2920.2008.01735.x.

39. Graham MH, Haynes RJ. 2005. Organic matter accumulation and
fertilizer-induced acidification interact to affect soil microbial and en-
zyme activity on a long-term sugarcane management experiment. Biol
Fertil Soils 41:249 –256. http://dx.doi.org/10.1007/s00374-005-0830-2.

40. Fierer N, Jackson RB. 2006. The diversity and biogeography of soil
bacterial communities. Proc Natl Acad Sci U S A 103:626 – 631. http://
dx.doi.org/10.1073/pnas.0507535103.

41. Emerson D, Floyd MM. 2005. Enrichment and isolation of iron-oxidizing
bacteria at neutral pH. Methods Enzymol 397:112–123. http://
dx.doi.org/10.1016/S0076-6879(05)97006-7.

42. Sinsabaugh RL. 2010. Phenol oxidase, peroxidase and organic matter
dynamics of soil. Soil Biol Biochem 42:391– 404.

43. Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG,

Microbial Responses to Land Management Practices

Volume 1 Issue 4 e00075-16 msystems.asm.org 11

http://dx.doi.org/10.1016/j.geoderma.2014.02.016
http://dx.doi.org/10.1016/j.geoderma.2014.02.016
http://dx.doi.org/10.1016/j.geoderma.2010.10.006
http://dx.doi.org/10.1007/s10653-005-9002-4
http://dx.doi.org/10.1007/s10705-005-3815-5
http://dx.doi.org/10.1007/s10705-005-3815-5
http://dx.doi.org/10.1016/S1872-2032(08)60023-2
http://dx.doi.org/10.1128/AEM.00083-13
http://dx.doi.org/10.1016/S1001-0742(08)62103-8
http://dx.doi.org/10.1016/S1001-0742(08)62103-8
http://dx.doi.org/10.1128/AEM.69.3.1800-1809.2003
http://dx.doi.org/10.3389/fmicb.2012.00077
http://dx.doi.org/10.1007/s00248-014-0472-8
http://dx.doi.org/10.1371/journal.pone.0111455
http://dx.doi.org/10.1126/science.1094875
http://dx.doi.org/10.1126/science.1094875
http://dx.doi.org/10.1016/j.soilbio.2010.06.013
http://dx.doi.org/10.1016/j.soilbio.2010.06.013
http://dx.doi.org/10.1016/S0038-0717(01)00052-9
http://dx.doi.org/10.1016/S0038-0717(01)00052-9
http://dx.doi.org/10.1128/mBio.00240-15
http://dx.doi.org/10.1111/mec.13010
http://dx.doi.org/10.1016/j.soilbio.2013.08.008
http://dx.doi.org/10.1016/j.soilbio.2013.08.008
http://dx.doi.org/10.1016/j.apsoil.2010.06.015
http://dx.doi.org/10.1016/j.apsoil.2010.06.015
http://dx.doi.org/10.1073/pnas.1508382112
http://dx.doi.org/10.1007/s11368-008-0025-1
http://dx.doi.org/10.1007/s11368-008-0025-1
http://dx.doi.org/10.1073/pnas.1414261112
http://dx.doi.org/10.1111/ele.12341
http://dx.doi.org/10.1128/AEM.67.11.5273-5284.2001
http://dx.doi.org/10.1038/ismej.2014.46
http://dx.doi.org/10.1016/S1002-0160(09)60105-3
http://dx.doi.org/10.1126/science.1072191
http://dx.doi.org/10.1890/05-1839
http://dx.doi.org/10.1890/05-1839
http://dx.doi.org/10.1890/06-1847.1
http://dx.doi.org/10.1890/06-1847.1
http://dx.doi.org/10.1038/ismej.2011.159
http://dx.doi.org/10.1007/s00792-010-0323-6
http://dx.doi.org/10.1111/j.1462-2920.2008.01735.x
http://dx.doi.org/10.1111/j.1462-2920.2008.01735.x
http://dx.doi.org/10.1007/s00374-005-0830-2
http://dx.doi.org/10.1073/pnas.0507535103
http://dx.doi.org/10.1073/pnas.0507535103
http://dx.doi.org/10.1016/S0076-6879(05)97006-7
http://dx.doi.org/10.1016/S0076-6879(05)97006-7
msystems.asm.org


Knight R, Fierer N. 2010. Soil bacterial and fungal communities across
a pH gradient in an arable soil. ISME J 4:1340 –1351. http://dx.doi.org/
10.1038/ismej.2010.58.

44. Lauber CL, Hamady M, Knight R, Fierer N. 2009. Pyrosequencing-
based assessment of soil pH as a predictor of soil bacterial community
structure at the continental scale. Appl Environ Microbiol 75:5111–5120.
http://dx.doi.org/10.1128/AEM.00335-09.

45. Young IM, Crawford JW. 2004. Interactions and self-organization in the
soil-microbe complex. Science 304:1634 –1637. http://dx.doi.org/
10.1126/science.1097394.

46. Lampurlanes J, Cantero-Martinez C. 2003. Soil bulk density and pen-
etration resistance under different tillage and crop management sys-
tems and their relationship with barley root growth. Agron J 95:
526 –536.

47. Rietz DN, Haynes RJ. 2003. Effects of irrigation-induced salinity and
sodicity on soil microbial activity. Soil Biol Biochem 35:845– 854. http://
dx.doi.org/10.1016/S0038-0717(03)00125-1.

48. Tripathi S, Kumari S, Chakraborty A, Gupta A, Chakrabarti K, Ban-
dyapadhyay BK. 2006. Microbial biomass and its activities in salt-
affected coastal soils. Biol Fertil Soils 42:273–277. http://dx.doi.org/
10.1007/s00374-005-0037-6.

49. Yuan BC, Li ZZ, Liu H, Gao M, Zhang YY. 2007. Microbial biomass and
activity in salt affected soils under arid conditions. Appl Soil Ecol 35:
319 –328. http://dx.doi.org/10.1016/j.apsoil.2006.07.004.

50. Smolders E, Brans K, Coppens F, Merckx R. 2001. Potential nitrification
rate as a tool for screening toxicity in metal-contaminated soils. Environ
Toxicol Chem 20:2469 –2474. http://dx.doi.org/10.1002/etc.5620201111.

51. Zhou J, Bruns MA, Tiedje JM. 1996. DNA recovery from soils of diverse
composition. Appl Environ Microbiol 62:316 –322.

52. Ihrmark K, Bödeker IT, Cruz-Martinez K, Friberg H, Kubartova A,
Schenck J, Strid Y, Stenlid J, Brandström-Durling M, Clemmensen
KE, Lindahl BD. 2012. New primers to amplify the fungal ITS2
region– evaluation by 454-sequencing of artificial and natural commu-
nities. FEMS Microbiol Ecol 82:666 – 677. http://dx.doi.org/10.1111/j.1574
-6941.2012.01437.x.

53. Wu L, Wen C, Qin Y, Yin H, Tu Q, Van Nostrand JD, Yuan T, Yuan M,
Deng Y, Zhou J. 2015. Phasing amplicon sequencing on Illumina Miseq
for robust environmental microbial community analysis. BMC Microbiol
15:125. http://dx.doi.org/10.1186/s12866-015-0450-4.

54. Ding J, Zhang Y, Deng Y, Cong J, Lu H, Sun X, Yang C, Yuan T, Van
Nostrand JD, Li D, Zhou J, Yang Y. 2015. Integrated metagenomics and
network analysis of soil microbial community of the forest timberline. Sci
Rep 5:7994. http://dx.doi.org/10.1038/srep07994.

55. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2011. UCHIME
improves sensitivity and speed of chimera detection. BioInformatics
27:2194 –2200. http://dx.doi.org/10.1093/bioinformatics/btr381.

56. Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naive Bayesian classifier
for rapid assignment of rRNA sequences into the new bacterial taxon-
omy. Appl Environ Microbiol 73:5261–5267. http://dx.doi.org/10.1128/
AEM.00062-07.

57. Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AF, Bahram
M, Bates ST, Bruns TD, Bengtsson-Palme J, Callaghan TM, Douglas
B, Drenkhan T, Eberhardt U, Dueñas M, Grebenc T, Griffith GW,
Hartmann M, Kirk PM, Kohout P, Larsson E. 2013. Towards a unified
paradigm for sequence-based identification of fungi. Mol Ecol 22:
5271–5277. http://dx.doi.org/10.1111/mec.12481.

58. Yue H, Wang M, Wang S, Gilbert JA, Sun X, Wu L, Lin Q, Hu Y, Li X,
He Z, Zhou J, Yang Y. 2015. The microbe-mediated mechanisms affect-
ing topsoil carbon stock in Tibetan grasslands. ISME J 9:2012–2020.
http://dx.doi.org/10.1038/ismej.2015.19.

59. Ding J, Zhang Y, Wang M, Sun X, Cong J, Deng Y, Lu H, Yuan T, Van
Nostrand JD, Li D, Zhou J, Yang Y. 2015. Soil organic matter quantity
and quality shape microbial community compositions of subtropical
broadleaved forests. Mol Ecol 24:5175–5185. http://dx.doi.org/10.1111/
mec.13384.

60. Hill MO, Gauch HG, Jr. 1980. Detrended correspondence analysis: an
improved ordination technique. Vegetatio 42:47–58. http://dx.doi.org/
10.1007/BF00048870.

61. Eisen MB, Spellman PT, Brown PO, Botstein D. 1998. Cluster analysis
and display of genome-wide expression patterns. Proc Natl Acad Sci
U S A 95:14863–14868. http://dx.doi.org/10.1073/pnas.95.25.14863.

62. De’Ath G. 2002. Multivariate regression trees: a new technique for
modeling species-environment relationships. Ecology 83:1105–1117.
http://dx.doi.org/10.1890/0012-9658(2002)083[1105:MRTANT]2.0.CO;2.

63. Smouse PE, Long JC, Sokal RR. 1986. Multiple regression and correla-
tion extensions of the Mantel test of matrix correspondence. Syst Zool
35:627– 632. http://dx.doi.org/10.2307/2413122.

64. Stegen JC, Lin X, Konopka AE, Fredrickson JK. 2012. Stochastic and
deterministic assembly processes in subsurface microbial communities.
ISME J 6:1653–1664. http://dx.doi.org/10.1038/ismej.2012.22.

65. Liu S, Wang F, Xue K, Sun B, Zhang Y, He Z, Van Nostrand JD, Zhou
J, Yang Y. 2015. The interactive effects of soil transplant into colder
regions and cropping on soil microbiology and biogeochemistry. Envi-
ron Microbiol 17:566 –576. http://dx.doi.org/10.1111/1462-2920.12398.

Zhao et al.

Volume 1 Issue 4 e00075-16 msystems.asm.org 12

http://dx.doi.org/10.1038/ismej.2010.58
http://dx.doi.org/10.1038/ismej.2010.58
http://dx.doi.org/10.1128/AEM.00335-09
http://dx.doi.org/10.1126/science.1097394
http://dx.doi.org/10.1126/science.1097394
http://dx.doi.org/10.1016/S0038-0717(03)00125-1
http://dx.doi.org/10.1016/S0038-0717(03)00125-1
http://dx.doi.org/10.1007/s00374-005-0037-6
http://dx.doi.org/10.1007/s00374-005-0037-6
http://dx.doi.org/10.1016/j.apsoil.2006.07.004
http://dx.doi.org/10.1002/etc.5620201111
http://dx.doi.org/10.1111/j.1574-6941.2012.01437.x
http://dx.doi.org/10.1111/j.1574-6941.2012.01437.x
http://dx.doi.org/10.1186/s12866-015-0450-4
http://dx.doi.org/10.1038/srep07994
http://dx.doi.org/10.1093/bioinformatics/btr381
http://dx.doi.org/10.1128/AEM.00062-07
http://dx.doi.org/10.1128/AEM.00062-07
http://dx.doi.org/10.1111/mec.12481
http://dx.doi.org/10.1038/ismej.2015.19
http://dx.doi.org/10.1111/mec.13384
http://dx.doi.org/10.1111/mec.13384
http://dx.doi.org/10.1007/BF00048870
http://dx.doi.org/10.1007/BF00048870
http://dx.doi.org/10.1073/pnas.95.25.14863
http://dx.doi.org/10.1890/0012-9658(2002)083[1105:MRTANT]2.0.CO;2
http://dx.doi.org/10.2307/2413122
http://dx.doi.org/10.1038/ismej.2012.22
http://dx.doi.org/10.1111/1462-2920.12398
msystems.asm.org

	RESULTS
	Environmental variables. 
	Soil microbial communities. 
	Specific taxon groups. 
	Carbon and nitrogen cycling genes. 
	Linkages between microbial community composition and environmental variables. 
	Linkages between microbial communities and soil functional processes. 

	DISCUSSION
	MATERIALS AND METHODS
	Environmental variable measurements. 
	Illumina MiSeq sequencing. 
	GeoChip analysis. 
	Statistical analyses. 
	Accession numbers. 

	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENTS
	REFERENCES

