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Aurora controls sister kinetochore mono-orientation
and homolog bi-orientation in meiosis-I
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Aurora-B kinases are important regulators of mitotic chro-

mosome segregation, where they are required for the

faithful bi-orientation of sister chromatids. In contrast to

mitosis, sister chromatids have to be oriented toward the

same spindle pole in meiosis-I, while homologous chromo-

somes are bi-oriented. We find that the fission yeast

Aurora kinase Ark1 is required for the faithful bi-orienta-

tion of sister chromatids in mitosis and of homologous

chromosomes in meiosis-I. Unexpectedly, Ark1 is also

necessary for the faithful mono-orientation of sister chro-

matids in meiosis-I, even though the canonical mono-

orientation pathway, which depends on Moa1 and Rec8,

seems intact. Our data suggest that Ark1 prevents unified

sister kinetochores during metaphase-I from merotelic

attachment to both spindle poles and thus from being

torn apart during anaphase-I, revealing a novel mechan-

ism promoting monopolar attachment. Furthermore, our

results provide an explanation for the previously enig-

matic observation that fission yeast Shugoshin Sgo2,

which assists in loading Aurora to centromeres, and its

regulator Bub1 are required for the mono-orientation of

sister chromatids in meiosis-I.
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Introduction

For eukaryotic chromosome segregation to occur correctly,

the two copies of the chromosome (sister chromatids) need to

be physically connected. This is accomplished by the ‘cohe-

sin’ complex (Haering and Nasmyth, 2003), which links sister

chromatids from their generation in S-phase until the onset of

anaphase. By metaphase, the two sister chromatids become

attached to microtubules emanating from opposite spindle

poles (bi-orientation). A central component ensuring the bi-

orientation of sister kinetochores is the ‘chromosomal pas-

senger complex’ (CPC) that is composed of Aurora-B,

INCENP, Borealin/Dasra and Survivin (Vagnarelli and

Earnshaw, 2004). In anaphase, cohesion between the sister

chromatids is released, which is accomplished by cleavage of

the Scc1/Rad21 subunit of cohesin by the protease separase

(Uhlmann, 2003), a process that is under control of the

mitotic spindle checkpoint (Musacchio and Salmon, 2007).

Similar principles govern meiotic chromosome segregation

(Lee and Orr-Weaver, 2001; Watanabe, 2004), but in contrast

to mitosis, two rounds of chromosome segregation follow

only one round of DNA replication in order to generate

haploid gametes. Several modifications allow this two-step

process (Petronczki et al, 2003): homologous chromosomes

become connected via chiasmata, which result from cross-

over recombination during meiotic prophase, and sister ki-

netochores on each chromosome adopt a side-by-side rather

than back-to-back conformation (Goldstein, 1981). These two

mechanisms allow the recognition of homologous chromo-

somes as entities destined for opposite poles during ana-

phase-I. In addition, only cohesion between chromosome

arms is lost during anaphase-I, which allows the separation

of homologs; cohesion at the centromere is preserved de-

pending on Shugoshin proteins (Watanabe, 2005), and sister

chromatids therefore stay connected so that they can be

properly segregated during meiosis-II. For meiosis-II, kineto-

chores are again in a back-to-back position, and chromosome

segregation is very similar to mitosis.

In all model eukaryotes that have been studied, Aurora-B

kinases are required for the proper bi-orientation of sister

chromatids in mitosis. In the absence of Aurora-B, syntelic

(both sister kinetochores attached to the same spindle pole)

or merotelic (one kinetochore attached to two opposing

spindle poles) attachment of chromosomes occurs with in-

creased frequency (Tanaka et al, 2002; Hauf et al, 2003;

Cimini et al, 2006; Knowlton et al, 2006). These malattach-

ments escape the surveillance by the mitotic spindle check-

point, indicating that Aurora-B kinases are also required for

proper checkpoint function. Budding and fission yeast have

a single Aurora kinase, Ipl1 and Ark1, respectively. These

single Aurora kinases are thought to be homologous to

Aurora-B and presumably interact with INCENP

(Schizosaccharomyces pombe (S.p.) Pic1) and Survivin (S.p.

Bir1) homologs (Kim et al, 1999; Leverson et al, 2002;

Vanoosthuyse et al, 2007). Whereas Ipl1 has been shown to

be required for the proper bi-orientation of chromosomes

(Francisco and Chan, 1994; Biggins et al, 1999; Tanaka et al,

2002), a role for Ark1 in regulating chromosome attachment

has not been demonstrated. Fission yeast cells that lack Ark1
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fail to divide the chromatin during anaphase, but neverthe-

less proceed to septation, resulting in a cut (‘cell untimely

torn’) phenotype (Petersen and Hagan, 2003). Mutants in the

condensin complex, which is required for compaction of

chromatin during mitosis, display a similar phenotype

(Saka et al, 1994), and Ark1 and Bir1 are indeed required

for the correct intranuclear localization of condensin subunits

during mitosis (Morishita et al, 2001; Petersen and Hagan,

2003).

In meiosis, Aurora-B kinases have been shown to regulate

cohesion in Caenorhabditis elegans and Drosophila melano-

gaster. In the worm, the Aurora-B kinase AIR-2 promotes

segregation of homologous chromosomes, presumably by

phosphorylation-dependent removal of meiotic cohesin,

which contains the meiosis-specific subunit Rec8 that re-

places Rad21 (Kaitna et al, 2002; Rogers et al, 2002). In

Drosophila, Aurora-B seems to be required to preserve cen-

tromeric cohesion beyond meiosis-I, depending on MEI-S332,

a member of the Shugoshin family of proteins (Resnick et al,

2006). The only indication for a role of Aurora in controlling

chromosome attachment in meiosis comes from budding

yeast, where very recent work has shown that Ipl1 is required

for the bi-orientation of homologous chromosomes (Monje-

Casas et al, 2007; Yu and Koshland, 2007). Here, we exam-

ined the role of the fission yeast Aurora kinase Ark1 in

chromosome segregation during mitosis and meiosis. We

find that Ark1 is required to promote the bi-orientation of

chromosomes in mitosis and to prevent or correct syntelic

and merotelic attachment. Furthermore, Ark1 is necessary for

the bi-orientation of homologs in meiosis-I. However, notably

different from budding yeast (Monje-Casas et al, 2007), we

describe that fission yeast Aurora is required for the mono-

polar attachment of sister chromatids in meiosis-I, and acts in

a different pathway from the Moa1/Rec8 mono-orientation

pathway that has been defined.

Results

Ark1 ensures faithful centromere segregation in mitosis

To address whether Ark1 has a role in the bi-orientation of

chromosomes, we examined chromosome segregation in

haploid fission yeast, in which chromosome 2 was marked

with GFP close to the centromere (cen2-GFP; Yamamoto and

Hiraoka, 2003) using a temperature-sensitive allele of ark1

(ark1-T7; Kawashima et al, 2007) or analog-sensitive versions

of Ark1 (ark1-as2, ark1-as3, see Materials and methods),

which can be inactivated by specific inhibitors (4-amino-

1-tert-butyl-3-(10-napthyl)pyrazolo[3,4-d]pyrimidine (1NA-

PP1) or 4-amino-1-tert-butyl-3-(10-napthylmethyl)pyrazo-

lo[3,4-d]pyrimidine (1NM-PP1)). When Ark1 was inacti-

vated, centromere segregation was perturbed in half or

more than half of the cells (Figure 1A). In about 40% of

cells, one of the sister chromatids did not move entirely

toward one pole in anaphase (‘lagging’), and in 11–25%

(depending on the allele), both sister centromeres moved to

the same pole. This is indicative of merotelic and syntelic

chromosome attachment, respectively. To obtain further in-

sight into chromosome movement in ark1-mutant cells, we

observed chromosome segregation in living ark1-T7 cells at

the restrictive temperature using cen2-GFP and the spindle

pole body (SPB) marker Sid4-GFP (Figure 1B and C). We

found that even before anaphase, alignment of chromosomes

on the mitotic spindle was defective, since the cen2-GFP mark

was found close to one of the spindle poles in about 60% of

the ark1-T7 cells at restrictive temperature (Figure 1C, and

data not shown). In anaphase, sister chromatids of chromo-

some 2 missegregated in 28% of the cells. In a few cases (3%

of all cells) the sister chromatids stayed entirely at one pole

during anaphase. In the other cases, sister chromatids were

lagging behind on the spindle during anaphase, with about

two-thirds eventually moving to the correct and the remain-

der moving toward the incorrect pole (Figure 1B and C).

Cells with mutations in condensin fail to segregate the bulk

of chromatin very similar to ark1-mutant cells, and we

therefore wanted to exclude that the chromosome segregation

defect observed after Ark1 inhibition is merely a consequence

of the condensation defect. When we observed cen2-GFP

segregation in temperature-sensitive condensin-mutant cells

(cut3-477), we also found some failure in centromere segre-

gation (Supplementary Figure S1), which might be attributed

to the disturbed structure of the chromosomes (Hirano,

2005). However, this defect in centromere segregation was

less pronounced than in ark1-mutant cells, although the

chromatin condensation defect in these two strains was

similar (Supplementary Figure S1). Furthermore, in the pre-

sence of low concentrations of the microtubule-destabilizing

substance TBZ, ark1-T7 cells exhibited considerable misse-

gregation (about 35%) even at the permissive temperature

when chromosome condensation was largely normal

(Supplementary Figure S1). In contrast, in wild-type or

cut3-mutant cells, TBZ only caused a very minor increase

in missegregation (Supplementary Figure S1). This suggests

that Ark1 is needed to establish proper microtubule–kineto-

chore attachment independent of its role in chromosome

condensation. Ark1 also functions in the mitotic spindle

checkpoint (Petersen and Hagan, 2003; data not shown).

However, even the additional deletion of the checkpoint

gene mad2þ in cut3-477 cells leads to a weaker defect in

chromosome segregation than the one observed in ark1-T7

cells (Supplementary Figure S1). Taken together, these results

indicate that Ark1 plays a specific role in promoting proper

chromosome segregation beyond its role in the mitotic

checkpoint and in chromosome condensation.

Ark1 is required for the correction of malattachment

In both budding yeast and metazoans, Aurora kinases act in

the bi-orientation of chromosomes by correcting improper,

syntelic attachment of chromosomes to the same spindle pole

(Tanaka et al, 2002; Hauf et al, 2003; Lampson et al, 2004).

When we inactivated Ark1 in an otherwise unperturbed

mitosis, segregation of both sisters to one spindle pole was

rare (Figure 1). This could be because in an unperturbed

mitosis, initial syntelic attachment is rare or because syntelic

attachment can still be corrected in ark1-mutant cells. We

therefore increased the frequency of misattachment by first

arresting cells in mitosis without microtubules, using a cold-

sensitive tubulin mutant nda3-KM311 and then releasing to

permissive temperature (Trautmann et al, 2004; Grishchuk

and McIntosh, 2006; Kawashima et al, 2007). Because ark1-

mutant cells do not arrest in mitosis under these conditions

(Petersen and Hagan, 2003; data not shown), we could only

perform the experiment with the ark1-as3 allele, which is

functional when cells are grown without inhibitor and thus

allows arrest by nda3-KM311. Shortly before release, we
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inhibited Ark1-as3 by the specific inhibitor 1NM-PP1, which

inactivates the kinase within 10 min (data not shown and

Figure 2A). When checking anaphase spindles 10 min after

the release, both cen2-GFP marks were found close to one

edge of the spindle in about 20% of cells. No such misse-

gregation was observed in wild-type cells treated with in-

hibitor or in ark1-as3 cells grown without inhibitor

(Figure 2A), indicating that its occurrence depends on the

inactivation of Ark1. To determine whether this indeed

represents initial misattachment that fails to correct, we

filmed Ark1-inactivated cells being released from the

nda3 arrest. Among those cells that we could image from

the start of mitosis, about half had both sister centromeres

located entirely at one pole throughout prometaphase

and anaphase (Figure 2B and C; Supplementary Figure S2).

These data indicate that Ark1 is required to correct syntelic

misattachment of chromosomes (also see Supplementary

Note 1).

To confirm in a different setting that malattachment of

chromosomes cannot be corrected in ark1-mutant cells, we

used a temperature-sensitive mutant of fission yeast cohesin,

psc3-1T (Nonaka et al, 2002). Sister chromatids precociously

detach from each other in the absence of cohesin, but remain

competent to attach to microtubules. However, in the absence

of cohesion between sister chromatids, kinetochore–micro-

tubule attachment cannot be stabilized because of a lack of

tension. Therefore, attachment remains unstable, which in

budding yeast depends on Ipl1 (Biggins and Murray, 2001). In

live-cell microscopy experiments, the instability of sister

chromatid attachment in psc3-1T cells was exemplified by

an occasional switching of at least one sister chromatid from

one spindle pole to the other (Figure 2D, arrows). When Ark1

was additionally inactivated, such switching was abolished

(Figure 2D), indicating that Ark1 is required to keep sister

chromatid attachment unstable in psc3-1T cells. This result is

consistent with Ark1 being needed to correct kinetochore–

microtubule attachments that fail to generate tension through

bi-orientation. However, the fact that sister chromatids were

not very motile when Ark1 is inhibited (Figure 2D) could also

indicate a more profound defect in kinetochore–microtubule

dynamics. Inactivation of condensin did not seem to have the

same effect as Ark1 inactivation (Supplementary Figure S2B),

which again suggests that Ark1 regulates chromosome

attachment independent of condensin.

Ark1 has a role in nuclear division during meiosis-I

To study the requirement of Ark1 in meiosis, we used an

‘ark1 shut-off’ (ark1 s.o.) strain, where the ark1þ gene is
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Figure 1 Ark1 is required for the bi-orientation of sister chromatids in mitosis. (A) Wild-type (ark1þ ), ark1-T7, ark1-as2 or ark1-as3 cells
having cen2-GFP were synchronized in S-phase using hydroxyurea. Wild-type and ark1-T7 cells were shifted to the restrictive temperature for
ark1-T7 (341C) when being released, whereas ark1-as2 and ark1-as3 were grown at 301C, but 5mM 1NM-PP1 was added to the cultures at
release. Eighty to hundred minutes after the release, the cells were fixed. Tubulin was visualized by TAT-1 antibody staining or mCherry-Atb2
(tubulin). cen2 segregation was determined in a minimum of 100 anaphase cells. (B, C) Ark1-T7 mutants having cen2-GFP and expressing Sid4-
GFP to label the spindle pole bodies (SPB) were followed by live-cell microscopy at the restrictive temperature (341C). Exemplary kymographs
are shown in panel C.
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under control of the mitosis-specific promoter of the rad21þ
gene. In this strain, the level of Ark1 protein in meiosis was

largely reduced, but minor amounts of Ark1 were still

observed at centromeres and midspindles (Supplementary

Figure S4). For some experiments, we therefore either

additionally or alternatively used the ark1-as2 allele together

with the specific inhibitor.

The most prominent phenotype observed after Ark1 deple-

tion in mitosis is a failure to condense chromosomes,

which leads to a defect in nuclear division (Petersen et al,

2001). We similarly found a defect in chromosome condensa-

tion during meiosis in ark1 s.o. cells (Supplementary

Figure S5). Nevertheless, four distinct, albeit often unequally

sized, nuclei formed after meiosis-II in ark1 s.o. cells

(Supplementary Figure S5). However, in about 50% of ark1

s.o. cells, the two meiosis-II spindles formed extremely close

to each other and often in what seemed to be one nucleus

(Figure 3A), indicating a failure of nuclear division during

meiosis-I. To assess this phenotype better, we arrested cells

after meiosis-I using the mes1 mutation (Izawa et al, 2005).

Under these conditions, more than 80% of ark1þ cells but

only 30% of ark1 s.o. cells formed two nuclei (Figure 3B and

C). Nevertheless, the mononucleated ark1 s.o. cells seemed

to have undergone anaphase-I, because Rec8-GFP was largely

removed from chromatin (Supplementary Figure S6).
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Figure 2 Ark1 is required for the correction of malattachment. (A) The indicated strains carrying the nda3-KM311 mutation were arrested in
mitosis by incubation at 191C for 6 h, and released by transfer to 321C. Where indicated (þ inhib.) 5mM 1NM-PP1 were added to the culture
10 min before release. Cells were fixed with methanol 10 min after upshift to 321C. Chromosome segregation was assessed by determining cen2-
GFP localization on anaphase spindles, which were labeled by mCherry-Atb2 (tubulin). (B, C) nda3-KM311 ark1-as3 cells were arrested in
mitosis as in panel A and released by transferring cells to a microscope stage kept at 321C. 1NM-PP1 (5mM) was added 5 min before release.
Only cells that could be followed through mitosis starting from very short spindle length were considered. Cells in which the spindle was
defective and those in which centromere 2 did not attach to the spindle were excluded from the analysis. A kymograph of a cell that showed
chromosome 2 segregating with one SPB is shown in panel C. Example kymographs for all phenotypes as well as example kymographs from
ark1-as3 cells released from the nda3-KM311 arrest without any inhibitor are shown in Supplementary Figure S2A. (D) The indicated strains
marked with cen2-GFP and mCherry-Atb2 (tubulin) were followed by live-cell microscopy at the restrictive temperature (341C). A centromere
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presumably reflects a failure in condensin function, since

mutants in the condensin subunit cut3 also show a slightly

increased number of cells with one nucleus when arrested by

the mes1 mutation at a semi-permissive temperature (data

not shown).

Ark1 promotes homolog bi-orientation in meiosis-I

To address whether Ark1 has any role in meiotic chromosome

segregation, we examined the segregation of cen2-GFP in

ark1 s.o. and ark1-as2 cells during anaphase-I. When Ark1

was inhibited or depleted, both homologous chromosomes 2

segregated to the same pole in about 30–40% of anaphase-I

cells (Figure 4A). In another 30% of cells, at least one of the

homologs was lagging on the anaphase-I spindle. These

segregation problems could be caused either by a failure to

bi-orient bivalents or by a failure to join homologous chro-

mosomes through chiasmata. Since the intergenic recombi-

nation frequency between the lys3þ and ura1þ locus on

chromosome 1 was similar in ark1þ and ark1 s.o. strains

(data not shown), the latter is unlikely. Therefore, these data

suggest that Ark1 is required for the bi-orientation of con-

nected homologs during meiosis-I (also see Supplementary

Note 2).

The role of Ark1 in bi-orientation is independent of

kinetochore geometry

Paliulis and Nicklas (2000) have shown that specific features

of the chromosome and not of the spindle determine the

special chromosome segregation of meiosis-I. In fission yeast,
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Figure 3 Ark1 is required for nuclear division during meiosis-I. (A) The position of metaphase-II spindles was evaluated in fixed cells. DNA
was stained with Hoechst 33342. (B, C) The indicated strains were arrested after anaphase-I by the mes1 mutation. Cells were fixed and DNA
was stained with DAPI. The number of nuclei was determined in at least 200 asci (C); exemplary cells are shown in panel B.
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genetic tricks can be used to create mitosis-like chromosomes

during meiosis-I. Deletion of the gene for the meiosis-specific

cohesin subunit Rec8 causes a failure in recombination

and therefore chiasmata generation. Additionally, sister

kinetochores in each homolog are faithfully bi-oriented

presumably because geometry at the centromeric region is

mitosis-like and sister chromatids remain cohered by mitotic

cohesin complexes, which persist into meiosis (Yokobayashi

et al, 2003). Similarly, mitosis-like chromosomes can be

generated by deleting rec12þ , which is required for

recombination, and moa1þ , the gene product of which is

required for the mono-orientation of sister kinetochores in

concert with Rec8 (Yokobayashi and Watanabe, 2005). In

both these genetic backgrounds, Ark1 shut-off caused mis-

segregation of sister centromeres in meiosis-I (Figure 4B),

with the effect being greater in a rec12D moa1D strain

than in a rec8D strain (see Supplementary Note 3). Thus,

during meiosis-I, Ark1 can promote the equational segrega-

tion of sister chromatids (Figure 4B), or the bipolar segrega-

tion of homologs (Figure 4A), depending on the chromosome

structure. We suggest that Ark1 promotes the bi-orientation

of any two kinetochore-containing entities that are

connected. This is in accordance with findings by Dewar

et al (2004), who showed that budding yeast Ipl1 ensures

the bi-orientation of two separate kinetochores on an

unreplicated plasmid.

Ark1 is required for the mono-orientation of sister

chromatids in meiosis-I

When we tested the segregation of homologs during ana-

phase-I, we found that frequently at least one of the homo-

logs was lagging and often the cen2-GFP signal of lagging

homologs split in two (Figure 4A). We therefore hypothesized

that the sister kinetochores on one homolog, which normally

attach to only one spindle pole, were pulled in opposite

direction. To verify this assumption, we labeled only one of

the homologous chromosomes 2 with GFP and determined

the segregation pattern. Indeed, in about 12% of anaphase-I

cells, the GFP signal split in two when Ark1 was depleted

(Figure 5A), indicating that sister chromatids were pulled to

opposite poles and separated precociously. These data sug-

gested that in the absence of Ark1, sister kinetochores

erroneously become attached to opposite spindle poles

during meiosis-I. In accordance, we found that a visible

separation of sister centromeres could already be observed

during metaphase-I (Supplementary Figure S7). We therefore

considered the possibility that Ark1 is required for the

localization and function of Moa1, which prevents bi-orienta-

tion of sister chromatids at meiosis-I (Yokobayashi and

Watanabe, 2005). However, visualization of Moa1-GFP did

not reveal any difference between wild-type and ark1 s.o.

cells during meiosis-I (Figure 5B). Similarly, no significant

difference in Moa1 localization was observed by chromatin
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mCherry-Atb2 (tubulin) as a marker. (B) Cells from the indicated strains expressing Moa1-GFP and CFP-Atb2 (tubulin) were observed during
metaphase-I. (C) Diploid strains of the indicated genotype were arrested in prophase-I by deletion of mei4þ , and the amount of Moa1 at
centromeres was determined by ChIP using a Moa1 antibody.
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immunoprecipitation (ChIP; Figure 5C). Furthermore, the

localization of Rec8 at the centromeric central core, which

is important for mono-orientation of kinetochores (Watanabe

et al, 2001; Yokobayashi et al, 2003), was intact in the ark1

s.o. cells (Supplementary Figure S8). Thus, the mono-orien-

tation defect caused by the reduction of Ark1 is likely

different from the one caused by the absence of Moa1 or

Rec8, suggesting that Ark1 and Moa1/Rec8 influence sister

kinetochore mono-orientation in meiosis-I through distinct

mechanisms.

Sister centromeres separate precociously after Ark1

depletion because of merotelic attachment rather than

complete bi-orientation

Cells in which moa1þ is deleted show entirely equational

segregation of sister chromatids in meiosis-I if recombination

is abolished by rec12D (see Figure 4B). In this situation

lagging chromatids can be observed in anaphase-I. Their

appearance is completely suppressed by deleting sgo1þ ,

the meiosis-I-specific protector of centromeric cohesion

(Yokobayashi and Watanabe, 2005). In contrast, neither

deletion of rec12þ nor the additional deletion of sgo1þ
leads to completely equational segregation in ark1 s.o. cells

(Supplementary Figure S8C, and data not shown). When

contemplating the reason for the mono-orientation defect in

ark1 s.o. cells, we noticed the high frequency of lagging

chromosomes or lagging sister chromatids during anaphase-

I (Figures 4A and 5A). Given that lagging chromosomes may

originate from merotelic attachment and Ark1 is involved in

its correction (Figure 1), we envisaged that the primary defect

in ark1 s.o. cells preventing monopolar attachment could be

the inability to correct merotelic attachment of a unified pair

of sister kinetochores (Figure 6B). In rec12D moa1D cells, all

sister centromeres eventually segregated at anaphase-I even

in the presence of Sgo1, implying that microtubule-mediated

pulling on bi-oriented sister kinetochores can overcome Sgo1-

mediated protection (Vaur et al, 2005; Yokobayashi and

Watanabe, 2005; Figure 6B). The tension on homologs that

are attached in a merotelic manner is expected to be less,

because some microtubules on both sister kinetochores likely

attach to the same pole (Figure 6B, ‘sgo1þ ’). This reduced

tension might not be sufficient to overcome protection by

Sgo1. This hypothesis makes the key prediction that depro-

tection of sister chromatid cohesion by sgo1D would increase

the equational segregation of sister centromeres in ark1 s.o.

cells, different from rec12D moa1D cells (see Figure 6B).

Consistent with this scenario, the ratio of cells in which sister

centromeres were moving entirely to opposite poles in ana-

phase-I increased from B1% in ark1 s.o. to 17% in ark1 s.o.

sgo1D cells (Figure 5A). Furthermore, lagging sister chroma-

tids could be observed in ark1 s.o. cells even after sgo1þ
deletion, indicating that single chromatids were attached in a

merotelic manner (Figures 5A and 6B, ‘sgo1D’).

Thus, we suggest that Ark1 promotes monopolar

attachment of sister kinetochores at meiosis-I most likely

by correcting merotelic attachment of paired sister

kinetochores, a mechanism that is fundamentally different

from that of Moa1 and Rec8, which are thought to promote

the side-by-side orientation of sister kinetochores by foster-

ing cohesion in the central core region of the centromere

(Figure 6B).

The Bub1–Sgo2–Ark1 pathway operates for proper

chromosome segregation in meiosis

Recent reports indicated that the Shugoshin protein Sgo2

interacts with the CPC protein Bir1 and is required for the

full recruitment of the CPC including Ark1 to centromeres

(Kawashima et al, 2007; Vanoosthuyse et al, 2007). Cells

depleted of Sgo2 exhibit non-disjunction of homologs in

about 20% and equational segregation of sister centromeres

in B5% at meiosis-I (Kitajima et al, 2004; Rabitsch et al,
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Figure 6 Sgo2 promotes mono-orientation similar to Ark1. (A) To
assess the percentage of equational segregation (light gray bars),
one of the homologous chromosomes 2 was marked by GFP in the
indicated strains and the segregation pattern was judged in asci that
had formed four spores. The percentage of lagging chromosomes or
chromatids (dark gray bars) was determined by staining fixed cells
with DAPI and the TAT-1 antibody recognizing tubulin. (B) Model
for the chromosome segregation defects after Sgo2/Ark1 versus
Moa1/Rec8 depletion. The centromeric region of one homolog is
shown. In sgo2D or ark1 s.o. cells, the pair of sister kinetochores on
one homolog tends to attach in a merotelic manner, that is, to both
spindle poles, during metaphase-I. In anaphase, lagging homologs
are common because of merotelic attachment. Eventually, both
sister centromeres segregate to the same pole in most cases. If the
protector Sgo1 is removed, sister centromeres segregate to opposite
poles more frequently. Lagging chromatids are still observed after
deletion of sgo1þ , indicating merotelic attachment of single
sister kinetochores. When moa1þ or rec8þ is deleted, sister
kinetochores on one homolog lose their intimate connection.
When rec12þ is deleted in addition to moa1þ , sister chromatids
segregate completely equationally in anaphase-I. Nevertheless,
lagging chromosomes occur, but deleting sgo1þ abolishes their
appearance.
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2004; Riedel et al, 2006; Kawashima et al, 2007; Figures 5A

and 6A, and data not shown). Since localization of Ark1 at

centromeres is reduced in sgo2D cells at meiosis-I

(Supplementary Figure S9; Kawashima et al, 2007), the

non-disjunction of homologs in sgo2D cells was attributed

to defects in Ark1 function. Based on the results described

above, we hypothesized that the mono-orientation defect in

sgo2D cells originates from the inability to correct merotelic

attachment of paired sister kinetochores, like in ark1 s.o.

cells. Supporting this assumption, an attempted separation of

sister centromeres at anaphase-I was observed in about 16%

of sgo2D cells, which is very similar to that in ark1 s.o. cells

(Figure 5A). Moreover, deletion of sgo1þ increased the

equational segregation of sister centromeres of chromosome

2 at meiosis-I to 12% (Figure 5A; also see Figure 6A), which

is again very similar to that in ark1 s.o. cells. Thus, we

conclude that defects in meiotic chromosome segregation in

sgo2D cells are mostly caused by reduced Ark1 function. In

contrast to the chromosome segregation function, the role of

Ark1 in promoting chromosome condensation is not shared

by Sgo2 (Supplementary Figure S5).

Previous data supported the view that Bub1 acts upstream

of Sgo1 and Sgo2 (Kitajima et al, 2004; Supplementary Figure

S9). Fittingly, Ark1-GFP localization was perturbed during

metaphase-I to a similar extent as in sgo2D cells by deletion of

bub1þ (Supplementary Figure S9E and F). Furthermore, we

found that deletion of sgo2þ did not enhance the mono-

orientation defect of bub1D cells (Figure 6A), indicating that

Bub1 and Sgo2 work in a single pathway. These results

suggest that the defects in mono-orientation after Bub1

depletion might be partly caused by the inability to correct

merotelic attachment of paired sister kinetochores, similar to

the situation in ark1 s.o. or sgo2D cells (see Discussion).

Discussion

Mitotic functions of Aurora are conserved in fission

yeast

Aurora kinases are highly conserved throughout eukaryotes,

and have been implicated in proper chromosome segregation

in several organisms (Vagnarelli and Earnshaw, 2004).

Noticeably, however, in fission yeast, a well-studied model

in mitosis research, it was unknown whether the single

Aurora kinase, Ark1, has any role in regulating the proper

attachment of chromosomes during mitosis. Here, we demon-

strate that Ark1 inhibition causes misattachment of chromo-

somes to the mitotic spindle (Figure 1). As in budding yeast

(Tanaka et al, 2002), Aurora seems necessary to destabilize

syntelic attachment that fails to create tension (Figure 2). In

addition, lagging chromatids occurred with high frequency

when Ark1 was inhibited (Figure 1). Those might arise

because attachment to microtubules is weak or dysfunc-

tional, or because the corresponding kinetochore is attached

to both spindle poles (merotelic attachment). We favor the

latter hypothesis, since most sister chromatids in ark1-T7

cells move to the spindle poles in anaphase-A with velocities

comparable to those observed in wild-type cells (data not

shown), indicating that there is no general problem with

attachment or microtubule-dependent anaphase movement.

In vertebrate cells, where kinetochore–microtubule attach-

ment can be visualized directly, it has been shown

that Aurora-B is required to suppress merotelic attachment,

possibly by destabilizing the faulty attachment (Cimini et al,

2006; Knowlton et al, 2006). We consider it an additional

possibility that Aurora is required to build the kinetochore in

a way that favors attachment of all microtubules on one

kinetochore to the same pole. It has been proposed that

fission yeast Pcs1, which is a homolog of one of the compo-

nents of the budding yeast monopolin complex, is required to

clamp together single microtubule-binding sites on one kine-

tochore, thus favoring their attachment to one pole (Rabitsch

et al, 2003). Indeed, deletion of pcs1þ causes kinetochores to

attach in a merotelic manner (Rabitsch et al, 2003; Gregan

et al, 2007). Thus, Ark1 might be required for Pcs1 function.

Our preliminary experiments nevertheless failed to detect an

influence of Ark1 on Pcs1 localization (data not shown).

In addition to its functions in regulating kinetochore

attachment, budding yeast Ipl1 is a component of the

‘NoCut’ pathway, which prevents abscission in the presence

of spindle-midzone defects (Norden et al, 2006). In our

experiments it was evident that an equatorial microtubule

ring, which normally forms during mid or late anaphase-B in

the plane of cell division (Pichova et al, 1995; Heitz et al,

2001), was formed precociously when Ark1 was inhibited

(Supplementary Figure S2A), thus also implying Ark1 in the

regulation of cytokinesis.

Ark1 acts on chromosome attachment in a similar way

during mitosis and meiosis

Since Ark1 promotes sister chromatid bi-orientation in mito-

sis, but sister chromatids have to mono-orient during meio-

sis-I, it was unclear how Ark1 would influence chromosome

segregation in meiosis-I. We found that Ark1 normally pro-

motes the bi-orientation of homologs in meiosis-I, but if the

morphology of the bivalent is disrupted and mitosis-like

chromosomes are created, Ark1 promotes the bi-orientation

of sister chromatids (Figure 4). This indicates that the mole-

cular mechanism of Ark1 function is the same in mitosis and

meiosis, and the different outcome is determined by the

structure of the bivalent.

In contrast to mitosis, where Ark1 inhibition causes only

about 10–20% sister chromatid co-segregation, depletion of

Ark1 in meiosis causes a more pronounced co-segregation of

homologous chromosomes (30–40%). The most likely expla-

nation is that tension-controlled correction of attachment is

more important in meiosis, because the two pairs of sister

kinetochores on a bivalent are not as tightly coupled as the

sister kinetochores on a mitotic chromosome, which might

favor their syntelic attachment (Shonn et al, 2000).

Very recently it has been demonstrated that the budding

yeast Aurora kinase, Ipl1, is similarly required for homolog

bi-orientation and sister chromatid bi-orientation of artificial

mitosis-like chromosomes in meiosis-I (Monje-Casas et al,

2007). Because of the high conservation of Aurora functions

in all eukaryotes, we expect that this will also hold true for

metazoans.

Does Ark1 facilitate cleavage of Rec8?

In C. elegans, the Aurora-B kinase AIR-2 seems to be required

to efficiently remove cohesin complexes containing Rec8

from chromosome arms (Kaitna et al, 2002; Rogers et al,

2002). In contrast, we find that Ark1 is not essential for Rec8

removal during meiosis-I in fission yeast (Supplementary

Figure S10). In time-lapse movies of fission yeast expressing
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Rec8-GFP, one can clearly observe the solubilization of Rec8

at the onset of anaphase-I, presumably at the moment when

it is cleaved and removed from chromatin (Supplementary

Figure S10). Although this step is not as easy to discern when

Ark1 is inhibited, because chromosomes are less condensed,

it is clear that this solubilization also happens fairly effi-

ciently if Ark1 is inhibited and Rec8 is subsequently degraded

with kinetics similar to wild-type cells (Supplementary Figure

S10). Nevertheless, it is possible that Ark1 facilitates but is

not essential for Rec8 cleavage (see Supplementary Note 3).

A novel mechanism to promote mono-orientation of

sister chromatids during meiosis-I

We show that fission yeast Ark1 is required for the faithful

mono-orientation of sister chromatids in meiosis-I (Figure 5).

In fission yeast, mono-orientation of sister kinetochores is

regulated by Moa1 and Rec8, which may cooperatively

promote the formation of a side-by-side structure of sister

kinetochores through cohesion of the centromeric central

core region (Yokobayashi and Watanabe, 2005). The deple-

tion of Moa1 together with Rec12 or of Rec8 entirely disrupts

the mono-orientation of sister chromatids at meiosis-I. The

mono-orientation defect in ark1 s.o. cells is less pronounced,

and Moa1- or Rec8-localization is not disrupted when Ark1 is

depleted (Figure 5; Supplementary Figure S8). This indicates

that Ark1 and Moa1 act in separate pathways to promote

mono-orientation. Our experiments suggest that in the ab-

sence of Ark1, sister kinetochores on one homolog become

attached in a merotelic manner so that they are torn apart at

anaphase-I, even though they have the proper side-by-side

configuration that favors mono-orientation (Figure 6B). Thus,

the complicated chromosome segregation defects in meiotic

cells depleted of Ark1 can be explained by the well-recog-

nized role of Aurora in correcting malattachment of chromo-

somes. Syntelic and merotelic attachment of bivalents in

meiosis-I provokes non-disjunction of homologs and preco-

cious sister separation, respectively.

In budding yeast, it has been proposed that the two pairs of

sister kinetochores on a bivalent only attach to one micro-

tubule each (Winey et al, 2005) and one sister kinetochore

may thus be inactivated. Consequently, merotelic attachment

might not be possible, which would explain the unperturbed

mono-orientation in Ipl1-depleted cells (Monje-Casas et al,

2007) despite the otherwise similar function of Ipl1 and Ark1.

There is, however, controversy in the literature whether the

depletion of Ipl1 causes a mono-orientation defect (Yu and

Koshland, 2007). In any case, our data clearly indicate that in

fission yeast, both sister kinetochores are active in meiosis-I

and can attach to microtubules. As attachment of both

kinetochores to microtubules at meiosis-I is observed in

several organisms (Lee et al, 2000; Parra et al, 2004), the

mechanism we identified here may be functional in other

eukaryotes as well.

The Bub1–Sgo2–Ark1 pathway ensures meiosis-I

chromosome segregation by correcting malattachment

of homologs

Our finding that Ark1 is needed for the bi-orientation of

homologs and the mono-orientation of sister kinetochores

in meiosis-I provides a crucial clue to solve the enigma why

Sgo2 and Bub1 are required for monopolar attachment as

well as proper homolog disjunction in meiosis-I. In either

sgo2D or bub1D cells, centromeric localization of Ark1 is

reduced at meiosis-I (Supplementary Figure S9). This is

consistent with previous findings that Bub1 acts upstream

of Sgo2, which in turn plays a crucial role to load the CPC to

centromeres (Kitajima et al, 2004; Kawashima et al, 2007;

Vanoosthuyse et al, 2007). Since Moa1 localization is intact in

either sgo2D or bub1D cells (data not shown), it is reasonable

to assume that perturbation of mono-orientation in these

cells may originate from the reduced Ark1 activity at centro-

meres. Indeed, the defects of sgo2D cells in monopolar

attachment at meiosis-I resemble those of ark1 s.o. cells

(Figure 5A). Because bub1D cells are defective in both Sgo1

and Sgo2 localization to centromeres (Kitajima et al, 2004;

Supplementary Figure S9), one would expect that bub1D
phenocopies the sgo1þ sgo2þ double deletion. However,

the frequency of equational segregation is significantly higher

in bub1D cells (B30%) than sgo2D sgo1D cells (12%)

(Figure 6A; Bernard et al, 2001). Since in mitosis bub1D
cells show a higher number of lagging chromosomes than

sgo2D cells (Bernard et al, 1998; S Kawashima and Y

Watanabe, unpublished results), we suggest that Bub1 has

functions that go beyond Sgo2 regulation both in mitosis and

meiosis. Whatever the nature of these additional functions is,

our results argue that Bub1 depletion perturbs monopolar

attachment by generating merotelic attachment of paired

sister kinetochores, like Sgo2 or Ark1 depletion.

In summary, we have shown that the conserved functions

of Aurora for correcting malattachment are acting in fission

yeast mitosis and meiosis. Furthermore, we demonstrate that

this activity of Aurora is required to ensure monopolar

attachment at meiosis-I, and we expect that the same will

hold true for metazoans.

Materials and methods

S. pombe strains
All strains used in this study are listed in Supplementary Table 1 in
Supplementary data. To generate the ark1-as2 allele (Ark1-
Leu166Ala; Bishop et al, 2000), the ark1 gene was PCR-mutagen-
ized from a strain into which a hygromycin-resistance cassette
(hygR) had been integrated 400 bp 50 of the ark1þ open reading
frame (ORF). The hygR-ark1-as2 construct was integrated in a wild-
type strain at the endogenous locus. The ark1-as2 allele rendered
the cells sensitive to 5 mM 1NA-PP1 or 5 mM 1NM-PP1 (both from
TRC, North York, ON, Canada). The ark1-as3 strain was created
from ark1-as2 by additionally mutating Ser229 to Ala. Both the
ark1-as2 and the ark1-as3 strain used in this study contain the
additional amino-acid mutations Gln28Arg and Gln176Arg, which
were unintentionally inserted during the first PCR mutagenesis.
Because the ark1-as3 strain without addition of inhibitor grows
similar to a wild-type strain and is not benomyl-sensitive like other
ark1-mutants, it is unlikely that the two additional mutations affect
the functionality of Ark1. The ark1-as2 strain is benomyl-sensitive
even when grown without inhibitor. To create the ark1 s.o. or cut3
s.o. allele (see Supplementary data), a kanamycin- or hygromycin-
resistance cassette and about 1000 bp of promoter region from the
rad21þ gene were integrated 50 of the respective ORF by PCR-based
gene targeting (Bahler et al, 1998). To visualize microtubules, CFP-
Atb2 or mCherry-Atb2 were expressed from the nmt81 promoter in
the pREP81 plasmid (LEU2þ ), or mCherry-Atb2 was expressed
from the endogenous locus by integration of the nmt41 promoter
and the mCherry-coding region upstream of the atb2þ ORF. To tag
Rec8 with GFP, we modified plasmid pFA6a-GFP(S65T)-hphMX6
(Sato et al, 2005) by integrating 950 bp from the 30-end of the rec8þ
ORF upstream of GFP and 350-bp genomic sequence 30 of the rec8þ
ORF downstream of GFP. The plasmid was linearized by XcmI
digest and integrated in a wild-type strain. The strains or alleles not
mentioned above have been described (Saka et al, 1994; Nonaka
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et al, 2002; Yamamoto and Hiraoka, 2003; Grallert et al, 2004;
Kitajima et al, 2004; Yokobayashi and Watanabe, 2005; Kawashima
et al, 2007).

Culture conditions
Medium for mitotic cultures was YEA (YE with additional 50 mg/l
adenine) or minimal medium (MM) containing 5 g/l NH4Cl and
additional nutrients if required (Alfa et al, 1993). To synchronize
cells in mitosis (Figure 1A), we arrested cells in S-phase by
incubation in 12 mM hydroxyurea for 4.5 h at 25 or 301C depending
on the strain. The arrest was released by washing the cells twice
with fresh, warm medium before reculturing. Cells carrying the
nda3-KM311 mutation (Figure 2A and B) were arrested in mitosis by
incubation at 191C for 6 h and subsequently released by shifting to
321C. To observe cells in meiosis, cells were first grown to
logarithmic phase. If the nmt41 or nmt81 promoter should be
induced by thiamine depletion, cells were grown in MM containing
5 g/l NH4Cl and, if necessary, 200 mg/l leucine and 50 mg/l adenine
for about 14 h at 301C. Cells were washed, collected and spotted on
sporulation agar (SPA; Gutz et al, 1974) to which leucine or adenine
had been added if necessary. After a further 7–8 h of incubation at
301C, cells were observed directly or fixed by methanol at �801C. To
observe ark1-as2 cells in meiosis, the cells were first incubated in
MM with 5 g/l NH4Cl for 8–9 h, and then washed and incubated
in MM without NH4Cl for 4–5 h before spotting on a plate with
synthetic sporulation agar (SSA; SSL with agar; Egel, 1971)
containing 5mM 1NA-PP1. Cells were observed after 7–10 h of
incubation at 301C.

Immunostaining and DNA staining
For immunostaining, cells were fixed with paraformaldehyde. To
stain microtubules, we used the mouse anti-tubulin TAT1 antibody
(kind gift from K Gull) at a dilution of 1:200, followed by an
Alexa568-coupled anti-mouse secondary antibody (Invitrogen) at
2mg/ml. To stain DNA, methanol-fixed cells were washed,
resuspended in PEM buffer (100 mM PIPES, 5 mM EGTA, 5 mM
MgCl2, pH 6.9) and stained by 1mg/ml Hoechst 33342 or 1 mg/ml
DAPI.

Image acquisition
Images were acquired on a Zeiss AxioImager microscope (Zeiss,
Jena, Germany) with MetaMorph software (Molecular Devices
Corporation, Downingtown, PA). Typically, a Z-stack of about 4-mm
thickness, with single planes spaced by 0.25–0.4mm, was acquired
and subsequently projected to a single image. To compare signal
intensities, all images were taken with the same exposure
conditions and processed similarly.

Time-lapse imaging
Live-cell recordings were performed on a DeltaVision RT system
(Applied Precision, Issaquah, WA) equipped with a heating

chamber. For imaging mitosis in ark1-mutants, cells were grown
in liquid medium at permissive temperature, transferred to a glass-
bottom culture dish (MatTek, Ashland, MA) coated with lectin and
incubated on the microscope stage at the restrictive temperature
(341C) for at least 1 h, before starting image acquisition. To image
cells in an nda3-KM311 release, cells were transferred from a liquid
culture at 191C to a glass-bottom culture dish coated with lectin,
which was placed in the microscope chamber heated to 321C. Image
acquisition was started immediately. Images usually were acquired
with the Z-sweep acquisition (OAI) feature and deconvolved using
softWoRx software. Kymographs were assembled with Adobe
Photoshop and Image Ready software.

Chromatin immunoprecipitation
The procedure was carried out essentially as described previously
(Yokobayashi et al, 2003; Kawashima et al, 2007). Anti-Moa1
polyclonal antibodies, anti-GFP polyclonal antibodies (Living
Colors Full-length A.v. Polyclonal Antibody, Clontech) and anti-
Cnp1 polyclonal antibodies were used for IP (Yokobayashi and
Watanabe, 2005). DNA prepared from whole-cell extracts or
immunoprecipitated fractions was analyzed by quantitative PCR
with ABI PRISM7000 (Applied Biosystems) using SYBR Premix Ex
Taq (Perfect Real Time; Takara). The primers used for PCR were
described previously (Yokobayashi et al, 2003; Kawashima et al,
2007).

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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