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A B S T R A C T

In this paper, we discuss spatially homogeneous and anisotropic Bianchi type-V dark energy cosmological model
in the presence of an attractive massive scalar field in general relativity. We have solved the field equations using
(i) the shear scalar of the metric is proportional to the expansion scalar which results a relationship between
metric potentials and (ii) a power law between the massive scalar field and the average scale factor. We have
computed the cosmological parameters like dark energy density, equation of state parameter, skewness param-
eters, deceleration parameter and statefinder parameters of our dark energy model with massive strings and
discussed their physical significance in the light of the recent scenario of accelerated expansion of the universe
and cosmological observations.
1. Introduction

General Relativity (GR) is a geometric theory which describes grav-
itational phenomena. It is also useful in constructing mathematical
models in cosmology which deals with large scale structure of the uni-
verse. The modern cosmological observations have confirmed the
accelerated expansion of the universe [1, 2, 3]. It has also been confirmed
that the reason for this late time acceleration is an exotic force with
negative pressure dubbed as' dark energy’ (DE). In order to explain this
DE, various DE models in GR and in modified theories of gravitation have
been investigated. Cosmological constant, which represents energy
density associated with quantum vacuum, was considered to be the
simplest candidate to produce this cosmic acceleration. But this simple
DE model is plagued with the coincidence and other serious problems in
general relativity. Hence, different dynamical DE models have been
investigated to explain this cosmic acceleration of the universe. Note-
worthy among them are the scalar field models such as quintessence and
k-essence [4, 5]. It may be noted that there is another class of modified
matter models based on perfect fluids so-called generalized Chaplygin
gas models [6], pilgrim DE models [7, 8, 9] and holographic DE models
[10, 11]. There exists another class of DE models that modify general
relativity. The DE models corresponding to f(R) gravity [12], f(R,T)
gravity [13] and scalar-tensor theories of gravity proposed by Brans and
.
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Dicke [14] and Saez and Ballester [15].
There exist several dynamical DE models, in literature, presented by

various authors both in GR and in modified theories of gravitation.
Among them we are interested in Bianchi type spatially homogeneous
and anisotropic DE models which are very important to study the evo-
lution of our universe at its early stages and to describe the small amounts
of anisotropy at the beginning of the universe. A host of authors have
investigated spatially homogeneous and anisotropic DE models both in
general relativity and in modified theories of gravitation [16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26] (we mention only some of them). Also it is
useful to construct viable Bianchi type scalar field DE models in the
framework of particle physics that is DE models in the presence
scalar-meson fields and massive scalar fields in general relativity.

In cosmology, scalar fields play a vital role as they describe matter
fields with spin less quanta and represent gravitational fields. Scalar
fields are classified into two types-zero mass scalar fields which describe
long range interactions and massive scalar fields which represent short
range interactions. It is this physical importance that has attracted the
attention of many researchers to study the scalar fields. It is also supposed
that the scalar fields cause the accelerated expansion of the universe and
help to solve the horizon problem in cosmology.

Cosmological models in the presence of mass less and massive scalar
fields coupled with different physical systems have been extensively
y 2019
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studied in the past [27, 28, 29, 30, 31, 32, 33]. Since our main aim is to
discuss dynamical DE models in the presence of scalar fields, we will
mention some investigations of DE models in the presence of massive and
mass less scalar fields. Reddy [34] has studied Bianchi type-V (B-V) DE
model with scalar meson fields in general relativity. Naidu [35] discussed
Bianchi type-II modified holographic Ricci DE model with attractive
massive scalar field. Recently, Aditya and Reddy [36] have discussed the
dynamics of Bianchi type-III cosmological model in the presence of
anisotropic DE and an attractive massive scalar meson field.

The above discussion has inspired us to investigate the dynamics of
spatially homogeneous anisotropic DE model in B-V space-time. This is
because of the fact that B-V models contain isotropic models as special
cases and allow arbitrary small anisotropies at some instant of cosmic
time. Also FRW models are particular cases of Bianchi type-I, V and IX
universes. Following is the plan of this paper: In Sec. 2, we derive the
Einstein explicit field equations in the presence of anisotropic DE and
attractive massive scalar field. Sec. 3 deals with the solution of the field
equations and presentation of DE model. Evaluation and physical dis-
cussion of dynamical parameters of the model are presented in Sec. 4.
Conclusions are presented in Sec.5.

2. Theory

2.1. Einstein field equations for DE

The space-time represented by Bianchi type –V metric is given by

ds2 ¼ dt2 � A2dx2 � B2e�2xdy2 � C2e�2xdz2 (1)

whereA;BandC are functions of cosmic time t.
The combined stress-energy tensor in the presence of anisotropic DE

and an attractive massive scalar field is given by

Tij ¼ T ðdeÞ
ij þ T ðsÞ

ij (2)

where

T ðdeÞ
ij ¼ðρde þ pdeÞ � pdegij (3)

T ðsÞ
ij ¼φ;iφ;j �

1
2

�
φ;kφ

;k �M2φ2
�

(4)

Hereρdeis the DE density, pdeis the DE pressure, M is the mass of the
scalar field φ which satisfies the Klein-Gordon equation

gijφ;ij þM2φ ¼ 0 (5)

and comma and semi colon denote ordinary and covariant differen-
tiation respectively.

The energy-momentum tensor of anisotropic DE fluid given by Eq. (3)
can be parameterized as

T ðdeÞ
ij ¼ diag½1;ωde; � ðωde þ γÞ;�ðωde þ δÞ�ρde (6)

where

ωde ¼ pde
ρde

: (7)

Hereωdeis the EoS parameter of DE and the skewness parametersγ and
δ are the deviations fromωde along y and z-axes respectively.

Now, Einstein field equations in the presence of anisotropic DE fluid
and attractive massive scalar fields are given by

Rij � 1
2
gijR ¼ �

�
T ðdeÞ
ij þ T ðsÞ

ij

�
(8)

Here we choose units such that8πG ¼ c ¼ 1. Using commoving co-
ordinates the explicit form of field Eq. (8) for the metric (1), by the use of
2

Eqs. (3), (4), (5), (6), and (7), can be written as

A
�
B
�

AB
þB

�
C
�

BC
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�
A
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CA
� 1
A2

� φ
� 2

2
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2
¼ ρde (9)

B
��

B
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2
¼ �ωdeρde (10)

A
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þ φ
� 2

2
�M2φ2

2
¼ �ðωde þ γÞρde (11)

A
��

A
þ B

��

B
þ A

�
B
�
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� 1
A2

þ φ
� 2

2
�M2φ2

2
¼ �ðωde þ δÞρde (12)

B
�

B
þC

�

C
� 2

A
�

A
¼ 0 (13)

and the Klein-Gordon Eq. (5) for the metric (1) takes the form

φ
�� þφ

�
 
A
�

A
þ B

�

B
þ C

�

C

!
þM2φ ¼ 0 (14)

The conservation law for the energy-momentum tensor of DE fluid
yields

ρde
� þ

 
A
�

A
þ B

�

B
þ C

�

C

!
ðρde þ pdeÞ ¼ 0 (15)

where an over head dot indicates derivative with respect to cosmic
time t.

We shall now define cosmological parameters which would help in
solving the above field equations. The volume V and the average scale
factor a(t) are given by

V ¼ a3 ¼ ABC: (16)

The average Hubble parameter H, scalar expansion θ and the shear
scalar σ2 are defined as

H¼ a
�

a
¼ 1

3
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�

A
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�

B
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�

C

!
: (17)

θ¼ 3H ¼ A
�
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�
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�

C
(18)

σ2 ¼ 1
2
σijσij ¼ 1

2

2
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!2

A
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A
B
�
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B
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B
C
�

C
� C

�

C
A
�

A

3
5: (19)

The anisotropy parameter and deceleration parameter are, respec-
tively, given by

Δ ¼ 1
3

X3
i¼1

�
Hi � H

H

�2

(20)

q¼ � 1þ d
dt

�
1
H

�
(21)

3. Calculation

3.1. Solution of field equations and DE model

In order to present a DE model in the presence of massive scalar field,
here, we solve the field Eqs. (9), (10), (11), (12), (13), (14), and (15).
Integrating Eq. (13), we get
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A2 ¼ k1BC (22)
Without any loss of generality, the constant of integration k1 can be
chosen as unity so that we have

A2 ¼ BC (23)

The set of field Eqs. (9), (10), (11), and (12) together with Eqs. (14)
and (15) are a system of five independent equations [Eq. (15), being the
conservation equation] in eight unknownsA;B;C;ρde;ωde;V ;δ;γ. Hence to
find a determinate solution we use the following physically significant
conditions:

i. The shear scalar of the space-time is proportional to the expansion
scalar so that we have [37] .

C ¼ Bn (24)

wheren 6¼ 1 is a positive constant which preserves the anisotropy of
the space time.

ii. In order to reduce the mathematical complexity of the system we
use [39].

3
A
�

A
¼ � φ

�

φ
(25)

Now from Eqs. (14), (23), and (25), we obtain

φ ¼ exp
�
φ0t �

M2t2

2
þ φ1

�
: (26)

Eqs. (25) and (26) will, together, give us

A ¼ a1 exp
�1

2M
2t2 � φ0t � φ1

3

�
(27)

wherea1 ¼ a
1
3
0, a0, φ0 andφ1are constants of integration. From Eqs. (23),

(24), and (25) we get

B ¼
�
a1 exp

��1
2M

2t2 � φ0t � φ1

�
3

�	 2
nþ1

(28)

C ¼
�
a1 exp

��1
2M

2t2 � φ0t � φ1

�
3

�	 2n
nþ1

(29)

Now using Eqs. (27), (28), and (29), we can write the B-Vmodel (1) as
ωde ¼ �1
ρde

2
66664
M2

3
þ 4
�
n2 þ 1

��
M2t � φ0

�2
ðnþ 1Þ2 �

 
1
a12

�
�
M2t � φ0

�2
18

!
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�
2φ0t � 2φ1 �M2t2

3

�

�M2

2
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�
2φ0t �M2t2 þ 2φ1

3

�
3
77775 (40)
ds2 ¼ dt2 �
�
a1 exp

��1
2M

2t2 � φ0t � φ1

�
3

�	2
dx2

�
�
a1 exp

��1
2M

2t2 � φ0t � φ1

�
3

�	 4
nþ1

e�2xdy2

�
�
a1 exp

��1
2M

2t2 � φ0t � φ1

�
3

�	 4n
nþ1

e�2xdz2 (30)

with the massive scalar field given by Eq. (26).
3

3.2. Physical and dynamical parameters of the model

The following are the dynamical parameters in the universe given by
Eqs. (30) and (26) which are necessary for discussion in cosmology:

V ¼
�
a1 exp

��1
2M

2t2 � φ0t � φ1

�
3

�	3
(31)

H ¼ 1
3

�
M2t�φ0

�
(32)

θ¼ 3H ¼ �M2t�φ0

�
(33)

σ2 ¼ ðM2t � φ0Þ2
6

�
n� 1
nþ 1

�2

(34)

Δ ¼ 2
3

�
n� 1
nþ 1

�2

(35)

q¼ �
 
1þ 3M2

ðM2t � φ0Þ2
!

(36)

Now using Eqs. (26), (27), (28), and (29) in Eq. (9) we find DE density
as

ρde ¼
ðM2t � φ0Þ2
18ðnþ 1Þ2

�
4
�
n2 þ 16nþ 4

�� ðnþ 1Þ2 exp
�
2φ0t �M2t2 � 2φ1

3

��

� 1
a21

exp
�
2φ0t þ 2φ1 �M2t2

3

�
�M2

2
exp
�
2φ0t �M2t2 þ 2φ1

3

�
(37)

Using Eqs. (10), (11), (27), (28), and (29) we obtain the skewness
parameter as

γ ¼ 1
ρde

� ðn� 1Þ
3ðnþ 1Þ

�
M2 þ �M2t�φ2

0

��	
(38)

where ρdeis given by Eq. (37).
From Eqs. (10), (12), (27), (28), and (29), we get another skewness

parameter as

δ ¼ 1
ρde

� ð1� nÞ
3ð1þ nÞ

�
M2 þ �M2t � φ0

�2�	 (39)

From Eqs. (10), (26), (27), (28), and (29) the EoS parameter can be
obtained as
The statefinder parameters are defined as

r¼ a
���

aH3
; s ¼ r � 1

3
�
q� 1

2

� (41)

which, in this case, are found to be

r¼ 1þ 9M2

ðM2t � φ0Þ2
; s ¼ �2M2

2M2 þ ðM2t � φ0Þ2
(42)



Fig. 2. Plot of deceleration parameter versus cosmic time for M¼14.

Fig. 3. Plot of r-s plane for M¼14.
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4. Results and discussion

Eq. (30) represents B-V DE universe in the presence of attractive
massive scalar field given by Eq. (26). The model has no initial singu-
larity, i.e. at t¼ 0. It can be seen that the physical parametersH;θ, σ2tend
to finite values as t → 0and tend to infinity as t→ ∞.The spatial volume V
shows an exponential increase with cosmic time which shows that the
universe undergoes an exponential expansion from a finite volume. It
may be observed that the anisotropy parameter is constant throughout
which shows that the universe is spatially homogeneous and uniform.
Also at n ¼ 1, the mean anisotropy parameter, shear scalar and skewness
parameters vanish showing that our universe becomes isotropic and
shear free at late times which, in fact, should be the case in the light of the
recent cosmological observations.

Scalar field: The behavior of scalar field φ versus cosmic time for
different values of φ0. It can be seen that the scalar field is positive
throughout the evolution of the universe for all three values of φ0. It
increases with time and attains a maximum value at certain point of time
and then decreases to attain a constant positive value. Also, we observed
that as φ0increases the scalar field increases.

Deceleration parameter q: This plays a significant role in the dis-
cussion of the nature of the model obtained. When q > 0, the model
exhibits decelerates in the standard way, when q ¼ 0, a constant rate of
expansion and when�1 � q < 0 an accelerated expansion. Also whenq ¼
� 1, the universe shows an exponential expansion and when q < � 1,
super exponential expansion.

Fig. 2 shows the behavior of deceleration parameter versus cosmic
time t for different values φ0. It can be seen that, for our model, q is less
than -1 and hence we obtain a universe with super exponential expan-
sion. Also it may be observed as φ0increases the super exponential
expansion slows down.

Statefinder parameters (r,s): Sahni et al. [38] have proposed two
parameters, known as statefinder parameters, defined by Eq. (41). The
main aim of these parameters is to distinguish the different DE models
that are being proposed from time to time in modern cosmology. When
(r, s) ¼ (1,1), we have cold dark matter (CDM) limit while (r, s)¼(1,0)
gives ΛCDMlimit. Also, when r < 1 we have quintessence DE region and
for s > 0 phantom DE regions.

Fig. 3 Represents the statefinder parameters for our model. It may be
observed that as φ0increases our model approaches ΛCDM model at
certain point of time in future.

EoS parameter (ωde): This parameter characterizes DE and is defined
by Eq. (7). This was, usually, considered as constant with phase values �
1; 0; 1

3; andþ1 for vacuum field, dust distribution, radiation and stiff
fluid. But this should not be regarded as constant and should be in gen-
eral function of time or redshift [39]. Several authors have investigated
quintessence model involving scalar fields which lead to time dependent
Fig. 1. Plot of scalar field versus cosmic time t for M¼14 and.φ1 ¼ 5:

Fig. 4. Plot of EoS parameter versus time t for M¼14, n¼0.95, a1¼55
and.φ1 ¼ 5:

4

EoS parameter.
Fig. 4 depicts the variation of EoS parameter for our model. It may be

observed that for different values of φ0 the model starts in the matter

dominated region, varies in the quintessence region
�
� 1 < ωde <

�1
3

�



Fig. 5. Plot of energy density versus cosmic time t for M¼14, n¼0.95, a1¼55
and.φ1 ¼ 5:

Fig. 6. Plot of skewness parameter (γ) versus cosmic time. for M¼14, n¼0.95,
a1¼55 and.φ1 ¼ 5:

Fig. 7. Plot of skewness parameter (δ) versus cosmic time. for M¼14, n¼0.95,
a1¼55 and.φ1 ¼ 5:
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and proceeds to the phantom region ðωde < � 1Þ.
Energy density and skewness parameters.
Fig. 5 gives the energy density of our model for different values of φ0 .

We observe that it is always positive and increases as φ0 increases.
5

Skewness parameter describes the amount of anisotropy in the
dark energy fluid. These are represented in Figs. 6 and 7 for different
values of φ0. It may be observed that the effect of scalar field on the
skewness parameters, initially is negligible and it influences at the
present epoch.

5. Conclusions

This investigation is about the determination of a spatially homoge-
neous and anisotropic DE cosmological model in the presence of attrac-
tive massive scalar field in the framework of B-V space-time. In order to
obtain a deterministic model we have used a relation between metric
potentials and a power law between the average scale factor and the
scalar field. We have computed all the cosmological and kinematical
parameters and discussed their physical significance in the light of the
present cosmological scenario and observations. The following are the
results in brief:

� Our model describes spatially homogeneous and anisotropic B-V dark
energy model with an attractive massive scalar field in general
relativity.

� Our model is non-singular and undergoes an exponential expansion
from finite volume leading to early inflation.

� Since the anisotropy parameter is constant, the model is homoge-
neous and uniform throughout. However, at late times the model is
isotropic and shear free which is in accordance with the present
cosmological scenario.

� All the physical quantities of the model are finite initially and tend to
infinity for sufficiently large values of cosmic time.

� We observe that the scalar field is positive throughout the evolution
of the universe for all three values of φ0. Also, it is observed that as
φ0increases the scalar field increases.(Fig. 1)

� It can be seen that, for our model, q is less than -1 and hence we obtain
a universe with super exponential expansion. Also it may be observed
as φ0increases the super exponential expansion slows down (Fig. 2).

� Study of statefinders plane (r-s plane) shows that as φ0increases our
model approaches ΛCDM model at certain point of time in future
(Fig. 3).

� We observed that for different values of φ0 the model starts in the

matter dominated region, varies in the quintessence region
�
� 1 <

ωde <
�1
3

�
and proceeds to the phantom region ðωde < �1Þ (Fig. 4).

Also, the energy density of our model is always positive and increases
as φ0 increases.

� Skewness parameter describes the amount of anisotropy in the dark
energy fluid. In our model the effect of scalar field on the skewness
parameters, initially is negligible and it influences at the present
epoch.

� It may be observed that the scalar field in the model influences all the
physical parameters of the model.

Finally, we may conclude that all the above results are in good
agreement with the present cosmological observations. Our DE model
will help for a better understanding of DE driving the universe acceler-
ation and which is, even today, is a cosmological mystery.
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