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Abstract

Concerns over reproducibility in research has reinvigorated the discourse on P‐values
as measures of statistical evidence. In a position statement by the American

Statistical Association board of directors, they warn of P‐value misuse and refer to the

availability of alternatives. Despite the common practice of comparing P‐values
across different hypothesis tests in genetics, it is well‐appreciated that P‐values must

be interpreted alongside the sample size and experimental design used for their

computation. Here, we discuss the evidential statistical paradigm (EP), an alternative

to Bayesian and Frequentist paradigms, that has been implemented in human

genetics studies. Using applications in Cystic Fibrosis genetic association analyses,

and describing recent theoretical developments, we review how to measure statistical

evidence using the EP in the presence of covariates, model misspecification, and for

composite hypotheses. Novel graphical displays are presented, and software for their

computation is highlighted. The implications of multiple hypothesis testing for the

EP are delineated in the analyses, demonstrating a view more consistent with

scientific reasoning; the EP provides a theoretical justification for replication that is a

requirement in genetic association studies. As genetic studies grow in size and

complexity, a fresh look at measures of statistical evidence that are sensible amid the

analysis of big data are required.
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1 | INTRODUCTION

On February 2016, the American Statistical Association
(ASA) Board of Directors published a position statement on
“Statistical Significance and P‐values” (Wasserstein & Lazar,
2016). They determined that silence on the misunderstand-
ing and misuse of P‐values for statistical inference was no
longer an option. The board saw these misuses contributing
to the “reproducibility crisis,” a topic that was occupying
pages of some of the most highly cited scientific journals
(e.g., Nuzzo, 2014). The statement was intended to be

accessible to nonstatisticians, but did not include any new
information beyond the original arguments made by Fisher
(1926) and Neyman and Pearson (1933) as they advocated for
their significance and hypothesis testing paradigms, respec-
tively. Statistical inference practiced today using hypothesis
testing and confidence interval estimation, referred to as
Frequentist statistics, is a patchwork of Fisherian P‐value
calculations and Neyman–Pearson hypothesis testing error
concepts without any foundational justification, and was
opposed to by both individual schools of thought (Fisher,
1956; Neyman & Pearson, 1933; Goodman, 2016). This
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approach has been made popular through textbooks
intended to guide statistical practice and through application
in research articles, and ultimately gave rise to “bright line”
present day practice where P< 0.05 is equated with
importance (Nuzzo, 2014).

The ASA statement, which has been summarized in the
popular literature (http://fivethirtyeight.com/features/
statisticians‐found‐one‐thing‐they‐can‐agree‐on‐its‐time‐to‐
stop‐misusing‐p‐values/), emphasized that the P‐value does
not “tell you the size of an effect, the strength of the
evidence, or the importance of a result.” The statement was
accompanied by more than 20 additional commentaries,
many of which highlight the misuse rather than the index
itself as the problem, where a focus on achieving some bright
line value such as P<0.05 compromises the integrity of
scientific findings. Details on alternative approaches to the P‐
value were limited, although the statement noted that some
statisticians augment or replace P‐values with “alternative
measures of evidence, such as likelihood ratios or Bayes
Factors”which (among other alternatives) may more directly
address the goal of measuring the strength of statistical
evidence.

Until recently, the limitations of P‐values have largely
been overlooked by the scientific research community
despite theoretical advances in the foundations of statistics
beyond Fisher and Neyman and Pearson (e.g., Savage,
1972; Royall, 1997; Evans, 2015; Vieland, 2017). But P‐
value practices are now increasingly being scrutinized due
to scientific reproducibility concerns. Goodman (2016)
points to genomics as providing an example of a discipline
that has deviated from convention, adopting a more
stringent threshold for statistical significance in genome‐
wide association studies (P < 5 × 10−8; Dudbridge &
Gusnanto, 2008). Indeed, this deviation from convention
was even prominent in the genome‐wide linkage litera-
ture, where in 1995, Lander and Kruglyak (1995) warn
that “Adopting too lax a standard guarantees a burgeoning
literature of false positive linkage claims…Scientific dis-
ciplines erode their credibility when a substantial proportion
of claims cannot be replicated…” The size of genomic data
and the nature of genome‐wide studies has necessitated
this alternative threshold. However, the alternative thresh-
olds remain predicated on the P‐value as the measure of
evidence (Royall, 1997) and is based on conventional
multiple hypothesis testing arguments for the purpose of
maintaining a family‐wise error rate < 0.05 (Dudbridge &
Gusnanto, 2008). The threshold has been implemented
broadly in the field because the number of statistical tests
carried out in a genome‐wide association study (GWAS)
are in plain sight. This is in contrast to other fields where
the number of analyses implemented are not always
obvious, and restricted reporting results in a lack of
reproducibility.

In current statistical practice, our field has two
seemingly independent requirements: Adjusting for
multiple hypothesis testing and independent replication
(Vieland, 2001; Chanock et al., 2007). The replication
requirement is consistent with Fisher’s original recom-
mendation that “significance” represents observations
worthy of follow‐up (Fisher, 1926). But Fisher also saw
statistical analysis with “significance testing” as a fluid
exercise with each particular observation contextualized
against current evidence and ideas, strongly opposing the
use of P‐values for “automatic inference” (Fisher, 1956;
Goodman, 2016). The ASA statement echoes Fisher’s
concerns: “By itself, a P‐value does not provide a good
measure of evidence for a model or hypothesis.”

P‐values are not comparable under different experi-
mental conditions (Royall, 1997), and this is relevant in
genomics as well. P‐values need to be interpreted
alongside the sample size used to calculate them, yet,
for example, this has been largely dismissed in gene‐
based testing or meta‐analysis of variants across different
genotyping platforms. Similarly, P‐values for SNPs with
different minor allele frequency (MAF) are compared at
face value, although the SNPs do not provide the same
amount of information a priori. Unrelated to sample size,
information on direction of effect inform replication
studies to compute one‐sided tests of significance, but not
all investigators have the same information highlighting
the P‐value dependence on factors extraneous to the
observed data itself (Li et al., 2015). Frequentist statistics
conflates P‐value practices with Type I error and decision
theoretic concepts (Section 1.4, Box 1) and limits our
ability to explore the data (Section 3.4). As genomic data
analyses grow in size and complexity—genome‐wide
interaction studies, integration of data across several
experiments, large population‐based cohorts—alternative
metrics that provide a more objective first‐line quantifi-
cation of statistical evidence that includes only what the
data themselves supply (Blume, 2002), may be more
suitable. The limitations of P‐value procedures have been
reviewed elsewhere (e.g., Royall, 1997). The focus here
will be to review an alternative method for evidence
measurement in genetic studies directly from likelihood
ratios (LRs; Royall, 1997), coined the evidential paradigm
(EP) by Vieland and Hodge (1998).

The outline of this review is as follows: Section 1.1 will
discuss the interpretation of LRs for simple hypotheses
and Section 1.2 will demonstrate how LRs are used to
measure evidence in the EP. Section 1.3 provides the
statistical properties that justify direct evidence measure-
ment from LRs. Section 2 contrasts evidence measure-
ment between the Frequentist and EP paradigms. Lastly,
Section 3 applies the EP to genetic association analysis in
cystic fibrosis (CF).
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1.1 | The role of likelihood ratios
in statistics

For a comprehensive review of the EP, see Blume (2002).
Briefly, given a set of observations and a probability
model for the data, the likelihood function provides a
mathematical representation of the evidence within the
data. (For now we assume that the likelihood corre-
sponds to a model that contains the true generating
distribution of the data, although this assumption will be
relaxed in Section 3.) The EP is the statistical paradigm
that measures the strength of evidence directly from the
ratio of likelihoods at different hypothesized values for a
parameter of interest, therefore incorporating only data
and a probability model into the strength of evidence
assessment. A natural question arises: Why would one
want to restrict evidence measurement to interpretation
through data and a probability model?

To begin to answer that question, consider the simple
example introduced in Royall (1997) of the diagnostic
test, where one observes a positive test result, x= 1, for a
given disease. Suppose there are two models representing
the probability of disease, {P(X|A), P(X|B)}, as in Table 1,

where A represents the presence of disease, B the absence
and P(B) = 1− P(A).

Observation of a positive test result is empirical
evidence of which model this realization is coming from.
Royall suggests after observing a positive test result a
physician may conclude: (a) The patient probably does
not have the disease; (b) the subject should be treated for
the disease; or (c) this positive test result is evidence that
the patient has the disease. All three of these questions
are in the realm of statistics, but are they all correct
conclusions given the positive test result and the model?
Conclusion (a) may be correct depending on the prior
probability of having the disease, P(A), which can be
determined using Bayes’ Theorem, where P(A|

BOX 1 The EP decouples evidence measurement (LR) from error probabilities, whereas the
Frequentist paradigm couples the concepts.

Evidential paradigm Frequentist paradigm

Evidence for two simple hypothesized
values of θ

Observed LR, L θ
L θ

( )
( )

obs 1

obs 0
≥{ }P P‐value = L θ

L θ
L θ
L θ0

( )
( )

( )
( )

1

0

obs 1

obs 0

Error favoring θ1 when θ0 is true ≥ ≤ ∀{ }M n k P k n( , ) = L θ
L θ k0 0

( )
( )

11

0
≥{ }α P c= L θ

L θ0
( )
( )

1

0

Strong evidence ≥ kL θ
L θ

( )
( )

obs 1

obs 0
≤
⇔

≥

p α

cL θ
L θ a n

( )
( ) ,

obs 1

obs 0

Intervalsa (e.g., mean of a normal
distribution)

⇔

k
x k σ n

1/ Likelihood Interval
¯ ± 2 log /

LI 95.9% CI1
8

⇔

α
x Z σ n

(1 − )100% Exact Confidence Interval
¯ ± /

95% CI LI
α/2

1
6.67

Other errors to minimize for study
planning

≤{ }
{ }
{ }

M n k P

W n k P k

W n k P k

( , ) =

( , ) = < <

( , ) = < <

L θ
L θ k

k
L θ
L θ

k
L θ
L θ

1 1
( )
( )

1

1 1
1 ( )

( )

0 0
1 ( )

( )

1

0

1

0

1

0

≤{ }β P c

Type II error

= L θ
L θ a n1

( )
( ) ,

1

0

b

Relationships Strong evidence, k, and error M n k( , )0 are
decoupled

Strong evidence, ≤p α and error α are
coupled

aThere is a relationship, beyond the normal distribution, between exact confidence intervals and likelihood intervals but
confidence intervals are also coupled with the Type I error probability.
bThe Type II error, β, is analogous to M1(n, k) +W1(n, k) but for fixed α, n. Power (1− β) is defined for a fixed α, therefore,
although similar in spirit, is always greater than the probability of strong evidence at conventional Type I error levels and
therefore the two represent different quantities. There is no concept of controlling weak evidence in the Frequentist paradigm.

TABLE 1 Properties of a diagnostic test for disease

x= 1 x= 0

P(X|A) 0.95 0.05

P(X|B) 0.02 0.98

Under hypothesis A the disease is present, under hypothesis B the disease is
absent, and the observations x= 1 or 0 represent a positive or negative test
result, respectively.
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X= 1) = 0.95P(A)/[0.95P(A) + 0.02(1− P(A))]. For small
P(A), the patient probably does not have the disease, for
large P(A) the conclusion would be wrong. Whether the
patient should be treated for the disease (Conclusion [b])
would also depend on P(A) as well as other factors such
as costs (loss functions). As for Conclusion (c), regardless
of P(A) or losses, interpreting a positive test result as
evidence that the disease is not present would be wrong
because it violates statistical reasoning, namely the Law
of Likelihood.

The Law of Likelihood (Hacking, 1965) states:
If the hypothesis A implies that a random variable X

takes the value x is P x A( | ), while hypothesis B implies
that the probability is P x B( | ), then the observation X x=
is evidence supporting A over B if and only if
P x A( | ) > P x B( | ) and the likelihood ratio (LR), P x A

P x B
( | )
( | )

,
measures the strength of that evidence.

Since P x A( = 1| ) > P x B( = 1| ) and the LR is 0.95/
0.02 = 47.5, this indicates that a positive test result
provides support for the presence of disease that is
47‐fold greater than no disease. In the Bayesian frame-
work, this likelihood ratio is the factor by which the prior
odds are updated to produce the posterior odds. Given
the prior probabilities P A( ) and P B( ), the data produces
posterior probabilities P A X( | ) and P B X( | ). Kass and
Raftery (1995) note that since the posterior is a
transformation of the prior through the data (for any
prior specified), the function by which the prior is
updated is a representation of the evidence from the data.
Converting to the odds scale demonstrates that for simple
versus simple hypotheses

P A X
P B X

P x A
P x B

P A
P B

( | )
( | )

= ( | )
( | )

× ( )
( )

(1)

and therefore the LR is the factor by which the prior odds
are updated to produce the posterior odds, and has been
referred to as “the weight of the evidence” (Good, 1985).

This simple example does not capture the complexity
involved in most real data analysis problems where there
are multiple parameters in the model. To weigh the
evidence for different hypothesized values of the para-
meter of interest in the presence of additional unknown
parameters, these nuisance parameters must be accounted
for. If they are integrated out with specification of prior
distributions, then the ratio is the Bayes’ factor. To use the
Bayes’ factor therefore, prior probability distributions
must be chosen and then one must determine how
sensitive the Bayes’ factor is for measuring evidence
strength in the data to that choice, limiting its desirability
for some (Kass & Raftery, 1995). For an illustration of
justifying prior probability choice in genetics, see the

supplementary information from (Burton et al., 2007).
Alternatively, nuisance parameters can be eliminated
through maximization procedures (Pawitan, 2001; Royall,
2000). Nonetheless, the relationship in Equation (1)
highlights that the LR has meaning unto itself and is the
quantity that represents what the data say, alone, in the
absence of prior probabilities or loss functions. The
methodology that enables direct inference from the LR is
the EP, and several recent advances in methodology
development have made the EP paradigm accessible and
applicable in genomics.

1.2 | Measuring evidence for simple
versus simple hypotheses

Formally, we will use the following notation x as a
realization of a random variable X with a probability
distribution f θ(.; ). (Assume ∈θ Θ is a scalar although
all results are generalizable to θ being a fixed‐
dimensional multiparameter vector.) For two simple
hypothesized values about the unknown parameter θ,
H θ θ: =1 1 and H θ θ: =0 0, and for ∝L θ f x θ( ) ( ; ), the
Law of Likelihood (Hacking, 1965) specifies that the
LR = L θ L θ( )/ ( )1 0 measures the strength of evidence in
favor of H θ θ: =1 1 relative to H θ θ: =0 0. Evidence can
be generated in favor of either hypothesis rather than
having inference centered on disproving H θ θ: =0 0. If

≥L θ L θ k( )/ ( ) ,1 0 one has strong evidence favoring H1

over H0, if ≤L θ L θ k( )/ ( ) 1/1 0 one has strong evidence
favouring H0 over H1, and for k L θ L θ k1/ < ( )/ ( ) <1 0
one has weak evidence where the data does not
produce sufficiently strong evidence in favor of either
hypothesis.

Plotting the likelihood function provides a graphical
display to examine all possible pairwise comparisons for
θ, demonstrating which hypotheses are best supported by
the data. Consider an example in CF, an autosomal
recessive disease caused by mutations in the cystic fibrosis
transmembrane conductance regulator (CFTR). Suppose a
pharmaceutical company is interested in the proportion,
θ, of CF individuals within a given country who carry the
most common CFTR genotype, p.Phe508del homozygos-
ity. The proportion is thought to be 50%, but if it is greater
than 50% then the pharmaceutical company sees benefit
in developing a mutation‐targeted therapy. Figure 1
displays the likelihood function for the proportion of
p.Phe508del/p.Phe508del genotype carriers in a given CF
population, with n= 1,000 CF individuals sampled and
x= 510 observed p.Phe508del homozygotes. The like-
lihood is standardized such that the likelihood at the
maximum likelihood estimate (MLE), θ̂, is 1.0. The
relative evidence for the proportion of p.Phe508del
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homozygotes, θ, is represented by the ratio of the
likelihoods at any two points on the curve and the 1/8
and 1/32 likelihood intervals (LI) represent the values of
the parameter θ that are consistent with the data at that
k‐evidence level, where the 1/k LI is defined as (Pawitan,
2001) {all θ where ≤L θ L θ k( ˆ)/ ( ) } (Box 1).

There are several discussions on benchmarks for
choosing k (Royall, 1997; Edwards, 1984) as there are for
Bayes’ factors (Kass & Raftery, 1995), and the choice of k
can be experiment‐specific. For genome‐wide linkage
studies, lod scores (log10 LR) of 3 have been justified as
representing strong evidence, corresponding to a k= 1,000
(Chotai, 1984; Morton, 1955; Strug & Hodge, 2006a).
Genome‐wide lod score thresholds of 3 originated from
arguments that assumed the LR was not maximized but
rather calculated from two simple hypotheses (a recombi-
nation fraction of 0.5 vs. an alternative predetermined
value near 0), with justification based on a combination of
Wald’s sequential testing theory (Wald, 1945) and the
intent to maintain a high posterior probability of linkage
when linkage was declared (Chotai, 1984; Morton, 1955).
Regardless of the choice of k, a LR= k represents the same
evidence strength from experiment to experiment for
several reasons (Royall, 1997), among which is that it is
the exact factor by which the prior probability ratio is
changed (Equation (1)).

Returning to our example, the data provides only
weak evidence supporting the value of 0.51 over the value
of 0.50, with the L L(0.51)/ (0.50) = 1.22. If one observes
weak evidence from the data, that is an undesirable
result, as it is inconclusive about which hypothesis is
better supported. One would want a study to be designed
such that the probability of observing weak evidence is
small (Strug, Rohde, & Corey, 2007). Another undesirable
result is to observe strong evidence in favor of the wrong
hypothesis, that is, observing misleading evidence; e.g.
the ≥LR L L k= (0.51)/ (0.50) but the true θ = 0.50.
Since, on measuring evidence strength with the LR one
is unaware of whether the result is misleading, it is
imperative to ensure that this occurs with low
probability.

The probabilities of misleading (M n k( , )i ), weak
(W n k( , )i ) and strong evidence (S n k( , )i ) sum to 1 under
the assumed hypothesis (i=H0 or H1; e.g., Equation (2)
under H0), with the n and k arguments reflecting the
probabilities’ dependence on the sample size and
evidence level for some k> 1 (Strug et al., 2007),

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

≥

≤

P
L θ
L θ

k P
k

L θ
L θ

k

P
L θ
L θ k

M n k W n k S n k

1 =
( )
( )

+ 1 <
( )
( )

<

+
( )
( )

1 = ( , ) + ( , ) + ( , ).

0
1

0
0

1

0

0
1

0
0 0 0

(2)

M n k( , )0 is analogous to the Frequentist Type I error,
with one fundamental difference: The probability of
misleading evidence is not fixed by design at values such
as 0.05 or 5 × 10−8. (Box 1 and Section 1.4 demonstrate
why fixing the Type I error is not desirable.) Allowing
M n k( , )i to vary is justified by two properties of
likelihood functions that ensure the probability of
misleading evidence always remains small and that both
misleading and weak evidence can be further controlled
by the sample size.

1.3 | Fundamental properties of
likelihood functions

Likelihood functions have two fundamental performance
properties that assure reliable inference from the LR
(Royall, 2000; Royall & Tsou, 2003). These will be reviewed
in this section and will be referred to frequently throughout
the article. For simplicity again consider θ as a scalar
parameter, e.g., log(Odds Ratio), but all results in this
section generalize to fixed‐dimensional multiparameter
models, say f θ γ γ θ ϵ(·; , ) for , . Assume θ0 is the true
value for θ. Then for any false value ≠θ θ0, the first

FIGURE 1 Standardized likelihood function for the
proportion of p.Phe508del homozygotes, n= 1,000, x= 510
p.Phe508del/p.Phe508del observed. This standardized likelihood
function provides a graphical representation of all possible
likelihood ratios, with the 1/8 and 1/32 likelihood intervals (LI)
providing the values for θ that are consistent with the data at the
k= 8 and 32 evidence level. The value of 0.51 is more than 8‐fold
greater supported over values less than 0.48, but the data provides
only weak evidence supporting 0.51 over 0.50

594 | STRUG



important property of a likelihood function is that the
evidence will eventually support θ0 over any other θ by an
arbitrarily large factor:

⎛
⎝⎜

⎞
⎠⎟→ ∞ → ∞P L θ

L θ
nProperty 1: ( )

( )
as = 1.0

0 (3)

Property 1 implies that the probability of eventually
obtaining strong evidence in favor of the true value when
interpreting evidence from the LR is assured. Moreover,
this consistency property makes way for sample size
estimation procedures since increasing sample size
would therefore drive the probabilities of weak and
misleading evidence to 0 (Equation (2); Strug et al., 2007).

This property implies that sample size choice can be
used to ensure the LR provides small probabilities of
misleading (and weak) evidence. However, bounds on
misleading evidence probabilities that are independent of
sample size also exist. First, for any genuine likelihood
function or in other special cases (e.g., partial likelihood;
Eddings, 2003) the probability of observing misleading
evidence for any sample size and any specified hypothesis
is bounded by 1/k (Royall, 1997, 2000); this feature is
referred to as the Universal Bound.

The universal bound on the probability of misleading
evidence, ≤M n k i( , ) , = 0, 1i k

1 is a crude bound, and in
many settings one can do much better. When f x θ( ; ) is
normally distributed, or in large samples under quite
general regularity conditions (Knight, 2000), M n k( , )i can

be described by a bump function (Figure 2), where for
H0 true

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟≥ →P L θ

L θ
k c k

c
Property 2: ( )

( )
Φ −

2
−

log
,0

1

0
(4)

where k> 1, Φ is the standard normal cumulative
distribution function and c is proportional to the distance
between hypothesized values of the mean θ1 and θ0, with
c n σ= Δ( / ) (Royall, 2000), and the maximum of the
bump function is kΦ(− 2 log ). When the distance Δ is
measured in units of the standard error, the probability of
misleading evidence is independent of sample size at a
fixed c.

The bump function describes the probability of
misleading evidence for any sample size, n, under the
normal model, or for general one‐parameter models and
higher dimensional models when the sample size is large
(Royall, 2000). The bump function indicates that the
probability of observing misleading evidence tends to 0
when the distance between the two hypothesized values
increases, and the maximum of the bump function is

kΦ(− 2 log ) at Δ = k2 log (Figure 2a). The prob-
ability of observing misleading evidence is also near 0
when the distance between the two hypothesized values
is very small. For these small Δ, the data is insufficient to
produce strong evidence in favor of either hypothesis and
corresponds to an effect size difference that will produce
weak evidence with high probability (Figure 2b). This

FIGURE 2 The bump function and relationships between EP error probabilities for a normal mean. Probabilities displayed as a
function of the distance between the two hypothesized values for the mean in standard error units. Maximum probability of misleading
evidence is 0.02 at ▵ = 2.04 for k= 8 and 0.004 at ▵ = 2.63 for k= 32, for any n. (a) Probability of misleading evidence, k= 8 and k= 32
displayed. (b) Probabilities of weak, strong and misleading evidence; k= 8. Weak evidence probabilities are close to 1 for small parameter
differences; strong evidence probabilities increase as differences increase. EP: evidential paradigm

STRUG | 595



second property (Equation (4)) of likelihood functions—
that the probability of misleading evidence is described
by the bump function, c k cΦ((− /2) − (log / )) and is
bounded,—along with the first consistency property
(Equation (3)), ensure that with high probability we will
get evidence in favor of the true value and that the
probability of strong evidence in favor of a false value is
low and controllable with the sample size. This is without
fixing the error probability at some “bright line” value
such as 0.05 or 5 × 10−8.

2 | CONTRASTING THE
PARADIGMS

The probability of misleading evidence under H0,
M n k( , )0 , is similar to the concept of a Type I error but
differs in a fundamental way. Box 1 defines these error
concepts and highlights that the fundamental difference
between the paradigms is that in the frequentist frame-
work the concept of evidence strength is coupled with the
value at which the Type I error rate is fixed (Blume, 2002;
Strug & Hodge, 2006a); this coupling results in many of
the limitations of current statistical practice (see example
below). In contrast, in the EP evidence strength k and
error probabilities are decoupled.

The implication of the coupling is best illustrated by a
simple example. Consider again the example of the
pharmaceutical company interested in the proportion, θ,
of individuals with CF who carry the most common
causal CFTR genotype, p.Phe508del/p.Phe508del. Let the
null hypothesis be H0: θ0 = 0.5 and consider two values
for an alternative hypothesized value, H1: θ1= 0.51 and
0.501. The likelihood for θ is L θ n

x θ θ( ) = ( ) (1 − )x n x−

and the LR can thus be expressed as
= ( ) ( )L θ x

L θ x
θ
θ

x θ
θ

n x( ; )
( ; )

1 −
1 −

−1

0

1

0

1

0
where n is the number of

individuals sampled from the CF population, and x are
the number of individuals observed to be
p.Phe508del/p.Phe508del. According to the EP, one
concludes strong evidence favouring θ1 over θ0 when

≥ kL θ x
L θ x

( ; )
( ; )

1

0
for any n; k is defined by the investigator

(Edwards, 1984; Royall, 1997). With some algebra, this
implies that one observes strong evidence favoring θ1
whenever x≥

k n θlog − log [2(1 − )]

log( )θ
θ

1
1

1 − 1

. Table 2 provides the

values of n, x, and x/n where one can conclude the data
favors either θ1= 0.51 or 0.501 with evidence strength of
k= 8. For θ1 = 0.51, when there is n= 100 individuals
sampled with CF one would require x= 102 individuals
homozygous for p.Phe508del before the data could
provide strong evidence favoring θ1 = 0.51 over 0.50.
That is, a sample size of 100 is insufficient to generate
strong evidence (evidence of strength k= 8‐fold) that can

differentiate θ= 0.51 from 0.50. As the sample size
increases to n= 10,000 individuals, an observed propor-
tion just over 0.51 can provide strong evidence favouring
0.51 over 0.5. As the difference between the two
hypothesized values for the parameter of interest
diminishes, it is more difficult to discriminate between
the values for θ and from Table 2 one can see that even
with 1,000 individuals, one cannot produce evidence of
strength 8 that will support θ= 0.501 over 0.50. Again, as
n increases there is “more power” to discriminate
between the hypothesized values. As k increases, one
would require larger sample sizes to produce strong
evidence for the same hypothesized parameter values,
although the effect on the required proportion x/n as k
increases is minimal (not shown).

Alternatively, consider the Frequentist paradigm as
practiced today. As in Box 1, the Type I error is set to α
and defined as

⎛
⎝⎜

⎞
⎠⎟≥ ∝P L θ x

L θ x
C α( ; )

( ; )
=n0

1

0
, (5)

With some algebra, Equation (5) is

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟≥P

θ nθ

nθ θ
α

− −

(1 − )
=

x
n
θ θ

n

c n θ
θ θ

0
0

(1 − )

log − log [2(1 − )]
log ( / 1 − ) 0

0 0

n α

0 0

, 1

1 1

where ≈ N (0, 1)
θ−x

n
θ θ

n

0

0 (1 − 0)
using the normal approxima-

tion to the binomial and therefore

TABLE 2 EP analysis demonstrating values of sample size (n),
number of observed p.Phe508del homozygotes (x) and proportion
(x/n) for which strong evidence at k= 8 can be observed for
θ = 0.511 versus θ = 0.500 (left) and θ = 0.5011 versus θ = 0.500

(right)

θ 0.51=1 θ 0.501=1

n x x/n x x/n

100 102 (>n)a NA 570 (>n)a NA

1,000 557 0.557 1,020 (>n)a NA

10,000 5,102 0.5102 5,525 0.5525

100,000 55,552 0.5055 50,570 0.5057

1,000,000 505,052 0.5050 501,020 0.5010

Note. NA indicates there is no value of x for the given n that could produce
evidence of strength 8.
EP: evidential paradigm.
aThe cells with (>n) indicate that the required x to demonstrate strong
evidence is greater than n, which is not possible. As sample size increases,
the required observed x/n needed to demonstrate strong evidence becomes
less extreme. As θ1 gets closer to θ0, one needs larger n to produce evidence
of k‐fold.
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nθ

nθ θ
Q α

−

(1 − )
= (1 − )

c n θ
θ θ

log − log [2(1 − )]
log ( / (1 − )) 0

0 0

n α, 1

1 1

with Q α(1 − ) representing the α100(1 − )th percentile of
the standard normal distribution. From here, one can solve
for Cn α, to determine the value at which θ0= 0.50 is rejected
in favor of θ1= 0.51 or 0.501; this is in contrast to Table 2
where the required strength of the evidence, k, is fixed (k=8
in Table 2). From Equation (5), to ensure the Type I error is
α, θ=0.50 is rejected when ≥ CL θ x

L θ x n α
( ; )
( ; ) ,

1

0
where

C Q α n θ= exp{log ( + (1 − ) ) + log 2(1 − )}n α
θ

θ
n n

, 1 − 2 2 1
1

1
.

Table 3 demonstrates how the value at which θ0 = 0.50 is
rejected in favor of θ1, that is, Cn α, , changes with the sample
size and changes as the alternative hypothesis, θ1, changes.
Where for n=100, values of θ1 closer to θ0 = 0.50 require
smaller “evidence strength” than for θ1 values farther from
θ0 = 0.50. For a given alternative θ1, the value of

C=L θ x
L θ x n α

( ; )
( ; ) ,

1

0
at which θ0 is rejected increases then

decreases as a function of sample size. For example, until
n=10,000 the required evidence favoring θ1 = 0.51 over
θ0 = 0.50 is increasing and is greater than 1; however, by
n=100,000 the required evidence is decreasing and θ0 = 0.50
will be rejected even when the data overwhelmingly favors
θ0 = 0.50 over θ1 = 0.51 ( = 2.58 × 10L θ x

L θ x
( ; )
( ; )

−731

0
). This is a

consequence of forcing the Type 1 error rate to be α and
declaring strong evidence when ≤p α, and the example
highlights the counterintuitive impact of large sample sizes
on inference in this paradigm.

3 | GENETIC ANALYSIS WITH
THE EP

To make the EP of practical significance in genetics and
beyond, several methodological advances have had to occur,
a few of which will be discussed here and illustrated with
examples from a genetic association study in CF. Section 3.1
addresses the fact that rarely does one have a simple model
for the data that consists of a single parameter. A solution is
needed to measure evidence about a parameter in the
presence of nuisance parameters. Section 3.2 discusses how
most models are approximations and do not represent the
true generating function of the data. The theory up until this
point has assumed that the chosen family of models contains
the true distribution, which is an assumption that needs to be
relaxed. Section 3.3 reviews recent approaches to measuring
evidence when the hypotheses are not simple versus simple
comparisons. Lastly, Section 3.4 acknowledges the large scale
multiple hypothesis testing that is characteristic of genomic
studies and provides a salient solution from the EP
perspective.

Individuals with CF who have the same CFTRmutations
have variable disease severity, and other genes referred to as
modifier genes contribute to this interindividual variation
(Cutting, 2015). One modifier gene locus, encompassing
SLC26A9, was identified through genome‐wide association
studies to contribute to CF intestinal and pancreatic disease
(Miller et al., 2015; Sun et al., 2012; Blackman et al., 2013).
The functional role of SLC26A9 is not completely
understood, although several studies suggest, like CFTR,
SLC26A9 is an anion channel that may enhance the
functional expression of CFTR through physical interaction
(Loriol et al., 2008; Ohana, Yang, Shcheynikov, & Muallem,
2009). In individuals with severe CFTR genotypes from the
International CF Gene Modifier consortium (n=6,770
including 901 sibling pairs; Corvol et al., 2015; Sun et al.,
2012), Figure 3 demonstrates the association evidence using
the Frequentist paradigm at the SLC26A9 locus with
intestinal obstruction at birth (meconium ileus), a CF
complication present in ~16% of CF newborns (Dupuis
et al., 2016). Here, generalized estimating equations with a
logit link and an exchangeable covariance structure was
implemented to account for sibling relationships in the data,
and P‐values are plotted from a Wald χ2 test for β1from this
model. In Sections 3.1–3.4, the EP is applied to the same data
at this locus.

3.1 | Measuring evidence in the
presence of nuisance parameters

The universal bound and the two performance properties of
likelihood functions (LR consistency [Equation 3] and the
bump function [Equation (4)]) define the necessary
characteristics of a measure of evidence to ensure reliable
evidence interpretation. With some exceptions (e.g., partial
likelihood [Eddings, 2003]) the universal bound applies to

TABLE 3 The required evidence strength Cα n, to reject the null
hypothesis θ = 0.500 in favor θ = 0.511 (left) or θ = 0.5011 (right)

The L(θ ; x)
L(θ ; x)

1

0
required to favor θ1 over

θ = 0.500 ; i.e., Cn,α

n θ = 0.511 θ = 0.5011

100 1.36 1.033

1,000 2.31 1.10

10,000 3.63 1.36

100,000 6.77 × 10−5 2.31

1,000,000 2.58 × 10−73 3.63

10,000,000 <10−100 2.68 × 10−73

Required evidence changes as n or θ1 changes, and as n increases one rejects
θ = 0.500 when the data overwhelmingly favors θ = 0.500 .
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genuine likelihoods; that is, likelihood functions based on
the density function of a random variable. Consider the
multiparameter model L θ γ( , )n , where for example the
interest parameter θ is the log of the odds ratio (OR) and γ
represents other covariates that are nuisance parameters. In
the presence of nuisance parameters, genuine likelihoods
would include marginal or conditional likelihood functions.
Some likelihoods can be reparameterized such that they
factor, where the interest and nuisance parameters are
orthogonal (Anscombe, 1964), L θ γ( , )n ∝ L θ L γ( ) ( )n n . In
this case, only the factor of the likelihood function
containing the interest parameter is needed to construct
the LR, which will have its probability of misleading
evidence bounded by the universal bound. If such a
factorization through reparameterization is achievable, a
profile likelihood will provide that solution. Conditional,
marginal, and these orthogonalizable likelihoods are not
always available, but one can always calculate a profile
likelihood. The profile likelihood maximizes the likelihood
function with respect to the nuisance parameter for each
fixed value of the parameter of interest (Kalbfleisch & Sprott,
1970), where L θ L θ γ L θ γ θ( ) = max ( , ) = ( , ˆ ( )).pn γ n n In
general, profile likelihoods are not genuine likelihood
functions so the universal bound would not apply. However,
in large samples, profile likelihoods have the two important
performance properties of likelihood functions for evidential
interpretation, where the probability of misleading evidence
for likelihood ratios constructed from profile likelihoods can
also be described by the bump function and are therefore

bounded by kΦ(− 2log ) (Equation (4)), and can be further
sharpened by the sample size (Equation 3; Royall, 2000).
Thus, profile likelihoods provide a general solution to how
one should represent the strength of evidence about a
parameter of interest in the presence of nuisance para-
meters, and they have been used in applications of the EP in
genetics and genomics (Baskurt & Strug, 2018; Li et al.,
2015; Strug et al., 2010; Zhong & Strug, 2018).

An R package to calculate profile likelihoods for many
commonly used statistical models such as linear models,
generalized linear models, proportional odds models, and
mixed models, along with functions to produce their
corresponding standardized likelihood plots (as in Figure 1)
with likelihood intervals is available on CRAN (https://
CRAN.Rproject.org/package=ProfileLikelihood). Plotting
and analysis functions for linear and logistic regression
tailored to genetic association studies are provided in the R
package EVIAN (EVIdential ANalysis, https://CRAN.R-
project.org/package=evian). These packages are used for
EP analysis in Sections 3.1–3.4.

3.1.1 | Association of meconium ileus
in CF at the SLC26A9 locus: Profile
likelihood ratios

There are 5,869 unrelated individuals with CF and 901 of
their CF‐affected siblings collected by the International CF
Gene Modifier Consortium consisting of cohorts from
France, Canada, Johns Hopkins University and the
University of North Carolina/Case Western Reserve
(Corvol et al., 2015). The cohort is of European origin
and adjustment for population structure with principal
components did not impact the conclusions so models
unadjusted for population structure are presented here.
Meconium ileus is a binary outcome, where Y = 1i if
subject i was born with meconium ileus, and 0 otherwise.
Assume a logistic regression model as in Strug et al.
(2010), where β β G γ Z γ Zlog = + + +P

P i i i1 − 0 1 1 2 2 3 3
i

i
,

P E Y P Y= ( ) = ( = 1),i i i Gi1= 0, 1, or 2 alternative alleles
at a SNP of interest for individual i; Zi2 is a categorical
variable that indicates on which of the four genotyping
platforms the patient’s DNA was genotyped; and Zi3 is a
categorical variable that represents to which of the
four international collaborator cohorts the patient was
recruited. Here, β0, γ2, and γ3 are the nuisance parameters,
and β1 (the log(OR)) is the parameter of interest. Using the
EVIAN R package, Figure 4 provides the likelihood
intervals (LIs) across the chromosome 1 SLC26A9 region,
where each LI is a summary of the likelihood function for
a given SNP with the MLE for the OR noted in black on
each LI. ORs that are less than 1 are inverted due to the
asymmetry. The 1/100 LI is colored in green, the 1/1,000

FIGURE 3 P‐value‐based analysis of the SLC26A9

chromosome 1 CF modifier locus with meconium ileus using the
LocusZoom software (http://locuszoom.sph.umich.edu/genform.
php?type=yourdata). Analysis of CF participants from the
International CF Gene Modifier consortium including siblings
(n= 6,770). Analysis adjusted for consortium site and genotyping
platform. P‐values are from the Wald χ2 test using generalized
estimating equations with a logit link and an exchangeable
covariance structure. CF: cystic fibrosis
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LI is colored in blue, and only SNPs for which the
maximum profile likelihood ratio max LRpn=

≥ 1, 000L β
L β

( )^

( = 0)
Pn

Pn

1 are colored in the figure (using the
benchmark from genome‐wide linkage studies, k= 1,000),
with all other SNPs displaying a gray 1/1,000 LI.

The LIs additionally convey an approximation to the
shape of the likelihood function. Variants rs142245823,

rs7549173, rs4951271, and rs4077468 have similar asso-
ciation evidence, with narrow LIs that are far removed
from the OR= 1 line, demonstrating some of the
strongest association evidence in the region (Table 4a).
These variants, and others with similar strength of
evidence, are located in a cluster just 5′ or in intron 1
of SLC26A9 in a region where few variants favor OR= 1

FIGURE 4 EP analysis of the SLC26A9 chromosome 1 locus with mecomium ileus in CF. Analysis of CF participants of the International CF
Gene Modifier consortium. All analyses adjusted for consortium site and genotyping platform. Analysis includes n=5,869 unrelated individuals
using a logistic regression likelihood. LIs for SNPs with max LRs> 1,000 noted in color. 1/k LIs, k=8, 100, 1,000 displayed in red, green, and blue,
respectively. MLE denoted in black on each LI. OR=1 horizontal line noted as black solid line. MaxLR and SNP name for the three SNPs with
largest value noted on the figure, along with rs7512462 and rs4077488 which were identified in previous CF studies. CF: cystic fibrosis; MLE:
maximum likelihood estimate

TABLE 4 Summary statistics for the simple versus simple EP analyses for the unrelated (a) and related (b) CF samples

MAF max LR MLE 1/8 LI 1/100 LI 1/1,000 LI Robust factor a/b

a. Unrelated n= 5,869

rs7512462 0.4089 317,462,247 1.3699 1.2345,1.5163 1.1763, 1.5953 1.1353, 1.6530 NA

rs142245823 0.4650 13,423,000,000 1.3980 1.2662,1.5474 1.2066, 1.6239 1.1645, 1.6827 NA

rs7549173 0.3951 9,652,137,218 1.3982 1.2632,1.5438 1.2037, 1.6201 1.1646, 1.6744 NA

rs4951271 0.4194 6,695,658,478 1.3980 1.2630,1.5514 1.2035, 1.6322 1.1615, 1.6870 NA

rs4077468 0.4129 4,679,117,865 1.3945 1.2598,1.5474 1.2005, 1.6280 1.1586, 1.6870 NA

b. Related n= 6,770

rs7512462 0.4091 16,656,196 1.3221 1.1974,1.4597 1.1410, 1.5318 1.1040, 1.5872 0.975

rs142245823 0.4652 502,318,282 1.3526 1.2282,1.4896 1.1704, 1.5632 1.1324, 1.6157 0.966

rs7549173 0.3937 376,895,001 1.3494 1.2253,1.4861 1.1706, 1.5556 1.1326, 1.6078 0.970

rs4951271 0.4193 278,958,808 1.3424 1.2220,1.4783 1.1645, 1.5514 1.1266, 1.6034 1.004

rs4077468 0.4129 237,653,274 1.3458 1.2220,1.4821 1.1645, 1.5553 1.1266, 1.6075 0.995

Note. SNPs with the largest max LRs displayed, and statistics for variants rs4077468 and rs7512462 that have displayed previous association evidence with CF.
Robust adjustment factor applied to the analysis of the related sample.
MAF: minor allele frequency; MLE: maximum likelihood estimate.
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as a plausible value demarcating the associated region.
Rs7512462 in intron 5 and rs4077468 have been demon-
strated in previous P‐value based studies as associated
with CF pancreatic disease (Blackman et al., 2013; Miller
et al., 2015) and therapeutic response (Strug et al., 2016).

3.2 | “All models are wrong, but some
are useful.” (Box, 1976)

In reality, most probability models are approximations and
the data is, for example, not iid, or the wrong probability
distribution has been assumed. Royall and Tsou (2003) show
how (profile) likelihood functions can be made robust such
that the probability of misleading evidence for the working
model is asymptotically equivalent to the true model,
achieving the two performance properties of true likelihood
functions (Equations 3 and (4)) when the model applied to
the data is different from the model that generated the data.
The example in this section is the analysis of the full CF
cohort, which includes siblings, introducing a departure from
the independence assumption. In other settings more
extreme model departures have been investigated such as
the use of Poisson regression likelihood functions for the
analysis of differential gene expression when the data is
generated from a negative binomial distribution (Zhong &
Strug, 2018).

There is a substantial body of literature on model
misspecification, which is an issue for any statistical
paradigm. In general, an investigator chooses a working
model which enables inference about a parameter of interest,
often using maximum likelihood estimation. MLEs are
usually consistent when the model is correctly specified. In a
working model (say f) for a set of observations where the
observations come from another model (say g), the MLE
obtained from f may not be a consistent estimate of the true
parameter (θ) of interest, and the first property (Equation 3)
required for EP interpretation may not hold. The MLE will
be a consistent estimate of another parameter which makes f
as close as possible to g (say θ*; Kent, 1982, Viraswami &
Reid, 1998; White, 1982).1 In the usual frequentist hypoth-
esis‐testing framework it is common practice to assume θ* is
equal to θ and implement a robust hypothesis test by using,
for example, a robust variance estimator for the MLE.

Royall and Tsou (2003) suggests it is not sufficient to
assume θ* is equal to θ, rather that this assumption should
be checked. Checking this assumption is equivalent to
determining if the interpretation of the parameter in the

working model would be the same under the true model
(e.g., is one really making inference about an expected value;
Blume, Su, Olveda, & Mcgarvey, 2007; Viraswami & Reid,
1998), and is analogous to ensuring property 1 (Equation 3).
This condition has been confirmed for several working
models and interest parameters. Royall and Tsou (2003)
check this condition analytically for many commonly used
one‐parameter probability models, and Blume et al. (2007)
showed that it holds for all generalized linear models in a
regression setting when making inference about the mean
parameter, as long as the mean structure is correctly
specified. In this journal issue, Baskurt and Strug (2018) use
simulation to ensure this condition is met for more
complicated choices of f such as for using composite
likelihood functions for genetic association with pedigrees
of varying size and complexity. Therefore, several commonly
used working models are available in the EP toolbox. If it is
found that θ* is not equal to θ, it is recommended that one
changes the working model (Freedman, 2006).2 Alterna-
tively, Equations 3 and 4 hold for (profile) empirical
likelihood functions (Owen, 1988), suggesting that empirical
likelihoods are always available for carrying out EP analysis
and may even be more efficient than robust adjusted
parametric likelihood ratios (Zhang, 2009).

The second property of likelihood functions
(Equation (4)), that the probability of misleading
evidence is described by the bump function and
bounded by kΦ(− 2 log ) (Figure 2; Royall & Tsou,
2003), must also hold when the working model is not
the true model. However, the probability of misleading
evidence for misspecified models are not, in general,
described by the bump function. Royall and Tsou
(2003) derived a robust adjustment factor a/b, which is
used to exponentiate the likelihood ratio: (LR)a/b. This
ratio a/b, is the ratio of the expected second derivative
of the likelihood function to the expected square of the
score function in a one parameter model, or equiva-
lently the ratio of the asymptotic variance of the MLE
to the asymptotic sandwich variance (Godambe, 1960).
For a generalized linear model, this can be approxi-
mated by the ratio of the model‐based variance
estimate over the sandwich variance estimate of the
regression parameter of interest calculated using
standard statistical packages (Blume et al. 2007). As
the working model gets closer to the true distribution,
this ratio gets closer to 1, and if the model is correct,
these two quantities will be equal (Bartlett’s second
identity; Ferguson, 1996) and the ratio will be exactly 1,
in theory.

1This is in the sense of the Kullback–Leibler divergence. The asymptotic theory of this MLE

from f was well studied in the literature. It has an asymptotic distribution that is Normal with

mean θ* and the sandwich estimator as its variance (instead of the inverse Fisher information).

The Wald, score, and the likelihood ratio tests were derived under the misspecified model f and

robust versions of these tests were suggested since the distribution of these tests would not be

the usual χ2 distribution under the null hypothesis due to the model misspecification.

2Freedman (2006) also recognized the importance of this property, pointing out that even if the

sandwich estimators provide asymptotically correct variances for MLEs under model

misspecification, they do not correct the bias (θ*–θ).
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With this adjustment on the likelihood ratio, the
probability of misleading evidence will behave as if one
were using the true model. This robust adjustment factor
corrects the tails of the likelihood function impacting the
likelihood intervals, while the center of the likelihood
(MLE) remains the same, highlighting why the first
property is important (Figure 5). The robust adjustment
factor has been implemented in the EVIAN R package for
the linear and logistic regression models.

In this journal issue, Baskurt and Strug (2018)
demonstrate how to compute robust adjusted composite
likelihood functions for EP inference of genetic associa-
tion in pedigrees, and this inference is compared to
analyses using generalized estimating equations (Diggle,
Liang, & Zeger, 1994). Zhong and Strug (2018)
implement robust adjusted Poisson regression‐based
likelihood functions for differential gene expression
analysis, where the robust adjustment factor protects
from departures of the Poisson mean‐variance assump-
tion (i.e., over and under‐dispersion). Returning to the
example of meconium ileus in CF, to assess the impact
of model misspecification consider applying the same
logistic regression model from Section 3.1.1 that
assumes independence to a data set that adds
901 siblings to the unrelated CF sample analyzed in
Figure 4 (Section 3.2.1).

3.2.1 | Robust adjusted association
analysis of related individuals with CF at
the SLC26A9 locus

For each SNP at the chromosome 1 SLC26A9 locus, the
logistic regression model from Section 3.1.1 was fit;
however, since siblings were included in the sample a
robust adjustment to the LR was implemented in EVIAN
to adjust for model misspecification (departure from
assumed independence); this adjustment results in

changes to the shape of the likelihood function and
therefore all corresponding LRs and LIs. Figure 5a
provides a histogram of the estimated adjustment factors,
a
b
ˆ
ˆ , across the 222 SNPs analyzed in the region. The
distribution for this data set shows the robust factor close
to 1 for the majority of variants, indicating that the
addition of the 901 siblings does not lead to a large
departure from the model assumptions and consequently
minimal adjustment to the likelihood. Choosing the SNP
in the region with the largest model departure
(rs61814952, =a

b
ˆ
ˆ 0.85; Figure 5b) demonstrates that

inference without the adjustment factor would slightly
overestimate the strength of the evidence, and that the
adjustment factor increases the tails of the likelihood
function which decreases the LRs and increases the
width of the intervals. With respect to interpreting the
strength of association evidence for this SNP rs61814952,
an OR value of 1 is consistent with the data even at k= 8,
with OR values around 1.04 providing similar support to
values of 1; there is a lack of strong association evidence.
In some circumstances, a

b
ˆ
ˆ is greater than 1 which leads to

a more concentrated likelihood function (Table 4b).

3.2.2 | Updating evidence in the EP

The robust adjusted joint analysis of the unrelated sample
with their siblings (Table 4b) also highlights how to
update evidence in the EP with additional data. Since
evidence strength and error probabilities are decoupled
(Box 1), updating the evidence with additional data
simply involves multiplying the likelihood function by
the likelihood of the new data sample. For a discussion
on how this impacts error probabilities from the
perspective of multiple hypothesis testing, see Section
3.4. Comparing Table 4a to 4b shows how the addition of
the 901 patients impacts the evidence, where the MLEs
are attenuated (as would be expected under winner’s

FIGURE 5 Estimated robust adjustment factor and its impact on association evidence. (a) The distribution of the estimated robust adjustment
factor across the 222 variants of the SLC26A9 locus; (b) the impact of the robust adjusted profile likelihood function on the association evidence for
rs61814952. The robust adjustment factor = 0.85a

b
ˆ
ˆ increases the tails of the likelihood function (Lp) (robust adjusted [solid line] versus unadjusted

[dotted line]), widening the LIs. The likelihood function indicates that OR values around 1 are consistent with the data. OR: odds ratio
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curse (Sun et al., 2011) and the LIs for the variants
showing some of the strongest evidence strength, such as
rs142245823, are narrower.

3.3 | EP analysis for composite
hypotheses

Up until this point the focus has been on measuring
evidence for simple versus simple hypotheses through the
LR, as dictated by the law of likelihood. The likelihood
function provides a graphical representation of all possible
simple versus simple LRs, with the likelihood intervals
providing a range of values for the parameter that are
consistent with the data (Pawitan, 2001). The EP has been
used in several genetic applications. Strug and Hodge
(2006a, 2006b) cast linkage analysis in an EP framework,
comparing the simple versus simple hypotheses of no
linkage with a recombination fraction of 0.50
(H θ: = 0.50)0 to linkage where H θ: = 01 , highlighting
the implicit choice for two simple hypotheses in genetic
linkage analysis (Morton, 1955). Gene expression provides
another example in which there is a natural choice for a
simple versus simple comparisons, given the convention of
2‐fold differences considered as important (Bickel, 2012).
The law of likelihood provides a guide for statistical practice
rooted in the comparison of simple versus simple
hypotheses, and Royall (2000) and Royall and Tsou (2003)
has shown how this leads to reliable inference due to
powerful properties for the probabilities of misleading,
weak and strong evidence (Equations 3 and 4).

In current frequentist practice simple versus simple
hypothesis comparisons are necessary in power calculations
and sample size estimation procedures. However, for
statistical testing one generally ignores the simple alternative
hypothesis specified for power analysis, and compares a
simple null hypothesis, H θ θ: =0 0 to a composite alter-
native such as H θ θ: >1 0 or ≠H θ θ:1 0. Whether this is an
informative and necessary comparison beyond all the simple
versus simple comparisons that the likelihood provides, or
whether this has just been popularized by practice and
convention is debated (Blume, 2002, 2013; Royall, 1997).

Independently, Bickel (2012), and Zhang and Zhang
(2013) tackled the problem of how evidence measurement
could be accomplished for composite hypotheses in the EP,
generalizing the Law of Likelihood (GLL), and concluding
that it was only achievable when both hypotheses represent
an interval or set of parameter values. Zhang and Zhang
(2013) used the relevance of composite hypotheses in
clinical trials as motivation for the GLL. The GLL states that
the strength of evidence for one composite hypothesis over
another should be measured by the ratio of the two
likelihood functions each maximized over the set of
parameter values defined by the two composite hypotheses,

referred to as the generalized likelihood ratio (GLR). When
one simple hypothesis is pitted against the entire sample
space, e.g. L θ

L θ
( ˆ)
( )0

(such as the case for classical frequentist

likelihood ratio testing), then the probability of misleading
evidence is not characterized by the bump function, and
does not converge to 0 with increasing n, but rather equals
the fixed value of twice the maximum of the bump function

⎛
⎝⎜

⎞
⎠⎟≥

→∞
P L θ

L θ
k klim ( ˆ)

( )
= 2Φ(− 2 ln )

n
0

0

for all k>1 (Bickel, 2012; Blume & Choi, 2017). In contrast,
Bickel (2012) showed that the GLR has the first important
property of likelihood functions for the EP—that is,
assuming some general regularity conditions, in large
samples the GLR will eventually support the correct
hypothesis and the probability of misleading evidence
approaches 0. Li (2016) investigated the second important
property of likelihood functions for the GLR motivated by
genetic association studies with a null hypothesis region
centered around the parameter value of no association, and
the alternative hypothesis region representing the comple-
ment of the null hypothesis; that is H : Θ0 0 = [θ0 – ε, θ ε+0 ]
and ∞ ∪ ∞H θ ε θ ε: Θ = Θ = (− , – ) ( + , ),c

1 1 0 0 0 where ε
is a small and positive constant ε θ θ0 < < − .0 1 Deriving
the probability of misleading evidence for the GLR under
the null and alternative hypotheses, M n k( , )c

0 and

FIGURE 6 EP analysis with composite hypotheses in the
unrelated CF participants of the International CF Gene Modifier
consortium as in Figure 4 at the SLC26A9 chromosome 1 locus
with mecomium ileus. Analysis uses the generalized likelihood
ratio (GLR) with null and alternative hypotheses defined as

∈H : OR [0.87, 1.15]0 and ∈H : OR Hc
1 0; log10(GLR) < 0 represents

evidence favoring the null hypothesis. All analyses adjusted for
consortium site and genotyping platform. CF: cystic fibrosis;
OR: odds ratio
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M n k( , ),c
1 for these nonoverlapping composite hypotheses

that span the full parameter space, Li (2016) shows that
M n k( , )c

0 is bounded by 2 kΦ(− 2 log ) (twice the bound
under the conventional simple hypothesis EP framework),
while M n k( , )c

1 < kΦ(− 2 log ) (the same bound as in the
simple hypothesis case).

3.3.1 | Genetic association of composite
hypotheses for meconium ileus at the
SLC26A9 locus

In Figure 6, the GLR is applied to the genetic analysis
of meconium ileus with the 222 SNPs annotated to
the SLC26A9 region of chromosome 1 using the unrelated
sample of 5,869 individuals with CF as in Figure 4 for
the simple versus simple hypothesis analysis;

∈H : OR [0.87, 1.15]0 and ∈H H: OR c
1 0 . Each dot on the

plot corresponds to the GLR for a given SNP, with horizontal
lines indicating evidence strength of k=8, 100 and 1,000.
GLRs< 1 provide evidence favoring the null region, while
GLRs> 1 provide evidence favoring the alternative set.
Comparing Figure 4 to Figure 6 shows association evidence
in the same region of chromosome 1, although the strength
of the evidence for a given SNP is smaller for the GLR than
for the simple versus simple hypothesis comparisons.
Figures 3 and 6 provide association evidence in the same
region; however, analysis with the Frequentist paradigm
cannot take advantage of the intuitive EP properties of
updating evidence, error probability bounds and conse-
quences for multiple hypothesis testing (Section 3.4).
Moreover, unlike the P‐value, the GLR can generate evidence
that favors the null region, providing a way to demarcate the
region of association; in Figure 6, by 205.88Mb 3′ of
SLC26A9, the majority of variants are providing evidence
favouring the null region over the alternative (i.e., GLR<1).
The arbitrary nature of choosing the null region would be
seen as a limitation by some, although these choices are
required when alternative hypothesized values are specified
for the parameter of interest in power calculations. For
further discussion, see Li (2016).

3.4 | Study planning and multiple
hypothesis testing

3.4.1 | Sample size and error probability
estimation

Sufficient sample size should be planned under the EP to
generate strong evidence, with correspondingly low prob-
abilities of weak and misleading evidence (Figure 2).
Estimating sample size by controlling Type I and II error
probabilities results in insufficient estimates for EP
inference (Strug et al., 2007). Power, although similar in
spirit, is always greater than the probability of strong

evidence at conventional Type I error levels and therefore
the two represent different quantities (Box 1). If the goal of a
study is to generate evidence about a parameter of interest—
rather than simply choosing to reject (or not) the null
hypothesis—then the sample size estimation procedure
needs to reflect that goal and larger estimates are required.
Formulae for EP sample size estimation, or error probabil-
ities for a given sample size, are available for several data
types (Strug et al., 2007). For the simple versus simple
hypothesis case, these formulae are available for normal one
and two sample comparison of means, linear combinations
of regression coefficients, effects in repeated measures
designs, one sample proportions, logistic regression coeffi-
cients, and for rate and survival data. Sample size estimation
for composite hypotheses using the GLR are available in Li
(2016), with methods for simple versus simply hypotheses of
time to event end‐points in Blume and Choi (2017).

3.4.2 | The impact of multiple
hypothesis testing in the EP

A fundamental difference between the EP and frequentist
paradigm is the decoupling of the evidence measure (the LR)
from the error probabilities (Box 1). When one fixes the Type
I error rate, one fixes the P‐value (critical value) at which
“importance” is concluded. The Type I error is adjusted by
the effective number of hypothesis tests in, say a whole
genome scan, to protect from Type I error inflation. This
adjustment, in turn, adjusts the P‐value (incorrectly inter-
preted as evidence strength) needed for significance (e.g.,
P<5× 10−8; Dudbridge & Gusnanto, 2008). By this reason-
ing, a P‐value of 0.05 represents different evidence strength
depending on whether one SNP is analyzed for association or
222 SNPs, while an LR of k has the same interpretation
across different experimental designs (Equation (1)). The
decoupling of evidence strength and error probabilities in the
EP (Box 1) achieves an independence between study
planning and evidence measurement and, since error
probabilities are not fixed by design, allows one to ask what
the impact of multiple testing is on the probability of
obtaining misleading evidence. See Strug and Hodge (2006b)
for a comprehensive discussion of multiple hypothesis testing
for the EP in linkage analysis, which is generalizable to
genetic association studies (Strug et al., 2010).

In essence, one could have multiple tests of a single
hypothesis or single tests of multiple hypotheses. When
comparing the evidence strength for rs142245823 in
Table 4 calculated pre‐ and post‐ the addition of the 901
siblings, this was a multiple test of a single hypothesis.
The theory of sequential testing (Wald, 1945) is
concerned with how to adequately “spend” Type I error
as one updates their inference over accumulating data; in
practice, this is challenging to implement and is largely
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absent from the applied genetics literature. Single tests of
multiple hypotheses occur when multiple SNPs are
evaluated for association across, say a region (e.g.,
Figures 3 and 4) or a genome. In contrast to the
probability of misleading evidence, both types of multiple
hypothesis testing “spend” fixed Type I error.

For multiple tests of a single hypothesis if one does
not fix the Type I error, the probability that an
investigator will eventually observe strong misleading
evidence if that investigator continues to collect data
until the evidence supports a favorite incorrect hypoth-
esis, is bounded by 1/k (Robbins, 1970)

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∏ ≥ ≤P

f x θ
f x θ

k n
k

( )
(

for some = 1, 2,… 1 .
i

n
i

i
0

1 ; 1

0 ; 0
(6)

This bound holds whether one looks at the data a few
or many times, or as in Wald’s sequential sampling
framework one looks at the data until a strong result is
observed in either direction; Equation (6) is a scientific
safeguard. In reality the actual probability of misleading
evidence in a given situation is much smaller than 1/k
(Strug & Hodge, 2006b). This result supports the analysis
comparison of rs142245823 in Table 4a,b. Moreover, in
combination with property one of likelihood functions
(Equation 3), Equation (6) supports the collection and
addition of more data to refine initial signals.

For genome‐wide or regional association studies (single
tests of multiple hypotheses), one is generally concerned with
the family‐wise error rate (FWER), the probability of
observing at least one misleading result (or rejecting one
truly null hypothesis) among all the variants assessed for
association when none are true. Define the FWER across N
SNPs in terms of the probability of misleading evidence,

≥ ∪ ≥

∪ ∪ ≥

M n N k P LR k LR k

LR k

FWER = ( , , ) = [( ) ( )

… ( )]N

0 0 1 2

≤ ∑ M n k j N( , ) , = 1,…,j
N j
=1 0

( ) variants (Strug & Hodge,

2006b) with M n k( , )j
0
( ) being M n k( , )0 for the jth variant.

Given M n k( , )0 is a planning probability, one in general
would take M n k( , )j

0
( ) equal for all N and therefore

≤ NM n kFWER ( , )0 (7)

which is a conservative upper bound and assumes
independence across all SNPs. (For SNPs in linkage
disequilibrium the bound is smaller:

≤ N M n kFWER ( , )eff 0 , where Neff is the effective
number of independent tests.) From Equation (7),
the bound on the FWER is larger for more variants,
but is a function of M n k( , )0 which is not fixed and can
be made as small as necessary by increasing the
sample size (Equation 3).3 In some situations,
M n k( , )0 is naturally very small such that multi-
plication by N results in a bound on the FWER that
remains sufficiently small.

Returning to the CF example of Section 3.1, from the
bump function in Equation (4) the maximum probability
of misleading evidence for one of the N= 222 SNPs is
Φ(− 2 log(1000) ) = 0.0001 for k= 1,000, and therefore
the FWER for the region is bounded by
N × Φ(− 2 log(1000) ) = 222 × 0.0001 = 0.022 when
the SNPs are assumed independent. (Note here that the
genome‐wide linkage threshold of k= 1,000 was used
although in reality k can be any experimenter‐defined
value, greater than 1.)

In reality, Property 1 (Equation 3) implies that the
probability of misleading evidence is much smaller for this
large n=5,869. Using the bump function formula for profile
likelihoods with an estimate of the variance from a previous
study of rs7512462 with meconium ileus (Sun et al., 2012),
the probability of misleading evidence comparing ORs of
1.10, 1.20, and 1.30 to 1.0 is provided in Table 5 as a function
of k. By k=1000, M0(n=5,869, k=1,000) is essentially 0 for
a single SNP association analysis for any of the three
alternative OR values considered (OR1). Table 5 also provides
the corresponding probabilities of weak and strong evidence
under the null hypothesis,W0(n, k) and S0(n, k), respectively.
As k gets larger, the probability of weak evidence also gets
larger and the probability of strong evidence decreases, and

TABLE 5 The probabilities of misleading, weak and strong evidence for alternative ORs (OR1) of 1.10, 1.20, and 1.30 compared to OR= 1
as a function of k; n= 5,869

M0(n, k) W0(n, k) S0(n, k)

OR1 1.10 1.20 1.30 1.10 1.20 1.30 1.10 1.20 1.30
k= 8 0.0204 0.0085 0.0013 0.5384 0.0988 0.0122 0.4411 0.8927 0.9865

k= 32 0.0028 0.0028 0.0005 0.8075 0.1924 0.0253 0.1897 0.8048 0.9742

k= 100 0.0004 0.0010 0.0002 0.9302 0.2919 0.0417 0.0695 0.7070 0.9580

k= 1,000 0.0000 0.0001 0.0000 0.9965 0.5357 0.0989 0.0035 0.4642 0.9010

OR: odds ratio.

3M n k( , )0 is also a function of k, but, in general, increasing k can be counterproductive since it

only slightly reduces M n k( , )0 while increasing the probability of weak evidence substantially

(Table 5).
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they do so similarly assuming the null or alternative
hypothesis is true (not shown). Where, for k=1,000 and
OR1 of 1.10 or 1.20, W0(n, k) and S0(n, k) are not at
acceptable levels, demonstrating the trade‐off between
choosing a large initial k value.

For studies where the FWER is not sufficiently small,
one can decrease the bound on the FWER by increasing
the sample size (Equation (7)). Whether a larger sample
size is chosen to reduce the bound on the FWER before
conducting the study, or whether the additional data is
added in a follow‐up analysis as in a joint (two‐stage)
design, e.g., Table 4a,b (Skol, Scott, Abecasis, & Boehnke,
2006), results in the same LR (evidence strength), while
two‐stage joint designs result in equal or smaller
probabilities of misleading and weak evidence (Strug &
Hodge, 2006b; Strug et al., 2010). Although adjustment
for multiple hypothesis testing and replication studies are
independent concepts in standard Frequentist statistical
practice and both are required in the genetics field for
seemingly different reasons, in the EP increasing the
sample size is the multiple hypothesis testing adjustment.

4 | DISCUSSION

The American Statistician’s special issue call, “Statistical
Inference in the 21st Century: A World Beyond P<0.05”
highlights the field’s focus on change. Recent theoretical
developments for the EP that were outlined here alongside
their application to CF, provide an alternative to P‐value
procedures that are available for implementation in genetics.
In summary, for EP analysis any reliable evidence function
must demonstrate the two properties of likelihood functions:
That the probability the evidence function will eventually
favor the “true” parameter value over a false value is 1; and
that the probability of misleading evidence is described by
the bump function and/or is bounded. First, profile like-
lihood functions, although they are pseudo‐likelihood
functions, were shown to have the two properties of genuine
likelihood functions. Consequently, profile likelihoods pro-
vide a general solution to measuring evidence in the
presence of nuisance parameters. Second, likelihood func-
tions can be made robust, such that when the working model
is misspecified, the two properties of likelihood functions
required for reliable evidence measurement are recapitu-
lated. Third, despite significant debate concerning the
relevance, recent approaches to measuring evidence for
composite hypotheses with corresponding bounds on mis-
leading evidence were presented. Lastly, the impact of
multiple hypothesis testing on the EP was reviewed, showing
that additional data provide an adjustment for multiple
hypothesis testing. Arguably, the implications of multiple

hypothesis testing in the EP are more consistent with
scientific reasoning and the availability of big data.

EP methodology has found several applications in
biomedical research, and the methodology tailored to these
problems could readily be repurposed for genetic studies.
These include applications in bioequivalence trials for the
purpose of approving generic drugs (Du & Choi, 2015);
noninferiority analyses in clinical trials (Wang & Blume,
2011); a general framework for clinical trials measuring
evidence for composite hypotheses (Zhang & Zhang, 2013);
and EP approaches for survival analysis using the theory of
partial likelihood (Cox, 1975). In the latter case, Eddings
(2003) demonstrated that LRs constructed from partial
likelihoods satisfy properties 1 and 2 (Equations 3 and 4)
for reliable EP inference and satisfy the universal bound.

Several areas of EP analysis in genetics require further
attention. Use of the EP in applications where evidence must
be compared across units of differing sample sizes (such as
gene‐based testing or tests based on sequence read counts)
may have some of its most important contributions, and this
requires further investigation. Given the growth of data in
the field, estimating and controlling other error probabilities
besides the FWER need to be delineated. Likewise, methods
when the number of (nuisance) parameters (p) are large, and
especially for p> n, require attention. Methodology develop-
ment for rare variant analysis, as well as other set‐based
genomic analyses such as testing collapsed over functional
annotations is required. For rare variant association analysis
using classical testing procedures, collapsing methods across
multiple variants or Fisher’s exact test for single variants is
generally used. Burden testing (e.g., Li & Leal, 2008) would
be straightforward to incorporate into a given likelihood
function through a covariate and carry out an EP analysis,
although little work has been done in this area. Li et al.
(2015) derive a conditional likelihood based on a logistic
regression model for a 2× 2 table of a single rare genetic
variant. The conditioning achieves a likelihood function that
is free of the intercept nuisance parameter, and this approach
has been generalized to include additional covariates. The
conditional likelihood has the same formulation as Fisher’s
noncentral hypergeometric distribution (Li et al., 2015).

The size and complexity of genetic data is growing,
demanding a fresh look at the methods we use to measure
statistical evidence. The next step, beyond data visualization
and summary statistics, should be the measurement of what
the data say. The EP fulfills this objective and may be more
suitable for the automatic exploratory analyses that are
necessitated by big data. Although P‐value procedures and
EP‐based analyses agree qualitatively for some of the
examples considered here, these similarities end as one
starts to compare evidence strength across scenarios of
different sample sizes, and as one starts to grapple with the
multiple hypothesis testing implications of standard statis-
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tical practice. Intuition and concerns about reproducibility
has led the genetics field to require independent replication
beyond the multiple hypothesis test adjustments implicit in
conventional practice. The EP provides a theoretical
justification for this intuition while ensuring that evidence
strength remains constant irrespective of different experi-
mental designs; arguably, a fundamental requirement of a
reliable measure of statistical evidence.
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